A Universal Model for Forecasting Customer Service Revenue: A Paid Parking Service Example
Abstract
Full Text:
PDFReferences
A. Barsotti, A. Andreolini, D. Colle, F. De Pellegrini, and A. W. Services, “A decade of churn prediction techniques in the TelCo domain: A survey,” SN Computer Science, vol. 5, no. 4, 2024. doi: 10.1007/s42979-024-02722-7
G. Mena, A. De Caigny, K. Coussement, and S. Lessmann, “Exploiting time-varying RFM measures for customer churn prediction with deep neural networks,” Annals of Operations Research, 2024. doi: 10.1007/s10479-023-05259-9
S. S. Channamallu, S. Kermanshachi, J. M. Rosenberger, and A. Pamidimukkala, “Parking occupancy prediction and analysis — A comprehensive study,” Transportation Research Procedia, vol. 73, pp. 297–304, 2023. doi: 10.1016/j.trpro.2023.11.921
Y. Wang, S. Ke, C. An, Z. Lu, and J. Xia, “A hybrid framework combining LSTM NN and BNN for real-time traffic flow forecasting,” Journal of Electrical Engineering & Technology, vol. 28, no. 1, pp. 363–374, Jan. 2024. doi: 10.1007/s12205-023-2457-y
X. Zhao, Y. Li, H. Song, X. Sun, and L. Zhang, “Enhancing predictive models for on-street parking occupancy using adaptive graph convolutional networks,” Mathematics, vol. 12, no. 18, p. 2823, 2024. doi: 10.3390/math12182823
J. Guo, H. Zhang, Z. Liu, and L. Sun, “Analysis of the potential economic impact of parking space comprehensive utilization on traditional business district,” Sustainability, vol. 16, no. 1, p. 28, 2023. doi: 10.3390/su16010028
R. Zhang, E. Kontou, M. Jiang, and H. Yang, “Revenue-maximizing shared parking and electric vehicle charging management in multi-unit dwellings,” Transportation Research Record, vol. 2679, no. 4, 2025. doi: 10.1177/03611981241289413
S. H. Tilahun, “Dynamic vehicle parking pricing: A review,” Operations Research and Decisions, vol. 34, no. 1, pp. 33–52, 2024. Available: https://ord.pwr.edu.pl/assets/papers_archive/ord2024vol34no1_3.pdf
H. Pavlek, A. Županović, and D. Šošić, “Model for determining parking demand using simulation and elasticity functions,” Applied Sciences, vol. 15, no. 12, p. 6603, 2025. doi: 10.3390/app15126603
И. Р. Ерёмин и П. В. Никитин, “Анализ данных сервиса платной парковки для создания эффективной системы ценообразования (на примере Владивостока),” Моделирование, оптимизация и информационные технологии, т. 12, № 2 (45), 2024.
S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 Competition: 100,000 time series and 61 forecasting methods,” International Journal of Forecasting, vol. 36, no. 1, pp. 54–74, 2020. doi: 10.1016/j.ijforecast.2019.04.014
R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and practice, 3rd ed. Monash University, OTexts, 2021. Available: https://otexts.com/fpp3/
C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Climate Research, vol. 30, no. 1, pp. 79–82, 2005. doi: 10.3354/cr030079
T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature,” Geoscientific Model Development, vol. 7, no. 3, pp. 1247–1250, 2014. doi: 10.5194/gmd-7-1247-2014
S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts,” International Journal of Forecasting, vol. 32, no. 3, pp. 669–679, 2016. doi: 10.1016/j.ijforecast.2015.12.003
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИТ конгресс СНЭ
ISSN: 2307-8162