### Automata – complete invariants for strongly connected regular languages

#### Abstract

#### Full Text:

PDF (Russian)#### References

Melnikov B. On a subclass of the regular language class (“strongly connected” languages): definitions and corresponding canonical automata // International Journal of Open Information Technologies. – 2021. – Vol. 9. No. 3. – P. 1–10 (in Russian).

Thierrin G. Permutation automata // Mathematical Systems Theory. – 1968. – No. 2. – P. 83–90.

Krawetz B., Lawrence J., Shallit J. State complexity and the monoid of transformations of a finite set // International Journal of Foundations of Computer Science. – 2005. – Vol. 16. No. 3. – P. 547–563.

Singh S. N. SemiFlower Automata. PhD thesis // Indian Institute of Technology Guwahati, 2012.

Singh S. N., Krishna K. V. The rank and Hanna Neumann property of some submonoids of a free monoid // Annals Math. Inform. – 2012. – Vol. 40. – P. 113–123 (arXiv:1112.4250).

Singh S. N., Krishna K. V. A sufficient condition for the Hanna Neumann property of submonoids of a free monoid // Semigroup Forums. – 2013. – Vol. 86. No. 3. – P. 537–554.

Melnikov B. F. Regular languages and nondeterministic finite automata: monograph. – Мoscow: Russian State Social University Ed., 2018. – 179 p. (in Russian).

Melnikov B., Melnikova A. Some properties of the basis finite automaton // The Korean Journal of Computational and Applied Mathematics (Journal of Applied Mathematics and Computing). – 2002. – Vol. 9. No. 1. – P. 135–150.

Melnikova A. Some properties of the basis automaton // Bulletin of the Voronezh State University. Series: Physics. Mathematics. – 2012. – No. 2. – P. 184–189 (in Russian).

Dolgov V., Melnikov B. Construction of a universal finite automaton. I. From the theory to the practical algorithms // Bulletin of the Voronezh State University. Series: Physics. Mathematics. – 2013. – No. 2. – P. 173–181 (in Russian).

Dolgov V., Melnikov B. Construction of a universal finite automaton. II. Examples of how algorithms work // Bulletin of the Voronezh State University. Series: Physics. Mathematics. – 2014. – No. 1. – P. 78–85 (in Russian).

Melnikov B., Dolgov V. Some more algorithms for Conway’s universal automaton // Acta Universitatis Sapientiae, Informatica. – 2014. – Vol. 6. No. 1. – P. 5–20.

Melnikov B. The complete finite automaton // International Journal of Open Information Technologies. – 2017. – Vol. 5. No. 10. – P. 9–17.

Jiang T., Ravikumar B. Minimal NFA problems are hard // SIAM Journal on Computing (SICOMP). – 1993. – Vol. 22. No. 6. – P. 1117– 141.

Melnikov B., SciariniGuryanova N. Possible edges of a finite automaton defining a given regular language // The Korean Journal of Computational and Applied Mathematics (Journal of Applied Mathematics and Computing). – 2002. – Vol. 6. No. 1. – P. 5–20.

### Refbacks

- There are currently no refbacks.

Abava Absolutech Convergent 2020

ISSN: 2307-8162