On cyberattacks using Artificial Intelligence systems
Abstract
This article discusses one aspect of the use of Artificial Intelligence in cybersecurity. It is about cyberattacks that can be carried out using Artificial Intelligence (AI) systems. AI-enabled cyberattacks can be defined as any hacking operation that relies on the use of AI mechanisms. Another term used is offensive AI. AI-based cyberattacks are undoubtedly changing the cybersecurity landscape. First of all, it is necessary to talk about the speed of implementation of attacks and their scaling. AI-based cyberattacks involve the use of advanced machine learning algorithms to identify vulnerabilities, predict patterns, and exploit weaknesses. Efficiency and rapid data analysis enhance the ability of hackers to gain a tactical advantage, resulting in rapid intrusions or destruction of data. Traditional cybersecurity methods are no longer sufficient to combat sophisticated attacks, as AI-enabled cyberattacks adapt and evolve in real time. In addition, the introduction of AI systems in cyber defense creates new risks. AI systems themselves become targets of adversarial attacks. The article discusses general issues of organizing cyber attacks using AI and provides taxonomy and examples of such attacks.
Full Text:
PDF (Russian)References
Namiot, D. E., E. A. Il'jushin, and I. V. Chizhov. "Iskusstvennyj intellekt i kiberbezopasnost'." International Journal of Open Information Technologies 10.9 (2022): 135-147.
Magistratura «Kiberbezopasnost'» MGU-SBER https://cyber.cs.msu.ru Provereno 22.06.2024
Magisterskaja programma «Iskusstvennyj intellekt v kiberbezopasnosti» (FGOS) https://cs.msu.ru/node/3732 Provereno 22.06.2024
How AI-Driven Cyberattacks Will Reshape Cyber Protection https://www.forbes.com/councils/forbestechcouncil/2024/03/19/how-ai-driven-cyber-attacks-will-reshape-cyber-protection/ Provereno 15.08.2024.
Vielberth, Manfred, et al. "Security operations center: A systematic study and open challenges." IEEE Access 8 (2020): 227756-227779.
] Namiot, D. E. "Shemy atak na modeli mashinnogo obuchenija." International Journal of Open Information Technologies 11.5 (2023): 68-86.
NIST AI 100-2 E2023 Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations https://csrc.nist.gov/pubs/ai/100/2/e2023/final Provereno: 15.07.2024
Perdisci, Roberto, et al. "Misleading worm signature generators using deliberate noise injection." 2006 IEEE Symposium on Security and Privacy (S&P'06). IEEE, 2006.
14 Risks and Dangers of Artificial Intelligence (AI) https://builtin.com/artificial-intelligence/risks-of-artificial-intelligence Provereno 15.08.2024.
Song, Junzhe, and Dmitry Namiot. "A survey of the implementations of model inversion attacks." International Conference on Distributed Computer and Communication Networks. Cham: Springer Nature Switzerland, 2022.
NIST SP 800-53 Rev. 5 Security and Privacy Controls for Information Systems and Organizations https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final Provereno 15.08.2024.
OWASP https://owasp.org/ Provereno 15.08.2024.
Defining AI Hacking: The Rise of AI Cyber Attacks https://www.sangfor.com/blog/cybersecurity/defining-ai-hacking-rise-ai-cyber-attacks Provereno 15.08.2024.
XBOW https://xbow.com/ Provereno 15.08.2024.
RunSybil https://www.runsybil.com/ Provereno 15.08.2024.
Mirsky, Yisroel, and Wenke Lee. "The creation and detection of deepfakes: A survey." ACM computing surveys (CSUR) 54.1 (2021): 1-41..
Guembe, Blessing, et al. "The emerging threat of ai-driven cyber attacks: A review." Applied Artificial Intelligence 36.1 (2022): 2037254.
Motlagh, Farzad Nourmohammadzadeh, et al. "Large language models in cybersecurity: State-of-the-art." arXiv preprint arXiv:2402.00891 (2024).
Derea, Zaid, et al. "Deep Learning Based CAPTCHA Recognition Network with Grouping Strategy." Sensors 23.23 (2023): 9487.
Wang, P.; Gao, H.; Shi, Z.; Yuan, Z.; Hu, J. Simple and easy: Transfer learning-based attacks to text CAPTCHA. IEEE Access 2020, 8, 59044–59058.
Yu, N.; Darling, K. A low-cost approach to crack python CAPTCHAs using AI-based chosen-plaintext attack. Appl. Sci. 2019, 9, 2010.
Kumar, M.; Jindal, M.; Kumar, M. An efficient technique for breaking of coloured Hindi CAPTCHA. Soft Comput. 2023, 27, 11661–1168
Pillow https://pypi.org/project/pillow/ Provereno 17.08.2024
Wojna, Zbigniew, et al. "Attention-based extraction of structured information from street view imagery." 2017 14th IAPR international conference on document analysis and recognition (ICDAR). Vol. 1. Ieee, 2017.
AI Risk Repository https://airisk.mit.edu/ Provereno 17.08.2024
AI Risk Repository preprint https://cdn.prod.website-files.com/669550d38372f33552d2516e/66bc918b580467717e194940_The%20AI%20Risk%20Repository_13_8_2024.pdf Provereno 17.08.2024
How FraudGPT presages the future of weaponized AI https://venturebeat.com/security/how-fraudgpt-presages-the-future-of-weaponized-ai/ Provereno 18.08.2024
Postojannaja ser'joznaja ugroza https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%80%D1%8C%D1%91%D0%B7%D0%BD%D0%B0%D1%8F_%D1%83%D0%B3%D1%80%D0%BE%D0%B7%D0%B0 Provereno 18.08.2024
Namiot, D. E., E. A. Il'jushin, and I. V. Chizhov. "Tekushhie akademicheskie i industrial'nye proekty, posvjashhennye ustojchivomu mashinnomu obucheniju." International Journal of Open Information Technologies 9.10 (2021): 35-46.
Cifrovaja zheleznaja doroga - innovacionnye standarty i ih rol' na primere Velikobritanii / D. E. Nikolaev, V. P. Kuprijanovskij, G. V. Sukonnikov [i dr.] // International Journal of Open Information Technologies. – 2016. – T. 4, # 10. – S. 55-61. – EDN WXBAZN.
Razvitie transportno-logisticheskih otraslej Evropejskogo Sojuza: otkrytyj BIM, Internet Veshhej i kiber-fizicheskie sistemy / V. P. Kuprijanovskij, V. V. Alen'kov, A. V. Stepanenko [i dr.] // International Journal of Open Information Technologies. – 2018. – T. 6, # 2. – S. 54-100. – EDN YNIRFG.
Umnaja infrastruktura, fizicheskie i informacionnye aktivy, Smart Cities, BIM, GIS i IoT / V. P. Kuprijanovskij, V. V. Alen'kov, I. A. Sokolov [i dr.] // International Journal of Open Information Technologies. – 2017. – T. 5, # 10. – S. 55-86. – EDN ZISODV.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность MoNeTec 2024
ISSN: 2307-8162