Convergence of the complete intuitionistic fuzzy C-means clustering algorithm

Dung Thi Thu Nguyen

Abstract


This paper discusses the convergence of the complete intuitionistic fuzzy C_means clustering method (CIFCM). The complete intuitionistic fuzzy C-means clustering method based on the modification of the target function considering the index hesitance is a more efficient method to modify the intuitionistic fuzzy C_means clustering method. The target function of the clustering algorithm is a series of Picard iterations according to the updating of the membership matrix and cluster centers. Usually, fixed point theorems, of which the contracting mapping theorem is a classical case, are used to solve the convergence problem of Picard sequences. Picard sequences based on the fuzzy clustering method C-means algorithm (FCM) does not allow to verify the contraction property mainly due to the two-component compositional nature of one iteration. Therefore, in this paper, the convergence of the complete intuitionistic fuzzy C_means clustering method is examined using Zangwill's theorem, The iterative sequence generated by the algorithm of the complete intuitionistic fuzzy C-means clustering method ends at a local minimum or saddle point, or, at most, contains a sub-sequence that ends at a local minimum or saddle point of the target function of the complete intuitionistic fuzzy C_means clustering algorithm.

Full Text:

PDF (Russian)

References


T. T. Z. Nguen and L. V. Chernen'kaja, “Nechetkaja model' vtorogo tipa prognozirovanija vremennyh rjadov s hedzh-algebroj i algoritmom geneticheskoj optimizacii,” International Journal of Open Information Technologies, vol. 12, no. 1, pp. 10–20, 2024.

T. T. Z. Nguen and L. V. Chernen'kaja, “Fazzifikacija v modeljah prognozirovanija nechetkih vremennyh rjadov,” Zhurnal Izvestija Tul'skogo gosudarstvennogo universiteta – Tehnicheskie nauki (TulGU, g. Tula), vol. 8, no. Sistemnyj analiz, Upravlenie i obrabotka informacii, pp. 337–346, 2023.

M. S. Abu, L. E. Aik, and N. Arbin, “A theorem for improving kernel based fuzzy c-means clustering algorithm convergence,” AIP Conf Proc, vol. 1660, 2015, doi: 10.1063/1.4915677.

James C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms.

J. Bezdek, “Fuzzy Mathematics in Pattern Classification,” Cornell University , Ithaca, New York, 1973.

L. A. Zadeh, “Fuzzy Sets,” Information and control, vol. 8, pp. 338–353, 1965.

T. T. Z. Nguen and L. V. Chernen'kaja, “Jevristicheskaja nechetkaja model' prognozirovanija vysokogo porjadka s hedzh-algebroj,” in Sistemnyj analiz v proektirovanii i upravlenii, 2023.

P. T. M. Phuong, P. H. Thong, and L. H. Son, “Theoretical Analysis of Picture Fuzzy Clustering: Convergence and Property,” Journal of Computer Science and Cybernetics, vol. 34, no. 1, pp. 17–32, 2018, doi: 10.15625/1813-9663/34/1/12725.

G. Gan and J. Wu, “A convergence theorem for the fuzzy subspace clustering (FSC) algorithm,” Pattern Recognit, vol. 41, no. 6, pp. 1939–1947, 2008, doi: 10.1016/j.patcog.2007.11.011.

Nguen Thi Thu Zung and L. V. Chernen'kaja, “Diskretizacija v modeljah prognozirovanija nechetkih vremennyh rjadov,” Zhurnal Izvestija Tul'skogo gosudarstvennogo universiteta – Tehnicheskie nauki (TulGU, g. Tula), vol. 8, no. Sistemnyj analiz, Upravlenie i obrabotka informacii, pp. 296–304, 2023, doi: 10.24412/2071-6168-2023-8-296-297.

T. T. Z. Nguen and L. V. Chernen'kaja, “Model' Prognozirovanija Jevristicheskih Nechetkih Vremennyh Rjadov Vysokogo Porjadka, Osnovannaja Na Hedzh-Algebraicheskom Podhode Chast' 2,” Zhurnal Izvestija Tul'skogo gosudarstvennogo universiteta – Tehnicheskie nauki (TulGU, g. Tula), vol. 9, no. Sistemnyj analiz, Upravlenie i obrabotka informacii, 2023.

T. T. Z. Nguen and L. V. Chernen'kaja, “Sistemnyj analiz v upravlenii razvitiem territorial'nyh kompleksov v'etnama,” in V sbornike: Sistemnyj analiz v proektirovanii i upravlenii. sbornik nauchnyh trudov XXV Mezhdunarodnoj nauchnoj i uchebno-prakticheskoj konferencii, SPB, 2021, pp. 346–352.

Q. M. Danish Lohani, R. Solanki, and P. K. Muhuri, “A convergence theorem and an experimental study of intuitionistic fuzzy c-mean algorithm over machine learning dataset,” Applied Soft Computing Journal, vol. 71, pp. 1176–1188, 2018, doi: 10.1016/j.asoc.2018.04.014.

Nguen Thi Thu Zung and Vasil'evna Chernen'kaja Ljudmila, “Model' Prognozirovanija Jevristicheskih Nechetkih Vremennyh Rjadov Vysokogo Porjadka, Osnovannaja Na Hedzh-Algebraicheskom Podhode Chast' 1,” Zhurnal Izvestija Tul'skogo gosudarstvennogo universiteta – Tehnicheskie nauki (TulGU, g. Tula), vol. 9, no. Sistemnyj analiz, Upravlenie i obrabotka informacii, 2023.

C. Wu and N. Liu, “Suppressed robust picture fuzzy clustering for image segmentation,” Soft comput, vol. 25, no. 5, pp. 3751–3774, 2021, doi: 10.1007/s00500-020-05403-8.

Y. Pu, W. Yao, and X. Li, “EM-IFCM: Fuzzy c-means clustering algorithm based on edge modification for imbalanced data,” Inf Sci (N Y), vol. 659, no. January 2023, p. 120029, 2024, doi: 10.1016/j.ins.2023.120029.

A. K. Varshney, P. K. Muhuri, and Q. M. D. Lohani, Density-based IFCM along with its interval valued and probabilistic extensions, and a review of intuitionistic fuzzy clustering methods, vol. 56, no. 4. Springer Netherlands, 2023. doi: 10.1007/s10462-022-10236-y.

C. Wu and Z. Kang, “Robust entropy-based symmetric regularized picture fuzzy clustering for image segmentation,” Digital Signal Processing: A Review Journal, vol. 110, p. 102905, 2021, doi: 10.1016/j.dsp.2020.102905.

Dung Thi Thu Nguyen, A Complete Intuitionistic Fuzzy C-Means Clustering Method, International Journal of Open Information Technologies, vol. 12, no. 7, pp. 97–104, 2024.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность MoNeTec 2024

ISSN: 2307-8162