Determining parameters of hydrological model

Sergey Zasukhin, Elena Zasukhina


The study considers a problem of determining parameters of hydro-physical characteristics included in many hydrological models of runoff formation in the catchment area. The problem of parameters determination is formulated as an optimal control problem. The object function is standard deviation of modeled soil moisture profiles from some prescribed values, and the control is defined parameters. The discretized optimal control problem is solved numerically by gradient method and exact values of gradient of the objective function are calculated by fast automatic differentiation method.

Full Text:

PDF (Russian)


M. Th. van Genuchten, “A closed form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil. Sci. Soc. Am. J. vol. 44, pp. 892–898, Sept. 1980.

S. O. Eching and J.W. Hopman, “Optimization of hydraulic functions from transient outflow and soil water pressure head data,” Soil. Sci. Soc. Am. J. vol. 57, pp. 1167–1175, Sept. 1993.

J. B. Kool and J. C. Parker, “Analysis of the inverse problem for transient unsaturated flow,” Water Resour. Res. vol. 24(6), pp. 817–830, Jun. 1999.

N. Romano and A. Santini, “Determining soil hydraulic functions from evaporation experiments by a parameter estimation approach: experimental verifications and numerical studies,” Water Resour. Res. vol. 35(11), pp. 3342–3359, Nov. 1999.

J. Simunek and M. Th. van Genuchten, “Estimating unsaturated soil parameters from multiple tension disc infiltrometer data,” Soil Sci. vol. 162 (6), pp. 383–398, Jun. 1997.

M. Th. van Genuchten, F. J. Leij and S. R. Yates, “The RETC code for quantifying the hydraulic functions of unsaturated soils,” U.S. Salinity Lab., USDA, ARS, Riverside, California. EPA Report 600/2-91/065, 1991.

M. G.Scaap., F .J. Leij and M. Th. van Genuchten, “Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions,” J. Hydrol. vol. 251, pp. 163–176, Oct. 2001.

L. H.. Pan and L. S. Wu, “A hybrid global optimization method for inverse estimation of hydraulic parameters: annealing-simplex method,” Water Resour. Res. vol. 34, pp. 2261–2269, Nov. 1998.

Y. Takeshita, “Parameter estimation of unsaturated soil hydraulic properties from transient outfl ow experiments using genetic algorithms,” in Proc. Int. Worksh.,Riverside, CA. 22–24 Oct. 1997, U.S. Salinity Lab., Riverside, CA, New York, 1999, pp. 761–768.

J. A. Vrugt, A. H. Weerts, and W. Bouten, “Information content of data for identifying soil hydraulic parameters from outfl ow experiments,” Soil. Sci. Soc. Am. J. vol. 65, pp. 19–27, Jan. 2001.

S. Lambot, M. Javaux, F. Hupet, and M. Vanclooster, “A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties,” Water Resour. Res. vol. 38(11), pp. 1224–?, Nov. 2002.

K. C. Abbaspour, R. Schulin, and M.Th . van Genuchten, “Estimating unsaturated soil hydraulic parameters using ant colony optimization,” Adv. Water Resour. vol. 24, pp. 827–841, Aug. 2001.

X. Yang and X. You, “Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms,” Appl. Math. Inf. Sci. vol. 7(5), pp. 1977– 1983, Sept. 2013.

J. A. Vrugt and W. Bouten, “Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models,” Soil. Sci. Soc. Am. J. vol. 66(6), pp. 1740–1752, Nov. 2002.

J. A. Vrugt, H. V. Gupta, W. Bouten, L. A. Bastidas, and S. Sorooshian, “Effective and efficient algorithm for multi-objective optimization of hydrologic models,” Water Resour. Res. vol. 39(8), pp. 1214–1232, Aug. 2003.

J. Mertens, H. Madsen, M. Kristensen, D. Jacques, and J. Feyen, “Sensitivity of soil parameters in unsaturated zone modeling and the relation between effective, laboratory and in situ estimates,” Hydrol. Processes. vol. 19(8), pp. 1611–1633, May. 2005.

J. Mertens, R. Stenger, and G. F. Barkle, “Multiobjective inverse modeling for soil parameter estimation and model verification,” Vadose Zone J. vol. 5(3), pp. 917–933, Aug. 2006.

K. R. 2. Ajda-Zade, Ju. G. Evtushenko, “Bystroe avtomaticheskoe differencirovanie na JeVM,” Matematicheskoe modelirovanie. T. 1, # 1, S. 121–139, 1989.

Automatic Differentiation of Algorithms. Theory, Implementation and Application, A. Griewank and G. F. Corliss, Ed. Philadelphia: SIAM, 1991.

Yu. Evtushenko, “Automatic differentiation viewed from optimal control theory,” in Automatic Differentiation of Algorithms. Theory, Implementation and Application, A. Griewank and G. F. Corliss, Ed. Philadelphia: SIAM, 1991, pp. 25–30.

Yu. Evtushenko, “Computation of exact gradients in distributed dynamic systems,” Optimization methods and software. vol. 9, pp. 45–75, Sept. 1998.

S. A. Lupin, M. A. Posypkin, Tehnologii parallel'nogo programmirovanija. M: Forum Infra-M, 2008. 208 s.

Y. Evtushenko, M. Posypkin and I. Sigal, “A framework for parallel large-scale global optimization,” Computer Science – Research and Development. vol. 23, # 3, pp. 211–215, Jun. 2009.

Y. Evtushenko and M. Posypkin, “A deterministic approach to global box-constrained optimization,” Optimization Letters. vol. 7, # 4, pp. 819–829, Apr. 2013.


  • There are currently no refbacks.

Abava  Absolutech Convergent 2020

ISSN: 2307-8162