The table-driven approach to finding one real variable functions values

Vladimir Abramov, Natalia Baeva, Artem Kazakov, Sergey Solov’ev

Abstract


In this article, we consider main aspects of software implementation of the technology table-driven real variable functions. With regard to functions, the term "computation" (in the description of the technology) means the fabrication function values (for a given argument) by some numerical method, and the term "finding value" means the fabrication function values by search in the table using the (possibly modified) argument as a key. The main problem of the technology is to construct a table of values of a given function to all the arguments of some of the standard range. Herewith the error estimation and function domain are determined by a binary format for numbers representation, and the transition from the function values for arguments from the standard range to the values from the function domain does not affect the error of finding the final value.

We also present and justify the requirements to be met by the methods of formation of tables of values. To study the technology we propose to use a set of model functions. To demonstrate the basic stages of the technology we have chosen a logarithmic function. In conclusion, we present encouraging results of practical verification technology to test functions.

Full Text:

PDF (Russian)

References


Ljusternik L.A., Abramov A.A., Shestakov V.I., Shura-Bura M.R. Reshenie matematicheskih zadach na avtomaticheskih cifrovyh mashinah. – M.: Izd-vo AN SSSR, 1952.

Berezin I.S., Zhidkov N.P. Metody vychislenij, tom 1. – M.: GIFML, 1959.

Smirnov G.S. Semejstvo JeVM “Ural-1”. Stranicy istorii razrabotok. – Penza, 2005.

Ljusternik L.A., Chervonenkis O.A., Janpol'skij A.R. Matematicheskij analiz. Vychislenie jelementarnyh funkcij. – M.: Fizmatgiz, 1963.

Popov B.A., Tesler G.S. Vychislenie funkcij na JeVM. – Kiev: Naukova dumka, 1984.

R. Brent, P. Zimmermann, Modern Computer Arithmetic. Cambridge University Press, 2011.

Jashkardin V.L. IEEE 754: standart dvoichnoj arifmetiki s plavajushhej tochkoj. [Jelektronnyj resurs]. Stranica dostupa: http://www.softelectro.ru/ieee754.html.

Stefanjuk V.L. Rekursivnoe ocenivanie arifmeticheskih funkcij v sistemah LISP. Programmirovanie, 1981, No.5. S. 92-94.

Sal'nikov M.S. Rekursivnyj algoritm vychislenija logarifma. // Informacionnye processy, tom 12, No. 3, 2012. C. 248-252

Solov'ev S.Ju. Algoritm vychislenija logarifmov metodom vytesnenija. // Vestn. Mosk. un-ta ser. 15 Vychisl. matem. i kibern., 2013, No. 2. S. 38-43

Tesler G.S. Adaptivnye approksimacii i iterativnye processy. // Matematicheskie mashiny i sistemy, tom 2,. 2004. S.22-41

Voevodin V.V., Voevodin Vl.,V Parallel'nye vychislenija. – SPb.: BHV-Petergurg, 2002.

Vatolin D., Ratushnjak A., Smirnov M., Jukin V. Metody szhatija dannyh. Ustrojstvo arhivatorov, szhatie izobrazhenij i video. – M.: DIALOG-MIFI, 2003.

Kazakov A.A. Issledovanie algoritmov upakovki tablichno zadannyh funkcij // Sbornik tezisov luchshih vypusknyh rabot fakul'teta VMK MGU. – M.: MAKS Press, 2015. S. 93-95.


Refbacks

  • There are currently no refbacks.


Abava  Absolutech Convergent 2020

ISSN: 2307-8162