Randomized Smoothing in Certified Robustness: Theory and a Systematic Review
Abstract
Full Text:
PDF (Russian)References
J. M. Cohen, E. Rosenfeld и J. Z. Kolter, Certified Adversarial Robustness via Randomized Smoothing, 2019.
V. Voracek и M. Hein, «Improving l1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints,» в Proceedings of the 40th International Conference on Machine Learning, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato и J. Scarlett, ред., сер. Proceedings of Machine Learning Research, т. 202, PMLR, 23–29 Jul 2023, с. 35 198—35 222. url: https://proceedings.mlr.press/v202/voracek23a.html
Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang и J. C. Duchi, Unlabeled Data Improves Adversarial Robustness, 2022.
H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui и M. I. Jordan, Theoretically Principled Trade-off between Robustness and Accuracy, 2019. url: https://arxiv.org/abs/1901.08573
L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar и A. Mądry, Adversarially Robust Generalization Requires More Data, 2018. url: https: //arxiv.org/abs/1804.11285
A. Krizhevsky и G. Hinton, «Learning multiple layers of features from tiny images,» University of Toronto, тех. отч. TR-2009, 2009. url: https://www.cs.toronto. edu/~kriz/learning-features-2009-TR.pdf
H. Salman и др., Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers, 2020.
A. Madry, A. Makelov, L. Schmidt, D. Tsipras и A. Vladu, Towards Deep Learning Models Resistant to Adversarial Attacks, 2019. url: https://arxiv.org/abs/ 1706.06083
J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin и E. Granger, Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks and Defenses, 2019. url: https://arxiv.org / abs/1811.09600
R. Zhai и др., MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius, 2022.
J. Jeong, S. Park, M. Kim, H.-C. Lee, D. Kim и J. Shin, SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness, 2021.
J. Jeong и J. Shin, Consistency Regularization for Certified Robustness of Smoothed Classifiers, 2021.
L. Deng, «The mnist database of handwritten digit images for machine learning research,» IEEE Signal Processing Magazine, т. 29, № 6, с. 141—142, 2012.
J. Jeong, S. Kim и J. Shin, Confidence-aware Training of Smoothed Classifiers for Certified Robustness, 2022.
Z. Shi, Y. Wang, H. Zhang, J. Yi и C.-J. Hsieh, Fast Certified Robust Training with Short Warmup, 2021.
S. Gowal и др., On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models, 2019.
V. Nair и G. E. Hinton, «Rectified linear units improve restricted boltzmann machines,» в Proceedings of the 27th International Conference on International Conference on Machine Learning, сер. ICML’10, Haifa, Israel: Omnipress, 2010, с. 807—814.
J. Jia, X. Cao, B. Wang и N. Z. Gong, Certified Robustness for Top-k Predictions against Adversarial Perturbations via Randomized Smoothing, 2019.
H. Salman, M. Sun, G. Yang, A. Kapoor и J. Z. Kolter, Denoised Smoothing: A Provable Defense for Pretrained Classifiers, 2020.
N. Carlini, F. Tramer, K. D. Dvijotham, L. Rice, M. Sun и J. Z. Kolter, (Certified!!) Adversarial Robustness for Free! 2023.
C. Xiao и др., DensePure: Understanding Diffusion Models towards Adversarial Robustness, 2022.
J. Jeong и J. Shin, Multi-scale Diffusion Denoised Smoothing, 2023.
H. Chen и др., Your Diffusion Model is Secretly a Certifiably Robust Classifier, 2024.
L. Li и др., TSS: Transformation-Specific Smoothing for Robustness Certification, 2021.
M. Fischer, M. Baader и M. Vechev, Certified Defense to Image Transformations via Randomized Smoothing, 2021.
B. Li, C. Chen, W. Wang и L. Carin, Certified Adversarial Robustness with Additive Noise, 2019.
M. Fischer, M. Baader и M. Vechev, Scalable Certified Segmentation via Randomized Smoothing, 2022.
O. Laousy и др., Towards Better Certified Segmentation via Diffusion Models, 2023. url: https://arxiv.org/abs/2306.09949
M. Weber, X. Xu, B. Karlaš, C. Zhang и B. Li, RAB: Provable Robustness Against Backdoor Attacks, 2023.
Z. Hammoudeh и D. Lowd, Provable Robustness Against a Union of ℓ0 Adversarial Attacks, 2024.
M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu и S. Jana, Certified Robustness to Adversarial Examples with Differential Privacy, 2019.
C. Dwork, «Differential Privacy: A Survey of Results,» в Theory and Applications of Models of Computation, M. Agrawal, D. Du, Z. Duan и A. Li, ред., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, с. 1—19.
B.-H. Kung и S.-T. Chen, Towards Large Certified Radius in Randomized Smoothing using Quasiconcave Optimization, 2023. url: https://arxiv.org/abs/2302. 00209
S. Xia, Y. Yu, X. Jiang и H. Ding, Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing, 2024. url: https://arxiv. org/abs/2404.09586
L. Ding, T. Hu, J. Jiang, D. Li, W. Wang и Y. Yao, Random Smoothing Regularization in Kernel Gradient Descent Learning, 2023. url: https://arxiv.org/abs/2305.03531
S. Pfrommer, B. G. Anderson и S. Sojoudi, Projected Randomized Smoothing for Certified Adversarial Robustness, 2023. url: https://arxiv.org /abs/2309.13794
R. Hase, Y. Wang, T. Koike-Akino, J. Liu и K. Parsons, Variational Randomized Smoothing for Sample-Wise Adversarial Robustness, 2024. url: https://arxiv.org/abs/2407.11844
V. Rostermundt и B. G. Anderson, «Certified Adversarial Robustness via Mixture-of-Gaussians Randomized Smoothing,» в NeurIPS 2025 Workshop: Reliable ML from Unreliable Data, 2025. url: https://openreview.net/forum?id=ZyGMTcNaio
H. Hong, A. Kundu, A. Payani, B. Wang и Y. Hong, Towards Strong Certified Defense with Universal Asymmetric Randomization, 2025. url: https : / /arxiv. org/abs/2510.19977
V. Voracek, Treatment of Statistical Estimation Problems in Randomized Smoothing for Adversarial Robustness, 2025. url: https : / / arxiv . org / abs / 2406 . 17830
E. Seferis, C. Wu, S. Kollias, S. Bensalem и C.-H. Cheng, Randomized Smoothing Meets Vision- Language Models, 2025. url: https : / /arxiv.org/ abs / 2509.16088
E. Seferis, «Scaling Randomized Smoothing to state- of-the-art Vision-Language Models,» в ICLR 2025 Workshop: VerifAI: AI Verification in the Wild, 2025. url: https://openreview.net/forum?id=hyZePf0jxy
G. Yang, T. Duan, J. E. Hu, H. Salman, I. Razenshteyn и J. Li, Randomized Smoothing of All Shapes and Sizes, 2020.
C. Liang и X. Wu, Mist: Towards Improved Adversarial Examples for Diffusion Models, 2023.
A. Pal и J. Sulam, Understanding Noise-Augmented Training for Randomized Smoothing, 2023.
S. Wu, J. Wang, W. Ping, W. Nie и C. Xiao, Defending against Adversarial Audio via Diffusion Model, 2023.
J. Buckman, A. Roy, C. Raffel и I. Goodfellow, «Thermometer Encoding: One Hot Way To Resist Adversarial Examples,» 2018. url: https://openreview.net/pdf?id=S18Su--CW
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li и L. Fei-Fei, «Imagenet: A large-scale hierarchical image database,» в 2009 IEEE conference on computer vision and pattern recognition, Ieee, 2009, с. 248— 255.
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu и A. Ng, «Reading Digits in Natural Images with Unsupervised Feature Learning,» 2011. url: https://api.semanticscholar.org/CorpusID:16852518
K. He, X. Zhang, S. Ren и J. Sun, «Deep residual learning for image recognition,» в Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, с. 770—778.
S. Zagoruyko и N. Komodakis, Wide Residual Networks, 2017. url: https://arxiv.org/abs/1605.07146
S. Xie, R. Girshick, P. Dollár, Z. Tu и K. He, Aggregated Residual Transformations for Deep Neural Networks, 2017. url: https://arxiv.org/abs/1611.05431
Y. LeCun, L. Bottou, Y. Bengio и P. Haffner, «Gradient-based learning applied to document recognition,» Proceedings of the IEEE, т. 86, № 11, с. 2278—2324, 1998.
A. Dosovitskiy и др., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021. url: https://arxiv.org/abs/2010.11929
Y. Le и X. S. Yang, «Tiny ImageNet Visual Recognition Challenge,» 2015. url: https://api. semanticscholar.org/CorpusID:16664790
A. Radford и др., Learning Transferable Visual Models From Natural Language Supervision, 2021. url: https://arxiv.org/abs/2103.00020
J. Wang и др., Deep High-Resolution Representation Learning for Visual Recognition, 2020. url: https://arxiv.org/abs/1908.07919
A. X. Chang и др., ShapeNet: An Information-Rich 3D Model Repository, 2015. url: https://arxiv.org/abs/ 1512.03012
H. Bao, L. Dong и F. Wei, «BEiT: BERT Pre-Training of Image Transformers,» CoRR, т. abs/2106.08254, 2021. url: https://arxiv.org/abs/2106.08254
P. Münch, R. Mreches, M. Binder, H. A. Gündüz, X.-Y. To и A. McHardy, deepG: Deep Learning for Genome Sequence Data, R package version 0.3.1, https://deepg.de/, 2024. url: https : / / github . com / GenomeNet/deepG
G. Singh, T. Gehr, M. Püschel и M. Vechev,
«An abstract domain for certifying neural networks,» Proceedings of the ACM on Programming Languages, т. 3, с. 1—30, янв. 2019. doi: 10.1145/3290354
K. Pei, Y. Cao, J. Yang и S. Jana, «Towards Practical Verification of Machine Learning: The Case of Computer Vision Systems,» дек. 2017. doi: 10 . 48550/arXiv.1712.01785
J. Mohapatra, T.-W. Weng, P.-Y. Chen, S. Liu и L. Daniel, «Towards Verifying Robustness of Neural Networks Against A Family of Semantic Perturbations,» июнь 2020, с. 241—249. doi: 10 . 1109/CVPR42600.2020.00032
M. Fischer, M. Baader и M. T. Vechev, «Certification of Semantic Perturbations via Randomized Smoothing,» CoRR, т. abs/2002.12463, 2020. url: https://arxiv.org/abs/2002.12463
M. Cordts и др., «The Cityscapes Dataset for Semantic Urban Scene Understanding,» в Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
J. Ho, A. Jain и P. Abbeel, «Denoising Diffusion Probabilistic Models,» CoRR, т. abs/2006.11239, 2020. url: https://arxiv.org/abs/2006.11239
J. Wang и др., «Deep High-Resolution Representation Learning for Visual Recognition,» CoRR, т. abs/1908.07919, 2019. url: http : / / arxiv . org / abs/1908.07919
Z. Chen и др., Vision Transformer Adapter for Dense Predictions, 2023. url: https : / / arxiv . org / abs / 2205 . 08534
GitHub - fastai/imagenette: A smaller subset of 10 easily classified classes from Imagenet, and a little more French — github.com, https://github.com/fastai/ imagenette.
Weather Dataset — kaggle.com, https://www.kaggle. com/datasets/muthuj7/weather-dataset.
Ames Housing Dataset — kaggle.com, https://www. kaggle . com / datasets / shashanknecrothapa / ames - housing-dataset.
B. Delattre, P. Caillon, Q. Barthélemy, E. Fagnou и A. Allauzen, Bridging the Theoretical Gap in Randomized Smoothing, 2025. url: https://arxiv.org/ abs/2504.02412
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИТ конгресс СНЭ
ISSN: 2307-8162