Identification of Unknown Parameters of Non-Elementary Regression Models with Integer Functions and Binary Logical Operations
Abstract
The article is devoted to the problem of constructing regression models based on a sample containing a Boolean output variable and continuous input variables. Well-known methods for constructing such models, such as logistic, logical, and pseudo-Boolean regression, are investigated. A regression model with integer functions floor and ceiling, proposed by the author earlier, is considered. The identification of this model using the least absolute deviations method is reduced to solving the problem of mixed integer linear programming. It has been shown that this model can also be used for analyzing data based on samples containing Boolean output variables. In this case, identification reduces to a mixed 0-1 integer linear programming, whose solution leads to binarization of the linear combination of explanatory variables. Based on the combination of two linear combinations of explanatory variables, binarized by the proposed method using binary logical operations, eight new specifications of regression models were introduced. For this purpose, operations such as conjunction, disjunction, exclusive OR, equivalence, implication, inverse implication, Sheffer stroke, and Pierce arrow were used. The parameters of each of these models were identified by solving mixed 0-1 linear programming problems. The correctness of the mathematical apparatus developed was proven using an example problem: studying the probability of non-repayment of a loan by a trading company. Moreover, using only one integer function floor, the accuracy of prediction of the model was 80%, higher than that of logistic regression, which had an accuracy of 72%. When using two integer functions floor, at once, six models with logical operations disjunction, exclusive OR, equivalence, implication, inverse implication, and Sheffer stroke, showed an accuracy of 96%.
Full Text:
PDF (Russian)References
Telikani A., Tahmassebi A., Banzhaf W., Gandomi A.H. Evolutionary machine learning: A survey // ACM Computing Surveys (CSUR). 2021. Vol. 54. No. 8. P. 1-35.
Cohen S. The evolution of machine learning: Past, present, and future // Artificial Intelligence in Pathology. 2025. P. 3-14.
Montgomery D.C., Peck E.A., Vining G.G. Introduction to linear regression analysis. John Wiley & Sons, 2021.
Chatterjee S., Hadi A.S. Regression analysis by example. John Wiley & Sons, 2015.
Bailly A., Blanc C., Francis É., Guillotin T., Jamal F., Wakim B., Roy P. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models // Computer Methods and Programs in Biomedicine. 2022. Vol. 213. P. 106504.
Zaidi A., Al Luhayb A.S.M. Two statistical approaches to justify the use of the logistic function in binary logistic regression // Mathematical Problems in Engineering. 2023. No. 1. P. 5525675.
Ruczinski I., Kooperberg C., LeBlanc M. Logic regression // Journal of Computational and graphical Statistics. 2003. Vol. 12. No. 3. P. 475-511.
Ruczinski I., Kooperberg C., LeBlanc M.L. Exploring interactions in high-dimensional genomic data: an overview of logic regression, with applications // Journal of Multivariate Analysis. 2004. Vol. 90. No. 1. P. 178-195.
Kooperberg C., Ruczinski I. Identifying interacting SNPs using Monte Carlo logic regression // Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society. 2005. Vol. 28. No. 2. P. 157-170.
Schwender H., Ickstadt K. Identification of SNP interactions using logic regression // Biostatistics. 2008. Vol. 9. No. 1. P. 187-198.
Ayoub A. Discovering interactions that affect immune recognization using logic regression. MS thesis, 2023.
Yu D., Andersson-Li M., Maes S., Andersson-Li L., Neumann N.F., Odlare M., Jonsson A. Development of a logic regression-based approach for the discovery of host-and niche-informative biomarkers in Escherichia coli and their application for microbial source tracking // Applied and Environmental Microbiology. 2024. Vol. 90. No. 7. P. e00227-24.
Jiang S., Warren J.L., Scovronick N., Moss S.E., Darrow L.A., Strickland M.J., Newman A.J., Chen Y., Ebelt S.T., Chang H.H. Using logic regression to characterize extreme heat exposures and their health associations: a time-series study of emergency department visits in Atlanta // BMC Medical Research Methodology. 2021. Vol. 21. No. 87.
Huang Y., Dasgupta S. Biomarker Panel Development Using Logic Regression in the Presence of Missing Data // The New England Journal of Statistics in Data Science. 2024. Vol. 2. No. 1. P. 3.
Jamali-Dolatabad M., Sadeghi-Bazargani H., Salemi S., Sarbakhsh P. Identifying interactions among factors related to death occurred at the scene of traffic accidents: Application of «logic regression» method // Heliyon, 2024. Vol. 10. No. 11.
Rocco C.M., Hernandez-Perdomo E., Mun J. Application of logic regression to assess the importance of interactions between components in a network // Reliability Engineering & System Safety. 2021. Vol. 205. P. 107235.
Bonates T.O. Optimization in logical analysis of data. Rutgers The State University of New Jersey, School of Graduate Studies, 2007.
Bazilevskiy M.P., Oydopova A.B. Otsenivanie modul'nykh lineynykh regressionnykh modeley s pomoshch'yu metoda naimen'shikh moduley // Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya. 2023. No. 45. P. 130-146.
Bazilevskiy M.P. Programmnoe obespechenie dlya otsenivaniya modul'nykh lineynykh regressiy // Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii. 2023. No. 3 (31). P. 136-146.
Bazilevskiy M.P. Otsenivanie neizvestnykh parametrov mnogosloynoy modul'noy regressii metodom naimen'shikh moduley // Modelirovanie, optimizatsiya i informatsionnye tekhnologii. 2024. Vol. 12. No. 2 (45).
Bazilevskiy M.P. Otsenivanie regressionnykh modeley s regressorami v vide moduley lineynykh kombinatsiy ob"yasnyayushchikh peremennykh // System Analysis and Mathematical Modeling. 2024. Vol. 6. No. 3. P. 269-281.
Bazilevskiy M.P. Otsenivanie s pomoshch'yu metoda naimen'shikh moduley regressionnykh modeley s tselochislennymi funktsiyami pol i potolok // International Journal of Open Information Technologies. 2024. Vol. 12. No. 10. P. 56-61.
Bazilevskiy M.P. Otsenivanie metodom naimen'shikh kvadratov parametrov neelementarnykh lineynykh regressiy s ravnomerno kvantovannymi ob"yasnyayushchimi peremennymi // Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii. 2024. No. 4 (36). P. 46-56.
Grekhem R., Knut D., Patashnik O. Konkretnaya matematika. Osnovanie informatiki: Per. s angl. Moscow : Mir, 1998. 703 p.
Ismagilov I.I., Kadochnikova E.I. Spetsial'nye modeli ekonometriki v srede Gretl. Kazan': Kazan. un-t, 2018. 91 p.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162