The Impact Of Neural Networks On The Level Of Programmer Training
Abstract
Full Text:
PDF (Russian)References
Alpaydin, E. Introduction to Machine Learning. 4th ed. MIT Press, 2020. 710 p. DOI: 10.5555/12345678
Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. Cambridge: MIT Press, 2016. 800 p. ISBN: 9780262035613.
Yang, Y., Zhang, X. The Effect of Artificial Intelligence on Student Engagement in Programming Courses // Journal of Educational Technology. 2021. Vol. 52, No. 3. P. 245-260. DOI: 10.1007/s11423-021-10049.
Chassignol, M., Khoroshavin, A., Klimova, A., Bilyatdinova, A. Artificial Intelligence Trends in Education: A Narrative Overview // Procedia Computer Science. 2018. Vol. 136. P. 16-24. DOI: 10.1016/j.procs.2018.08.233.
Rolnick, D., Donti, P., Kaack, L. H., et al. Tackling Climate Change with Machine Learning // Communications of the ACM. 2019. Vol. 62, No. 9. P. 56-65. DOI:10.1145/3485128.
Haenlein, M., Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence // California Management Review. 2019. Vol. 61, No. 4. P. 5-14. DOI: 10.1177/0008125619864925.
Sotnichenko, A. O. The Impact of Neural Networks on the Transformation of the Labor Market for Intellectual Professions / A. O. Sotnichenko // Cognitive Sciences in the Information Society. 2024. Vol. 4. No. 3. // URL: https://knio.ru/PDF/01KN324.pdf.
Matitsina, N. P., Bugayev, P. V. The impact of creating neural networks on the employment and performance of programmers: a trend analysis // Symbol of Science. 2023. No. 12-2. URL: https://cyberleninka.ru/article/n/vliyanie-sozdaniya-neyrosetey-na-trudoustroystvo-i-rabotosposobnost-programmistov-analiz-tendentsiy (date of access: 31.10.2024).
Malygina, Yu. P. Neural Networks: Features, Trends, Development Prospects // Young Researcher of the Don. 2018. No. 5 (14). URL: https://cyberleninka.ru/article/n/neyronnye-seti-osobennosti-tendentsii-perspektivy-razvitiya (date of access: 31.10.2024).
Knox, J. Artificial Intelligence and Education in China // Learning, Media and Technology. 2020. Vol. 45, No. 3. P. 307-324. URL: https://doi.org/10.1080/17439884.2020.1754236.
Timms, M. J. Letting Artificial Intelligence in Education Out of the Box: Educational Cobots and Smart Classrooms // International Journal of Artificial Intelligence in Education. 2016. Vol. 26, No. 2. P. 701-712. DOI: 10.1007/s40593-016-0095-y.
E-resource// URL: https://giga.chat
Macgilchrist, F., Cruel optimism in edtech: when the digital data practices of educational technology providers inadvertently hinder educational equity. Learning, Media and Technology, 2018, 44(1), 77–86. https://doi.org/10.1080/17439884.2018.1556217
Howard, S. K., Mozejko, A. Teachers: technology, change, and resistance // The Educational Forum. 2015. Vol. 79, No. 2. P. 91-105. DOI: 10.1017/CBO9781316091968.030.
Aksentov, V. A. The Evolution of Neural Networks: Past, Present, Future // Bulletin of Science. 2023. No. 8 (65). URL: https://cyberleninka.ru/article/n/evolyutsiya-razvitiya-neyronnyh-setey-proshloe-nastoyaschee-buduschee (date of access: 31.10.2024).
Tsaunit, A. N. Prospects for the Development and Application of Neural Networks // Young Scientist. 2021. No. 23 (365). P. 114-117. URL: https://moluch.ru/archive/365/81791/ (date of access: 31.10.2024).
Zawacki-Richter, O., Marin, V. I., Bond, M., Gouverneur, F. Systematic Review of Research on Artificial Intelligence Applications in Higher Education – Where Are the Educators? // International Journal of Educational Technology in Higher Education. 2019. Vol. 16, No. 1. DOI: 10.1186/s41239-019-0177-0.
Barannikova I.V., Shaforostova E.N. Methodology for Assessing the Quality of Education in Higher Educational Institutions. Statistics and Economics. 2018;15(6):36-45. https://doi.org/10.21686/2500-3925-2018-6-36-45
Barannikova, I.V., Litvinova A.A. Modern Problems of Development of Recommender Systems and Machine Learning Methods // Step into the Future: Artificial Intelligence and Digital Economy: Proceedings of the 1st International Scientific and Practical Conference, Moscow, December 04-05, 2017 / State University of Management. Volume Issue 1. - Moscow: State University of Management, 2017. - P. 34-41. - EDN YVSPXK.
Barannikova I.V., Zheleznova A.A., Barannikov P.A. Program for Evaluating Software Quality Based on Multi-parameter Analysis // Certificate of State Registration of Computer Program N2021614324, from march 23, 2021.
Luckin, R., Holmes, W., Griffiths, M., Forcier, L. C. Intelligence Unleashed: An Argument for AI in Education. London: Pearson, 2016. 60 p. ISBN: 9780992424886.
Pedro, F., Subosa, M., Rivas, A., Valverde, P. Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development. Paris: UNESCO, 2019. 74 p.
Woolf, B. P. Building Intelligent Interactive Tutors: Student-centered Strategies for Revolutionizing e-Learning. Amsterdam: Morgan Kaufmann, 2009. 462 p.
Akinwalere, Susan & Ivanov, Ventsislav. Artificial Intelligence in Higher Education: Challenges and Opportunities // Border Crossing, 2022, 12. 1-15. DOI: 10.33182/bc.v12i1.2015.
Electronic resource // Access mode URL: https://hh.ru/
Electronic resource // Access mode URL: https://www.superjob.ru/
Electronic resource // Access mode URL: https://technokratos.com/blog/18
Electronic resource // Access mode URL: https://huntflow.media/probka-iz-dzhunov
Rashevsky, V. E. The Specifics of Linguistic Research on the Functioning of Large Language Models // Philological Aspect: International Scientific and Practical Journal. 2024. No. 05 (109). Access mode: https://scipress.ru/philology/articles/spetsifika-lingvisticheskogo-issledovaniya-funktsionirovaniya-bolshikh-yazykovykh-modelej.html (date of access: 30.01.2024).
Bespalko, V. P. Programmed Learning: Didactic Aspects. Moscow: Pedagogika, 1970.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИТ конгресс СНЭ
ISSN: 2307-8162