Comparative analysis of Jacobi and Gauss-Seidel iterative methods
Abstract
Full Text:
PDFReferences
Bylina, J., & Bylina, B. (2008, October). Merging Jacobi and Gauss-Seidel methods for solving Markov chains on computer clusters. In 2008 International Multiconference on Computer Science and Information Technology (pp. 263-268). IEEE. DOI: 10.1109/IMCSIT.2008.4747250
Nützi, G., Schweizer, A., Möller, M., & Glocker, C. (2014, August). Projective jacobi and gauss-seidel on the gpu for non-smooth multi-body systems. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46391, p. V006T10A013). American Society of Mechanical Engineers. DOI: 10.1115/DETC2014-34606
Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3), 856-869. DOI: 10.1137/0907058
Tarigan, A. J. M., Mardiningsih, M., & Suwilo, S. (2022). The search for alternative algorithms of the iteration method on a system of linear equation. Sinkron: jurnal dan penelitian teknik informatika, 7(4), 2124-2424. DOI: 10.33395/sinkron.v7i4.11817
Gunawardena, A. D., Jain, S. K., & Snyder, L. (1991). Modified iterative methods for consistent linear systems. Linear Algebra and Its Applications, 154, 123-143. DOI: 10.1016/0024-3795(91)90376-8
Bagnara, R. (1995). A unified proof for the convergence of Jacobi and Gauss–Seidel methods. SIAM review, 37(1), 93-97. DOI: 10.1137/1037008
Salkuyeh, D. K. (2007). Generalized Jacobi and Gauss-Seidel methods for solving linear system of equations. NUMERICAL MATHEMATICS-ENGLISH SERIES-, 16(2), 164.
Chen, W. Y. (1995). On the polynomials with all their zeros on the unit circle. Journal of mathematical analysis and applications, 190(3), 714-724. DOI: 10.1006/jmaa.1995.1105
Bharanedhar, S. V., Selvan, A. A., & Ghosh, R. (2023). Zeros of self-inversive polynomials with an application to sampling theory. Applied Mathematics and Computation, 439, 127547. DOI: 10.1016/j.amc.2022.127547
Milaszewicz, J. P. (1987). Improving jacobi and gauss-seidel iterations. Linear Algebra and Its Applications, 93, 161-170. DOI: 10.1016/S0024-3795(87)90321-1
Zadorozhniy, V. G. (2018). The conditions under which the roots of a polynomial lie inside the unit circle. Bulletin of VSU. Series: System Analysis and Information Technologies, 2, 22-25. https://www.elibrary.ru/item.asp?id=35449768
Sun, L. Y. (2005). A comparison theorem for the SOR iterative method. Journal of computational and applied mathematics, 181(2), 336-341. DOI: 10.1016/j.cam.2004.12.007
Ahmadi, A., Manganiello, F., Khademi, A., & Smith, M. C. (2021). A parallel Jacobiembedded Gauss-Seidel method. IEEE Transactions on Parallel and Distributed Systems, 32(6), 1452-1464. DOI: 10.1109/TPDS.2021.3052091
Postnikov, M. M. (1981). Stable polynomials. Nauka”, Moscow.
Gantmakher, F. R. (2000). The theory of matrices (Vol. 131). American Mathematical Soc.
Erd´elyi, T. (2001). On the zeros of polynomials with Littlewood-type coefficient constraints. Michigan Mathematical Journal, 49(1), 97-111. DOI: 10.1307/mmj/1008719037
Konvalina, J., & Matache, V. (2004). Palindrome-polynomials with roots on the unit circle. Comptes Rendus Mathematiques, 26(2), 39.
Mercer, I. D. (2006). Unimodular roots of special Littlewood polynomials. Canadian Mathematical Bulletin, 49(3), 438-447. DOI: 10.4153/CMB-2006-043-x
Kohno, T., Kotakemori, H., Niki, H., & Usui, M. (1997). Improving the modified GaussSeidel method for Z-matrices. Linear Algebra and its Applications, 267, 113-123. DOI: 10.1016/S0024-3795(97)00063-3
Li, W., & Sun, W. (2000). Modified Gauss–Seidel type methods and Jacobi type methods for Z-matrices. Linear Algebra and its Applications, 317(1-3), 227-240. DOI: 10.1016/S0024-3795(00)00140-3
Shang, Y. (2009). A distributed memory parallel Gauss–Seidel algorithm for linear algebraic systems. Computers & Mathematics with Applications, 57(8), 1369-1376. DOI: 10.1016/j.camwa.2009.01.034
Courtecuisse, H., & Allard, J. (2009, June). Parallel dense gauss-seidel algorithm on manycore processors. In 2009 11th IEEE International Conference on High Performance Computing and Communications (pp. 139-147). IEEE. DOI: 10.1109/HPCC.2009.51
Koester, D. P., Ranka, S., & Fox, G. C. (1994, November). A parallel Gauss-Seidel algorithm for sparse power system matrices. In Supercomputing’94: Proceedings of the 1994 ACM/IEEE Conference on Supercomputing (pp. 184-193). IEEE. DOI: 10.1145/602770.602806
Amodio, P., & Mazzia, F. (1995). A parallel Gauss–Seidel method for block tridiagonal linear systems. SIAM Journal on Scientific Computing, 16(6), 1451-1461. DOI: 10.1137/0916084
Tavakoli, R., & Davami, P. (2007). A new parallel Gauss–Seidel method based on alternating group explicit method and domain decomposition method. Applied mathematics and computation, 188(1), 713-719. DOI: 10.1016/j.amc.2006.10.023
Karunanithi, S., Gajalakshmi, N., Malarvizhi, M., & Saileshwari, M. (2018). A Study on comparison of Jacobi, Gauss-Seidel and SOR methods for the solution in system of linear equations. Int. J. of Math. Trends and Technology,(IJMTT), 56(4). DOI: 10.14445/22315373/IJMTTV56P531
Korsakov, G. F. (1973). The number of roots of a polynomial outside a circle. Mathematical notes of the Academy of Sciences of the USSR, 13, 3-8. DOI: 10.1007/BF01093620
Biberdorf, È. A. D. (2000). A Criterion for the Dichotomy of Roots of a Polynomial on the Unit Circle. Sibirskii Zhurnal Industrial'noi Matematiki, 3(1), 16-32. https://www.elibrary.ru/item.asp?id=9484660
Joyal, A., Labelle, G., & Rahman, Q. (1967). On the location of zeros of polynomials. Canadian mathematical bulletin, 10(1), 53-63. DOI: 10.4153/CMB-1967-006-3
Dehmer, M. (2006). On the location of zeros of complex polynomials. Journal of Inequalities in Pure and Applied Mathematics, 7(1).
Frank, E. (1946). On the zeros of polynomials with complex coefficients. DOI: 10.1090/S0002-9904-1946-08526-2
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность MoNeTec 2024
ISSN: 2307-8162