Prediction of Foreign Tourist Arrivals in Bali Using Support Vector Machine Algorithm and Linear Regression

Arif Lukman Hakim, Indra Wibisono, Yuanita Octoria, Andi Nugroho

Abstract


Bali Island, a famous tourist destination in Indonesia, has experienced ups and downs in its tourism sector. To anticipate the arrival of international tourists, a thorough analysis and prediction approach is necessary. The main objective of this research is to analyse and predict foreign tourist arrivals in the coming year. The use of machine learning algorithms can be important in analysing data and forecasting the development of international tourist arrivals. This research details the use of several machine learning algorithms, namely Support Vector Machine (SVM), and Linear Regression. The test results show that the SVM programme evaluation provides accurate predictions with a low error rate on the test data. Whereas, the error rate of the Linear Regression programme evaluation is slightly higher. However, the model is still able to make good predictions on the test data.

Full Text:

PDF

References


I Wayan Budi Suryawan, Nengah Widya Utami, and Ketut Queena Fredlina, "Analysis of Sentiment of Tourist Reviews on Ubud Attractions Using Support Vector Machine Algorithm," J. Inform. Techno. and Science, vol. 5, no. 1, pp. 133–140, 2023, doi: 10.51401/jinteks.v5i1.2242.

S. A. Salimu and Y. Yunus, "Prediction of Foreign Tourist Arrival Rate Using Backpropagation Method (Case Study: Mentawai Islands)," J. Inform. Ekon. Business, vol. 2, pp. 98–103, 2020, doi: 10.37034/infeb.v2i4.50.

V. N. Putriwijaya, Novi Nur &; Wijayaningrum, "Support Vector Regression to Predict the Number of Foreign Tourist Visits on the Island of Bali," Mach. Learn. Methods Appl. to Brain Disord., vol. 11, no. June, 123–140 (2019).

Y. Yu et al., “Developing an ETL tool for converting the PCORnet CDM into the OMOP CDM to facilitate the COVID-19 data integration,” J. Biomed. Inform., vol. 127, no. October 2021, p. 104002, 2022, doi: 10.1016/j.jbi.2022.104002.

I. Hidayat, "Timely graduation prediction using svm algorithm and k-nearest neighbor based on particle swarm optimization in STIMK Eresha," J. ESIT (E-Business, Sist. Inf., Teknol. Information), vol. 16, no. 01, pp. 55–65, 2021.

W. Irmayani, "Data Visualization in Data Mining Using Classification Method," J. Khatulistiwa Inform., vol. IX, no. I, pp. 68–72, 2021.

S. Royal, "MAYA WIDYANTI'S LINEAR REGRESSION APPROACH," VOL. 1, NO. 1, pp. 10–18, 2024.

R. Guntara, "Data Visualization of Online Store Sales Reports through Data Science Approach Using Google Colab," J. Ilm. Multidisciplinary, vol. 2, no. 6, pp. 2091–2100, 2023.

W. I. Loka and F. Natalia, "Design and Making Data Visualization of Internal Research Fund and Higher Education Grant LPPM Universitas Multimedia Nusantara," Ultim. InfoSys J. Ilmu Sist. Inf., vol. 10, no. 1, pp. 61–68, 2019, doi: 10.31937/si.v10i1.867.

B. Priambodo et al., “Predicting Employee Turnover in IT Industries using Correlation and Chi-Square Visualization,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 12, pp. 71–75, 2022, doi: 10.14569/IJACSA.2022.0131210.

N. Sulthan, N. Eltivia, and N. I. Riwajanti, "Implementation of Exponential Smoothing Method for Forecasting Foreign Tourist Arrivals on the Island of Bali," Media Mahard., vol. 18, no. 2, pp. 171–178, 2020, doi: 10.29062/mahardika.v18i2.145.

I. P. W. Prasetia and I. N. H. Kurniawan, "Implementation of ETL (Extract, Transform, Load) in Sales Data warehouse Using Pentaho Tools," TIERS Inf. Technol. J., vol. 2, no. 1, pp. 1–8, 2021, doi: 10.38043/tiers.v2i1.2844.

S. Widaningsih, "Comparison of Data Mining Methods for Prediction of Grades and Graduation Time of Informatics Engineering Study Program Students with C4.5, Naïve Bayes, Knn and SVM Algorithms," J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

N. C. Gosari and R. Rismayani, "Application of Data Mining in Grouping Foreign Tourist Visits in Prov. South Sulawesi with K-Means and SVM," J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 174–180, 2023, doi: 10.30591/jpit.v8i3.4554.

G. Sanhaji and A. Febrianti, "DIATECT Application for Diabetes Disease Prediction Using Web-Based SVM," vol. 18, no. 1, pp. 150–163, 2020.

H. Nuraliza, O. N. Pratiwi, and F. Hamami, "IMBd Film Review Dataset Sentiment Analysis Using Support Vector Machine (SVM) and Feature Importance Selection," J. Mirai Manj., vol. 7, no. 1, pp. 1–17, 2022.

L. Surtiningsih, M. T. Furqon, and S. Adinugroho, "Prediction of the Number of Foreign Tourist Visits to Bali Using Support Vector Regression with Genetic Algorithm," J. Developer. Techno. Inf. and Computal Science., vol. 2, no. 8, pp. 2578–2586, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

S. Lolitha, S. Lukas, and F. Panduwinata, "Flight Delay Prediction Using Decision Tree Method for Determination of Travel Insurance Premiums," Pros. Semin. Us. Teknoka, vol. 5, no. 2502, pp. 50–58, 2020, doi: 10.22236/tekk.v5i.326.

R. Wijaya and B. Pudjoatmodjo, "Application of Extraction-Transformation-Loading (ETL) in Data Warehouse (Case Study: Ministry of Agriculture)," J. Nas. Educators. Tech. Inform., vol. 5, no. 2, p. 61, 2016, doi: 10.23887/jan.v5i2.9855.

D. Nurfauzan and T. Fatimah, "Implementation of K-Nearest Neighbors Regression Algorithm in Predicting Stock Prices," Semin. Nas. Mhs. …, no. September, pp. 576–584, 2022.

M. M. Singh, “Extraction Transformation and Loading (ETL) of Data Using ETL Tools,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 6, pp. 4415–4420, 2022, doi: 10.22214/ijraset.2022.44939.

R. Umar, I. Riadi, and D. A. Faroek, “A Komparasi Image Matching Menggunakan Metode K-Nearest Neightbor (KNN) dan Support Vector Machine (SVM),” J. Appl. Informatics Comput., vol. 4, no. 2, pp. 124–131, 2020, doi: 10.30871/jaic.v4i2.2226.

A. A. Karim, M. A. Prasetyo, and M. R. Saputro, "Comparison of Random Forest, K-Nearest Neighbor, and SVM Methods in Predicting Italian League Match Accuracy," Stain. (Seminar Nas. Techno. Science), vol. 2, no. 1, pp. 377–382, 2023.

Ramadhika Dwi Poetra, "CHAPTER II Literature Review CHAPTER II LITERATURE REVIEW 2.1. 1–64,” Gastron. Ecuadorian and Tur. local., vol. 1, no. 69, pp. 5–24, 2019.

S. Adi and A. Wintarti, "Comparison of Support Vector Machine (SVM), K-Nearest Neighbors (Knn), and Random Forest (Rf) Methods for Heart Failure Prediction," MATHunesa J. Ilm. Mat.Vol. 10 No. 2 pp. 258–268, 2022, doi: 10.26740/mathunessa.v10n2.p258–268.

O. Arifin and T. B. Sasongko, "Comparative analysis of performance levels of support vector machine and naïve bayes classifier methods," Semin. Nas. Techno. Inf. and Multimed. 2018, vol. 6, no. 1, pp. 67–72, 2018.

Y. A. Singgalen, "Performance Analysis of NBC, DT, SVM Algorithms in the Data Classification of Borobudur Temple Visitor Reviews Based on CRISP-DM," Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1634–1646, 2022, doi: 10.47065/bits.v4i3.2766.

B. A. Nugroho, A. K. A. Pradana, and E. Nurfarida, "Prediction of Arrival Time of Motor Vehicle Service Customers Based on Historical Data using Support Vector Machine," J. Education and Research. Inform., vol. 7, no. 1, p. 25, 2021, doi: 10.26418/jp.v7i1.42964.

A. Vermaysha and N. Nurmalitasari, "House Price Prediction in Karanganyar Regency Using Linear Regression Method," Pros. Semin. Nas. Techno. Inf. and Business, pp. 6–11, 2023.

Miftahuljannah, Aswan Supriyadi Sunge, and Ahmad Turmudi Zy, "Sales Prediction Analysis with Linear Regression Method at Pt. Eagle Industry Indonesia," J. Inform. Techno. and Science, vol. 5, no. 3, pp. 398–403, 2023, doi: 10.51401/jinteks.v5i3.3325.

N. R. Setyoningrum, P. J. Rahimma, S. T. Teknologi, I. Tanjungpinang, and K. Tanjungpinang, "Implementation of Linear Regression Algorithm in the Prediction System for New Student Registrants of the Indonesian College of Technology Tanjungpinang," Pros. Semin. Nas. Social Science. and Techno., no. 4, pp. 13–18, 2022.

D. Novianty, N. D. Palasara, and M. Qomaruddin, "Linear Regression Algorithm on Prediction of Registered Patent Applications in Indonesia," J. Sist. and Techno. Inf., vol. 9, no. 2, p. 81, 2021, doi: 10.26418/justin.v9i2.43664.

S. J. Kim, S. J. Bae, and M. W. Jang, “Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data,” Sustain., Vol. 14, No. 18, 2022, doi: 10.3390/su141811674.

M. A. Musababa, "Implementation of Linear Regression Algorithm for Prediction of Rice Production in Grobogan District," Data Sci. Indones., vol. 3, no. 2, pp. 68–78, 2023, [Online]. Available: https://jurnal.itscience.org/index.php/dsi/article/view/3118%0Ahttps://jurnal.itscience.org/index.php/dsi/article/download/3118/2711

M. Fadli and R. A. Saputra, "Classification and Performance

Evaluation of Random Forest Model for Stroke Prediction," J.T. J. Tech., vol. 12, no. 2, pp. 72–80, 2023.

I. A. Tarigan, I. P. A. Bayupati, and G. A. A. Putri, “Comparison of support vector machine and backpropagation models in forecasting the number of foreign tourists in Bali province,” J. Techno. and Sist. Comput., vol. 9, no. 2, pp. 90–95, 2021, doi: 10.14710/jtsiskom.2021.13847.

D. A. Mukhsinin, M. Rafliansyah, and S. A. Ibrahim, “Implementation of Decision Tree Algorithm for Movie Recommendation and Rating Classification on the Netflix Platform Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix,” vol. 4, no. April, pp. 570–579, 2024.

A. A. Suryanto, "Application of Mean Absolute Error (MEA) Method in Linear Regression Algorithm for Rice Production Prediction," Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.

T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., Vol. 15, No. 14, pp. 5481–5487, 2022, Yogurt: 10.5194/GMD-15-5481-2022.

M. Ćalasan, S. H. E. Abdel Aleem, and A. F. Zobaa, “On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function,” Energy Convers. Manag., vol. 210, 2020, doi: 10.1016/j.enconman.2020.112716.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность MoNeTec 2024

ISSN: 2307-8162