Visual analysis of railway passenger traffic data

Stepan Medvedenko, Dmitry Namiot


This article discusses the features of visual analysis of railway passenger traffic data using the visualization application. First of all, we consider the problems associated with the growth of passenger traffic in cities, which arise as a result of an increase in population, growth of cities, and the development of transport infrastructure. As a result, we substantiate the necessity of effective management of the passenger traffic of railway transport and the solution of the existing problems, including through the visual analysis of data. Next, we carry out a comparative description of existing visualization tools and it is proved that the most advanced of them is the application. Due to its open-source code and a large number of technical capabilities, it is the most advanced and perfect tool for solving the problem of queues and congestion of large numbers of passengers at railway stations. Using the application, we visualize the data collected from the passageways through the turnstiles at the railway stations. Based on the visualization of these data, it was possible to come to the conclusion that the main passenger flows move between large cities, and the number of departures from them exceeds the number of arrivals.

Full Text:

PDF (Russian)


Aleshko R. A. i dr. Razrabotka metodiki vizualizacii i obrabotki geoprostranstvennyh dannyh //Nauchnaja vizualizacija. – 2015. – T. 7. – #. 1.

Beljakov S. L., Beljakova M. L., Savel'eva M. N. Adaptivnaja k izmeneniju struktury bazy dannyh vizualizacija prostranstvennyh dannyh //Pribory i sistemy. Upravlenie, kontrol', diagnostika. – 2016. – #. 1. – S. 25-32.

Oficial'nyj sajt Carto. URL:

Oficial'nyj sajt URL:

Oficial'nyj sajt URL:

Card M. Readings in information visualization: using vision to think. – Morgan Kaufmann, 1999.

Claramunt, C.; Jiang, B.; Bargiela, A. A new framework for the integration, analysis and visualisation of urban traffic data within geographic information systems. Transp. Res. Part C Emerg. Technol. 2000, 167–184.

Ding X. et al. Viptra: Visualization and interactive processing on big trajectory data //2018 19th IEEE International Conference on Mobile Data Management (MDM). – IEEE, 2018. – S. 290-291.

Gomes G. A. M. et al. Real-time discovery of hot routes on trajectory data streams using interactive visualization based on gpu //Computers & Graphics. – 2018. – T. 76. – S. 129-141.

Gonçalves T., Afonso A. P., Martins B. Cartographic visualization of human trajectory data: Overview and analysis //Journal of Location Based Services. – 2015. – T. 9. – #. 2. – S. 138-166.

He J. et al. Diverse visualization techniques and methods of moving-object-trajectory data: A review //ISPRS International Journal of Geo-Information. – 2019. – T. 8. – #. 2. – S. 63.

Hsu Y. T. et al. Forecasting High-speed Rail Ridership Using Aggregate Data: A case Revisit of High speed Rail in Taiwan //TRB 94th Annual Meeting Compendium of Papers. – 2015.

Kerren A. et al. (ed.). Information Visualization: Human-Centered Issues and Perspectives. – Springer, 2008. – T. 4950.

Krause J. et al. Interactive visualization for real-time public transport journey planning //Proceedings of SIGRAD 2012; Interactive Visual Analysis of Data; November 29-30; 2012; Växjö; Sweden. – Linköping University Electronic Press, 2012. – #. 081. – S. 95-98.

Krüger R. Visual analytics of human mobility behavior: Dissertation. Institut für Visualisierung und Interaktive Systeme der Universität Stuttgart – 2017. 212 p.

Misharin A., Namiot D., Pokusaev O. On Processing of Correspondence Matrices in Transport Systems //2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). – IEEE, 2019. – S. 1-6.

Pensa S. Interactive Visualization Tool (InViTo) //Accessibility Instruments for Planning Practice. COST Office, (ISBN13: 978-989-20-3187-3 (hbk). – 2012. – S. 978-989.

Rabah K. Convergence of AI, IoT, big data and blockchain: a review //The lake institute Journal. – 2018. – T. 1. – #. 1. – S. 1-18.

Scheepens R. et al. Interactive visualization of multivariate trajectory data with density maps //2011 IEEE pacific visualization symposium. – IEEE, 2011. – S. 147-154.

Schreck T. et al. Visual cluster analysis of trajectory data with interactive kohonen maps //Information Visualization. – 2009. – T. 8. – #. 1. – S. 14-29.

Shekhar, S.; Lu, C.T.; Liu, R.P.; Zhou, C. Cube view: A system for traffic data visualization. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Singapore, 6 September 2002.

Sobral T., Galvão T., Borges J. Visualization of urban mobility data from intelligent transportation systems //Sensors. – 2019. – T. 19. – #. 2.

Tao S., Rohde D., Corcoran J. Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap //Journal of Transport Geography. – 2014. – T. 41. – S. 21-36.

Thomas J. J. Illuminating the path: the research and development agenda for visual analytics. – IEEE Computer Society, 2005.

Zeng L. et al. A passenger flow control method for subway network based on network controllability //Discrete Dynamics in Nature and Society. – 2018.

Zeng W. et al. Visualizing mobility of public transportation system //IEEE transactions on visualization and computer graphics. – 2014. – T. 20. – #. 12. – S. 1833-1842.

Sokolov I. A. i dr. Iskusstvennyj intellekt kak strategicheskij instrument jekonomicheskogo razvitija strany i sovershenstvovanija ee gosudarstvennogo upravlenija. Chast' 1. Opyt Velikobritanii i SShA //International Journal of Open Information Technologies. – 2017. – T. 5. – #. 9. – S. 57-75.

Kuprijanovskij V. P. i dr. Pravitel'stvo, promyshlennost', logistika, innovacii i intellektual'naja mobil'nost' v cifrovoj jekonomike //Sovremennye informacionnye tehnologii i IT-obrazovanie. – 2017. – T. 13. – #. 1. – S. 74-96.

Misharin A., Namiot D., Pokusaev O. On Passenger Flow Estimation for new Urban Railways //IOP Conference Series: Earth and Environmental Science. – IOP Publishing, 2018. – T. 177. – #. 1. – S. 012012.


  • There are currently no refbacks.

Abava  Absolutech Convergent 2020

ISSN: 2307-8162