Development of an Intelligent Method Based on Machine Learning for Classification of Vulnerabilities and Threats in Information Systems
Abstract
Full Text:
PDF (Russian)References
Meshcheryakov, I. V. The role of the media in the state information policy to ensure national security / I. V. Meshcheryakov // Science of Krasnoyarsk. - 2016. - Vol. 5, No. 6. - P. 70-82. - DOI 10.12731 / 2070-7568-2016-6-70-82. - EDN XHGMBZ.
Golovin, Yu. A. Increasing role of the media in ensuring information security / Yu. A. Golovin, A. N. Orlov // Knowledge. Understanding. Skill. - 2013. - No. 2. - P. 147-152. - EDN QYUIDN.
Burova, Yu. V. Potential of regional media in countering terrorism (on the example of the Republic of Mordovia) / Yu. V. Burova // Age of information. – 2017. – No. 2-1. – P. 180-181. – EDN YGRTCL.
Plotkina, P. V. International problems of counteracting fake news as a tool of information wars / P. V. Plotkina, E. K. Tokhchukova // Theories and problems of political research. – 2023. – Vol. 12, No. 5A-6A. – P. 54-62. – DOI 10.34670/AR.2023.94.56.012. – EDN IOCCEZ.
Obidov, O. S. Current state and prospects for the development of media in ensuring information security in modern international relations / O. S. Obidov // News of the Academy of Sciences of the Republic of Tajikistan. Department of Social Sciences. – 2019. – No. 1 (254). – P. 57-60. – EDN ELFOXT.
Zaporozhtseva, V. M. Parsing websites as a method of collecting data for linguistic research / V. M. Zaporozhtseva // Young scientist. – 2024. – No. 24(523). – P. 496-499. – EDN QCMGMO.
Methods for assessing the security of computer systems for information support of the digital economy / A. A. Grusho, N. A. Grusho, M. I. Zabezhailo, E. E. Timonina // International Journal of Open Information Technologies. – 2019. – Vol. 7, No. 4. – P. 61-66. – EDN ZCGPAD.
Eyzenakh, D. S. High performance distributed web-scraper / D. S. Eyzenakh, A. S. Rameykov, I. V. Nikiforov // Proceedings of the Institute for System Programming of the RAS. – 2021. – Vol. 33, No. 3. – P. 87-100. – DOI 10.15514/ISPRAS-2021-33(3)-7. – EDN SIPWXY.
Bogatenko, T. R. Application of machine learning and statistics to anesthesia detection from EEG data / T. R. Bogatenko, K. S. Sergeev, G. I. Strelkova // Izvestiya of Saratov University. New Series. Series: Physics. – 2024. – Vol. 24, No. 3. – P. 209-215. – DOI 10.18500/1817-3020-2024-24-3-209-215. – EDN HKYBMM.
Analysis of Machine Learning Models by Solving the Text Data Classification Problem / A. V. Pchelin, N. A. Kononov, V. S. Serova [et al.] // Journal of Computational and Engineering Mathematics. – 2021. – Vol. 8, No. 2. – P. 33-45. – DOI 10.14529/jcem210203. – EDN VREXYT.
Darinskaya L. A. Bibliometric analysis as a way of entering the research problem / L. A. Darinskaya, A. S. Guslina // Bulletin of St. Petersburg University. – 2010. – No. 3. – P. 71-79.
Text classification using various machine learning methods to detect signs of cyber aggression / Yu. E. Gapanyuk, D. A. Popova, K. R. Rabtsevich [et al.] // Natural and technical sciences. - 2022. - No. 6 (169). - P. 277-281. - EDN OHHHNM.
Khotin, D. Yu. Identification of fake fragments in text news messages using machine learning / D. Yu. Khotin // Bulletin of science. - 2024. - Vol. 1, No. 6 (75). - P. 1568-1576. - EDN MHTVUE.
Gusev, P. Yu. Development of a text classification system by scientific specialties using machine learning methods / P. Yu. Gusev // Bulletin of the Novosibirsk State University. Series: Information Technology. – 2021. – V. 19, No. 1. – P. 39-47. – DOI 10.25205/1818-7900-2021-19-1-39-47. – EDN DWLTXW.
Dronov, S. V. Optimization of cluster partitions using latent class analysis technique / S. V. Dronov // Bulletin of Altai State University. – 2023. – No. 1(129). – P. 89-94. – DOI 10.14258/izvasu(2023)1-14. – EDN ZIMQKI.
lmaev, N. A. Thematic analysis of discussions using the Latent Dirichlet Allocation method / N. A. Almaev, O. V. Murasheva // Institute of Psychology of the Russian Academy of Sciences. Social and Economic Psychology. - 2022. - Vol. 7, No. 1 (25). - P. 47-69. - DOI 10.38098 / ipran.sep_2022_25_1_03. - EDN YECKGR.
Zyryanov, M. S. The influence of the length of n-grams in word-by-word tokenization on the efficiency of identifying extremist texts using machine learning methods / M. S. Zyryanov // Scientific aspect. - 2024. - Vol. 22, No. 5. - P. 2949-2961. - EDN KVHJHN.
Kechik, D. A. Method of estimation of frequency variation relying on estimation of shift of spectral peaks / D. A. Kechik, Yu. P. Aslamov, I. G. Davydov // System analysis and applied informatics. – 2021. – No. 1. – P. 53-61. – DOI 10.21122/2309-4923-2021-1-53-61. – EDN CDEBVV.
Grefenstette, G. Competing Views of Word Meaning: Word Embeddings and Word Senses / G. Grefenstette, P. Hanks // International Journal of Lexicography. – 2023. – Vol. 36, No. 2. – P. 211-219. – DOI 10.1093/ijl/ecad005. – EDN NQHRQL.
Panamareva, O. N. Implementation of clustering of news flows based on vector representations of text / O. N. Panamareva, V. V. Luka, D. A. Sukharev // Bulletin of Tula State University. Technical sciences. – 2024. – No. 7. – P. 304-309. – DOI 10.24412/2071-6168-2024-7-304-305. – EDN VPTOZH.
Sandhu, T. Exploration of Word Embeddings with Graph-Based Context Adaptation for Enhanced Word Vectors / T. Sandhu, Z. Kobti // The International FLAIRS Conference Proceedings. – 2024. – Vol. 37. – DOI 10.32473/flairs.37.1.135597. – EDN PWIKWF.
Kandilas, V., Upham, S. P., Ungar, L. H. Knowledge Community Analysis Using Foreground and Background Clusters. [Electronic resource]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.3141&rep= rep1&type=pdf (accessed: 02.10.2024).
Nguyen, T.T. et al. Multi-target deep reinforcement learning system // Engineering Applications of Artificial Intelligence, Vol. 96, November 2020, 103915. [Electronic resource]. - https://doi.org/10.1016/j.engappai.2020.103915 (accessed: 02.10.2024).
Palmov, S.V., Artyushkina, E.S. Deep learning: definition and distinctive features. // Forum of young scientists. 2020. No. 3 (43). P. 311-316.
Chistova, E.V., Shelmanov, A.O., Smirnov, I.V. Application of deep learning to modeling dialogue in natural language. // Proceedings of the Institute for Systems Analysis of the Russian Academy of Sciences. 2019. Vol. 69. No. 1. P. 105-115.
Potemkin, A.V. Processing heterogeneous information using deep
learning of neural networks. // Soft measurements and calculations. 2019. No. 9 (22). P. 44-48.
Small, H. Tracking and forecasting growth areas in science [Electronic resource]. http://www.scimaps.org/exhibit/docs/small.pdf (accessed: 01.10.2024).
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162