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Abstract—The Two-Wheeled Self-Balancing mobile Robot 

(TWSBR) is one of the unstable highly nonlinear dynamic 
systems. This work aims to design a robust controller for 
controlling TWSBR, in order to solve the balancing and 
tracking problems. A Sliding Mode Controller based on state 
feedback (SFSMC) is suggested to solve these problems. In this 
work, the equivalent –like the term of the SMC’s control law is 
estimated using a state feedback in order to overcome the 
dependency of the SMC to the robot model and to reject 
undesirable effect of interaction toward the improvement of 
robustness. SFSMC parameters have been tuned using 
modified Cuckoo Search (MCS) and modified Particle Swarm 
Optimization (MPSO) algorithms to improve its performance 
in terms of processing time and response accuracy of the robot 
system. To measure the performance of the robot system, the 
Integral Square Error (ISE) has been used as a performance 
index. Simulation results show improvement in the 
performance of the TWSBR using SFSMC over the classic 
SMC in terms of processing time and tracking error.  
 

Keywords—Modified Cuckoo Search (MCS), Modified 
Particle Swarm Optimization (MPSO), Sliding mode control,  
Two-wheeled Self-balancing mobile robot. 
 

I. INTRODUCTION 
Two-wheeled self-balancing robot (TWSBR) is a highly 
unstable nonlinear dynamic system. As compared with other 
mobile robots, TWSBR has great advantages over its small 
size, simple structure, low cost and flexibility [1][2]. 
TWSBR is commonly used in different applications such as 
hospitals, shopping malls’ trollies and industrial 
environments [3][4]. 
Solving the problem of the TWSBR balance and trajectory 
tracking, have received increasing attention from 
researchers. To keep the TWSBR in balanced condition, it is 
required that it stay upright perpendicularly on the ground 
level [5]. A robust controller that solve the trajectory 
tracking problem must keep the dynamical system in track, 
with shortest displacement and driving time [6]. 
 A wide range of controllers are investigated in the literature 
to tackle the problem of balancing and trajectory tracking of 
the TWSBR. In an attempt to control the TWSBR 
conventional control approaches like PID and LQR 
controller [7][8], nonlinear state feedback controller [9] and 
the pole placement control [10] as well as modern (optimal 
/adaptive) controllers have been used to solve the balancing 
and tracking problem. Modern approaches such as sliding 
mode controllers and adaptive sliding mode controllers 

 

[11][12], adaptive robust regulators and adaptive back-
stepping [13][14], optimal Model Predictive Controller 
(MPC) control for a TWSBR as in [15][16], H_∞ controllers 
[17], PID controllers combined with back-stepping 
controller [18] are implemented as well. 
The Sliding Mode Controller (SMC) is often used to control 
the TWSBR. Nasir, Ahmad N. K et.al [19], compared the 
performance of balancing robot under SMC and classical 
PID controller. While [20]-[22] designed two vigorous 
SMCs for the position and angle of the self-adjusting robot. 
Due to the promising results to track the desired trajectory 
and reject the disturbance when using SMC, a new approach 
to design SMC is suggested in this work. To enhance the 
performance of the classical SMC, a state feedback based 
design (SFSMC) is introduced. A modified Cuckoo Search 
(MCS) and modified Particle Swarm Optimization (MPSO) 
algorithms suggested by [23] are used to tune the SMC and 
SFSMC parameters. 
The rest of the paper is organized as follows. Section II 
presents the dynamic model of the TWSBR. Section III 
explains the SMC design.  Section IV illustrates the MPSO 
and MCS. Section V presents the SFSMC. Section VI 
addresses the results of the proposed controller, while the 
main conclusions are presented in Section VII. 

II. TWSBR DYNAMIC MODEL 
To design a control unit that steers the robot to the desired 

location, a dynamic model is required. The mechanical 
system of the TWSBR is studied as two subsystems 
separately one for the wheels and the other for the chassis as 
illustrated in Fig. 1 and Fig. 2, respectively. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Wheels’ free body diagram[24] 
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Fig.2 Chassis free body diagram[24] 
 
Differential equations are used to describe the 

mathematical model of the robot. These equations are 
derived from Newton's-Euler equations of motion. Two sets 
of equations may represent the TWSBR. The first set 
contains non-linear model which describe the inverted 
pendulum model (chassis) whereas the second set contains 
linear model which represent the DC motor. These 
subsystems models are then combined to produce the 
following equations under uncertainties (force disturbance 
and payload) [24]-[27] 
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Where  𝑥 is the linear position, M is the payload, F is the 
disturbance force, 𝜃 is the tilt angle for TWSBR, Va is the 
applied voltage and d(t) is the unknown external 
disturbance. The parameters’ values of these equations for 
chassis robot are shown in Table I as considered in [23]. 
Let 𝑄  be the distance from Intermediate body origin to the 
position of the payload M. 𝑄 can be expressed as a factor y 
multiplied by the rod half-length l as follows: 
𝑄 = 𝑦𝑙                                                                         (3) 

The overall moment of inertia Ig, and the location of the 
global center of mass of the Intermediate body Lg are 
affected as the payload M position changed.  The overall 
moment of inertia of the Intermediate body becomes:  

𝐼𝑔 = 𝑀𝑝(2𝑙)2

12
+ 𝑀𝑀𝑝(𝐿𝑔 − 𝑙)2 + 𝑀𝑀(𝑄 − 𝐿𝑔)2                (4) 

The location of the global center of mass of the Intermediate 
body will be affected as:   
𝐿𝑔 = (𝑀𝑝+𝑄𝑀)

(𝑀𝑝+𝑀)
                                                                (5)  

 

 

TABEL I. Physical values of the TWSBR [23] 

Symbol Definition Value 

pM  Body Mass 6 kg 

WM  Wheel Mass 300 g 

eK  Back Electromotive Force Constant 45.8 x 10-3 V-s/ 
rad 

mK  The Torque constant  45.8 x 10-3  Nm/ 
Amp 

l  
Distance between the wheel’s center 
and the body's center of mass  20 cm 

R  DC motor Resistance 2.49 Ω 
r  Wheel Radius   7.7 cm 
𝑔 Gravity 9.81 m / s2 

wI  Moment of Inertia of the wheel 1.7x10-3   kg.m2 

pI  Moment of Inertia of the body 290 x 10-3   kg.m2 

x  Chassis’ position m 

pθ  Chassis’ angle rad 

 

III. SLIDING MODE CONTROL  
SMC is a robust controller that can handle different 

nonlinear systems problems [28][29]. The control action 
consists of two control parts; equivalent (continuous) 
controller and discontinuous controller, to derive the SMC 
for TWSBR, (1) and (2) are rewritten as:  
�̈� = 𝑓𝑥(𝑥,𝜃, 𝑡) + 𝑏𝑥𝑢(𝑡) + 𝑑(𝑡)        (6) 

𝜃�̈� = 𝑓𝜃𝑝�𝑥,𝜃𝑝𝑡� + 𝑏𝜃𝑝𝑢(𝑡)         (7) 

Where 𝑓𝑥(. ), 𝑓𝜃𝑝(. ) are the unknown nonlinear function of 
the system position and angle respectively, 𝑢(𝑡) ∈ 𝑅 is the 
control action, and 𝑏𝑥  , 𝑏𝜃𝑝  are the control gain for position 
and angle respectively. 
To calculate the sliding mode controller 𝑢𝑥 𝑎𝑎𝑛𝑑 𝑢𝜃𝑝, a 
sliding surface for position x and angle 𝜃𝑝 is defined as:  
 
𝑠𝑥(𝑡) = 𝜆𝑥𝑒𝑥 + 𝑒�̇�                                              (8.a) 
𝑠𝜃𝑝(𝑡) = 𝜆𝜃𝑝𝑒𝜃𝑝 + 𝑒𝜃𝑝̇                                        (8.b)  
Where 

𝑒𝑥 = 𝑥𝑑 − 𝑥         (9) 

𝑒𝜃𝑝 = 𝜃𝑝𝑑 − 𝜃𝑝,𝜃𝑝𝑑 = 0 → 𝑒𝜃𝑝 = −𝜃𝑝        (10) 

Where 𝑥𝑑 is the desired trajectory of position, 𝜃𝑝𝑑 is the 
desired trajectory of angle, 𝑒𝑥 𝑎𝑎𝑛𝑑 𝑒𝜃𝑝 are the error of 
position and angle. The values of  𝜆𝑥, 𝜆𝜃𝑝 are strictly 
positive and choosing them properly will enhance the SMC 
performance. 
To determine the equivalent control part for (𝑥,𝜃𝑝), sliding 
surface along the system trajectory is differentiated, then 
setting it equal to zero as given by: 
�̇�𝑥 = λ𝑥  �̇�𝑥 + �̈�𝑥 = 0     (11.a) 
�̇�𝜃𝑝 = λ𝜃𝑝 �̇�𝜃𝑝 + �̈�𝜃𝑝 = 0      (11.b) 
By choosing the Lyapunov function as: 
𝑉 = 1

2
𝑠2 ≥ 0                                                                    (12) 
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For stability and to obtain invariant and null value sliding 
variable, it gives the switching condition as: 
�̇�𝑠 ≤ −𝜂|𝑠|                                                                      (13) 
Here, η is a positive fixed parameter. Substituting (11) in (6) 
and (7), gives the approximation of continuous control law 
for position [10]: 
𝑢𝑥𝑒𝑞 = 𝑏𝑥−1�𝜆𝑥�̇� + �̈�𝑑 − 𝑓𝑥�𝑥,𝜃𝑝�� = 𝑏𝑥−1𝑢𝑥𝑒𝑞                
(14a) 
And for angle 
𝑢𝜃𝑒𝑞 = 𝑏𝜃−1 �𝜆𝜃𝑝�̇� + �̈�𝑑 − 𝑓𝜃𝑝�𝑥,𝜃𝑝�� = 𝑏𝜃𝑝

−1𝑢𝜃𝑒𝑞          (14b) 

By replacing (11) into the switching condition (13) and use 
of (6) and (7) the control law for position and angle is 
obtained as [11]: 
𝑢𝑥 = 𝑏𝑥−1 �𝑢𝑥𝑒𝑞 + 𝑘𝑥𝑠𝑠𝑖𝑖𝑔𝑛(𝑠)�                                       (15) 
𝑢𝑥 = 𝑢𝑥𝑒𝑞 + 𝑢𝑥𝑠                                                               (16) 
Here, 𝑘𝑥𝑠  is the positive switching gain, 𝑢𝑥𝑠  is the 
discontinuous control, and 𝑢𝑥𝑒𝑞 is the equivalent 
(continuous) controller provided that 𝑘𝑥𝑠  is:  
𝑘𝑥𝑠 ≥ 𝛽(𝐹 + 𝜂) + (𝛽 − 1)|𝑢𝑥𝑒𝑞                                     (17) 
To decrease the impact of the chattering phenomenon, the 
boundary layer is considered. The sign(.) function is 
replaced by s𝑎𝑎t(.) function in the boundary layer, so (15) 
becomes [3]: 
𝑢𝑥 = 𝑏𝑥−1 �𝑢𝑥𝑒𝑞 + 𝑘𝑥𝑠𝑎𝑎𝑡(𝑠)�                                      (18a) 
The same previous step is considered to define the control 
action 𝑢𝜃𝑝 for 𝜃𝑝 and final equation will be as follows 

𝑢𝜃𝑝 = 𝑏𝜃𝑝
−1 �𝑢𝜃𝑝𝑒𝑞 + 𝑘𝜃𝑝𝑠𝑠𝑎𝑎𝑡(𝑠)�                                       

(18b) 
The sliding mode controllers derived in this section have 
some parameters that need to be set. These parameters have 
an effect on the system stability and performance.  
The parameters (𝜆𝑥 , 𝜆𝜃𝑝 , 𝑘𝑥 𝑎𝑎𝑛𝑑 𝑘𝜃𝑝) of the SMC are tuned 
by using the algorithms described in section IV. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 SMC block diagram for TWSBR 

IV. DESIGN OF EQUIVALENT CONTROL OF PROPOSED SMC 
BASED ON STATE FEEDBACK (SFSMC) 

Formulation of the equivalent part of SMC 
controller will be hard or impossible if the model of the 
system is complex or ill-defined (with unknown states) or if 
some recognized states are too expensive to be measured. 
To solve this model dependency problem, the system can be 
modeled approximately in second order of TWSBR and it is 

expected that the SMC to be robust in the face of the un-
modeled uncertainties which is in this approximated 
dynamics. It is obvious that, in the presence of the large 
range of uncertainties and disturbances, the performance of 
SMC will be degraded. In this section, an estimation to the 
equivalent of each part of the SMCs in TWSBR system by 
state feedback is introduced to solve the model dependency, 
not at cost of robustness. 
This approach provides a new SMC to attenuate uncertain 
disturbances for TWSBR with excitation control by using 
the combination of state feedback with sliding mode control, 
where feedback gains change the dynamics of a system. 
Consequently the unstable system can be stabilized and the 
effects of external disturbances can be reduced. Most often, 
state feedback allows a system to be insensitive to external 
disturbances  
The proposed control law based on state feedback gain will 
become 
𝑢𝑒𝑞 = 𝐾𝑥(𝑡)                                    (19) 

Where 𝐾 = [𝐾1,𝐾2,𝐾3,𝐾4] represent feedback gains and  

𝑥(𝑡) = [𝑥, �̇�,𝜃𝑝,𝜃�̇�] is the state vector of the robot system. 

        𝑢𝑥 = 𝑢𝑥𝑒𝑞 + 𝑢𝑥      (20) 

The SFSMC parameters [K] are tuned by using the 

algorithms described in the following section. 

V.  OPTIMIZATION ALGORITHMS  
The population based optimization algorithms or 

what are known as meta-heuristic algorithms use multiple 
solutions when exploring the search space to solve an 
optimization problem. Generally, these algorithms are 
inspired by some animal’s behavior. In this paper PSO and 
CS are considered.  

 

A. PSO 
PSO algorithm is an optimization technique introduced by 

Keendy and Ebhart in 1995. PSO mimics the bird flocks or 
fish schooling behavior. An optimal solution (best solution) 
can be found through generations’ update [30]. It uses initial 
random solutions called particles. A population contains M 
particles. Each particle has current position 𝑥𝑖𝑡 and current 
velocity 𝑣𝑖𝑡 , where 
i is the particle index (1 ≤ 𝑖𝑖 ≤ 𝑀𝑀), and t is the iteration index. 
Both 𝑥𝑖𝑡  𝑎𝑎𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑖𝑡𝑦 𝑣𝑖𝑡  are updated using (21 and 22) 
𝑣𝑖𝑡+1 = 𝐼𝑛𝑤𝑣𝑖𝑡 + 𝑐1𝑟1𝑡[𝑝𝑖 − 𝑥𝑖𝑡] + 𝑐2𝑟2𝑡�𝑝𝑔𝑏 − 𝑥𝑖𝑡�          (21) 
𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑣𝑖𝑡                                                                (22) 
Where c1 and 𝑐2 are the acceleration coefficients, 𝑟1𝑡  𝑎𝑎𝑛𝑑 𝑟2𝑡  
are random numbers of uniform distribution between [0, 1], 
𝐼𝑛𝑤 is the inertia weight (𝐼𝑛𝑤 < 1), pi is the best solution of 
the ith particle over different iterations and pgb is the global 
best solution over all particles and iterations. A problem 
dependent fitness function F(xit) is defined (minimization or 
maximization) to compare different solutions [31]. 

An MPSO algorithm is considered here, as 
introduced in [23] due to its robust performance over 
standard PSO. 
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B.  CS  

Xin-she yang and Suash Deb introduced the CS 
algorithm in 2009 [32]. The algorithm mimics the cuckoo’s 
behavior in searching for suitable parasitic nests to lay their 
eggs. This breeding behavior is idealized by three main 
rules: 

1. Each cuckoo lays one egg at a time and 
chooses a random host nest to dump the egg in 
it. 

2.  High quality nests will carry over to the next 
generation. Best nests represent solutions with 
good fitness values. 

3. Number of available nests is fixed and the laid 
egg is discovered by the host at a probability 
of 𝑝𝑟 ∈ [0,1]. When discovering the laid egg 
the host bird either get rid of the egg or leaves 
the nest and build a new one. 

In the optimization algorithm the host nest represents a 
solution to the optimization problem. The location of the 
host nest represents a fitness value of the algorithm. The 
search process for a suitable nest maps to the optimization 
process. 
The new suitable nest is generated according to the 
following law: 
𝑛𝑒𝑠𝑡𝑖𝑡+1 = 𝑛𝑒𝑠𝑡𝑖𝑡 + 𝑠𝑡⨁ 𝑙𝑒𝑣𝑦 (𝛿)     (23) 

𝑖𝑖 = 1,2,3, … ,𝑁 

Where 𝑛𝑒𝑠𝑡𝑖𝑡 is the ith solution at the tth generation,  𝑠𝑡 
represents the step size vector

 

that is optimization problem 
dependent, and ⨁ is an entry-wise multiplication. A Levy 
flight is a random walk in which the steps are defined in 
terms of the step-lengths that are distributed according to a 
certain distribution that has an infinite variance and means 
[32][33]. 

𝑙𝑒𝑣𝑦 ≈ 𝑢 = 𝑡−𝛿      (24) 

t in (24) represents a step size drawn from Levy distribution. 

In this paper an MCS is considered as introduced in 
[23] due to its robust performance over standard CS. 

VI.  SIMULATION RESULT 
Matlab software version (R2016a) is considered to illustrate 
the robustness and efficiency of the suggested controller. 
Simulations results of linear (step) and nonlinear trajectories 
with uncertainties are carried out using the suggested control 
scheme (SFSMC with MPSO, MCS) and compared with 
classical (SMC with MPSO, MCS). The optimal values of 
the SFSMC and SMC parameters are obtained using MPSO 
and MCS optimization algorithms. 
Tables 2 and 3 show the MCS and MPSO parameters, while 
table 4 shows the optimal SMC, SFSMC parameters. 
The ISE as described in equation (40) is used as a 
performance index to check the system efficiency. ISE is 
used as a fitness function in the MPSO and MCS algorithms 
as well: 
𝐹 = 𝐼𝑆𝐸 = ∫ 𝑒2 𝑑(𝑡)∞

0             (25) 

TABLE II. MPSO Parameters. 

Parameters Values 

Iterations  20 

Swarm size  30 

minmax , InIn  0.9,0.4 

 

 

 

 

TABLE III. MCS Parameters. 

Parameters Values 
iterations 20 

nests 25 

st  0.01 

rρ   0.25 

minmax , InIn  0.9,0.4 

 

TABLE IV. Optimal Values for SFSMC and SMC 

Parameters using MPSO. 

 

TABLE V. Optimal Values for SFSMC and SMC using 

MCS. 

 

 
The performance of the robot is examined using SFSMC 
and SMC control scheme. The step response of the TWSBR 
for linear trajectory (without uncertainties) (position, 
angular position, error signal and control signal) are 
illustrated in Fig. 4. The results show good responses of 
balancing and tracking control. Figure 4-a shows zero steady 
state error and no overshoot, while  a small pitching angle 
can be seen in Fig.4-b, and very smooth control signal 

Controllers 
xλ  

pθλ  
sxk  

sp
kθ  

SMC 1.3 1 44.58 1 

SFSMC 

K1,2,3,4=[ 44,23,1.45,0.1] 

2 

 

 44.38  

Controllers 
xλ  

pθλ  
sxk  

sp
kθ  

SMC 1.32 1 43.24 1 

SFSMC 

K=[44,20,1.7,0.1] 

1.8 

 

 44.27  
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shown in Fig.4-c. 
 

 
 
 
 
 
 
 
 
 
 
 

(a) Output position 
 

 

 

 

 

 

 
 
 
 

(b) Angle of Body 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Error Signal 
 
 

 
(

d) 
Contr

ol 
Signa
l 
Fig. 

4 
TWS
BR 

controlled by SMC and SFSMC, with MPSO and MCS 
algorithms 

However, simulation results show that the performance of 
TWSBR with SFSMC and MCS is more efficient than with 

SFSMC and MPSO in terms of settling time ts and hitting 
time th as shown in Table 6 and Table 7.  
 
TABLE VI. Performance parameters using MPSO 
 

 
TABLE VII. Performance parameters using MCS 
 

 

VII. .CONCLUSION 
This work introduces a design to non-linear controllers 
SFSMC and SMC based on MPSO and MCS optimization 
algorithms, in an attempt to solve balancing and tracking 
problems of the TWSBR. The MCS algorithm shows better 
performance with minimum ISE and fast convergence rate 
at lower number of iterations, in state feedback SMC. The 
MCS overcomes the MPSO with respect to different 
performance parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type of Controller ts (sec.) th (sec.) ISE 
SMC 4.57 4 0.06 

SFSMC 
K1,2,3,4=[44,23,1.45,0.1] 4.3 2.3 0.041 

Type of Controller ts (sec.) th (sec.) ISE 
SMC 3.8 3.2 0.047 

SFSMC 
K=[44,20,1.7,0.1] 3.43 2 0.038 
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