Association rules mining with three-dimensional data structure

Evgenia O. Khramshina, Alexander V. Prutzkow

Abstract


 Association rules mining progresses year by year. There are many algorithms of association rules mining. The most popular are the Apriori algorithm and the FP-Growth algorithm. But these algorithms have disadvantages. The Apriori algorithm requires many transaction base passes. The FP-Growth algorithm uses a many-edged (non-binary) tree data structure. Algorithm is characterized by the data structure used in it. We discover an association rules mining algorithm using three-dimensional data structure. Algorithm needs only two transaction base passes. The first pass is to insert transactions in three-dimensional data structure. The second pass is to count support of extracted from three-dimensional data structure itemsets. The algorithm tested and compared with the Apriori algorithm and the FP-Growth algorithm. The algorithm is more effective by memory usage than the FP-Growth algorithm, when number of unique elements is between 10 and 868, and the Apriori algorithm, when number of unique elements is between 49 and 498.


Full Text:

PDF

References


Agrawal R., Imielinski T., Swami A. Mining Association Rules between Sets of Items in Large Databases. SIGMOD Conference, 1993. (DOI: 10.1145/170035.170072)

Brin S., Motwani R., Ullman J.D. Dynamic Itemset Counting and Implication Rules for Market Basket Data. SIGMOD'1997, «ACM Press», 1997. (DOI: 10.1145/253260.253325)

Gallo G., Signorello G., Farinella G. M., Torrisi A.. Exploiting Social Images to Understand Tourist Behaviour. Image Analysis and Processing - ICIAP 2017: 19th International Conference, Catania, Italy, September 11-15, 2017, Proceedings – Springer, 2017, pp 707-717. (DOI: 10.1007/978-3-319-68548-9_64)

Han, J., Pei, J., & Yin, Y. Mining Frequent Patterns without Candidate Generation. In Proc. ACM SIGMOD Intl. Conference on Management of Data, 2000, pp. 1-12. (DOI: 10.1145/342009.335372)

Hristovski D. Supporting Discovery in Medicine by Association Rule Mining of Bibliographic Databases. Principles of Data Mining and Knowledge Discovery: 4th European Conference, PKDD, 2000, Lyon, France, September 13-16, 2000, pp 1344-1348.

Piatetsky-Shapiro G. Discovery, analysis and presentation of strong rules. Knowledge Discovery in Databases. «AAAI Press», 1991.

Prutzkow A. Algorithms and Data Structures for Association Rule Mining and its Complexity Analysis. In ICPE 2018 – International Conference on Psychology and Education, «The European Proceedings of Social & Behavioural Sciences EpSBS» Serie, 2018, pp. 558-568. (DOI: 10.15405/epsbs.2018.11.02.62)

Srikant R., Agrawal R. Fast algorithms for Mining Association rules in large database. In VLDB '94 Proceedings of the 20th International Conference on Very Large Data Bases, 1994.

Zaki M.J., Meira W. Data Mining and Analysis: Fundamental Concepts and Algorithms – Cambridge University Press, 2020.

Zhang C., Zhang S. Association Rule Mining: Models and Algorithms – Springer, 2002. (DOI: 10.1007/3-540-46027-6)

Zhang H., Zhao Y., Cao L., Zhang C. Combined Association Rule Mining. Advances in Knowledge Discovery and Data Mining: 12th Pacific-Asia Conference, PAKDD 2008 Osaka, Japan, May 20-23, 2008 – Springer Science & Business Media, 2008, pp 1069-1074. (DOI: 10.1007/978-3-540-68125-0_115)

Billig V.A., Tsaregorodtsev N.A., Ivanova O.V. Programmnye produkty i sistemy. №2. Postroenie assotsiativnykh pravil v zadache meditsinskoi diagnostiki. – Tver, «Faktor i K», 2016. [In Rus]

Khramshina E.O. Primenenie metoda poiska assotsiativnykh pravil v meditsine // Materialy IV Vserossiiskoi nauchnoi konferentsii molodykh spetsialistov, aspirantov, ordinatorov s Mezhdunarodnym uchastiem. Innovatsionnye tekhnologii v meditsine: vzgliad molodogo spetsialista. – Riazan, RiazGMU, 2018. – s. 7-9. [In Rus]


Refbacks

  • There are currently no refbacks.


Abava  Absolutech Convergent 2020

ISSN: 2307-8162