
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 9, 2019

Some more on the equivalent transformation
of nondeterministic finite automata.

Part II. The “deleting” algorithm

B. F. Melnikov

Abstract—This paper is a continuation of our following pre-
vious papers, where we considered some simple algorithms for
combining states of the given nondeterministic finite automaton,
the reduction some problems related to the star-height to
considering automata, and possible classification of the states
and loops of the given automaton.

In this part of the paper, we shall describe an algorithm
which deletes the state of a given nondeterministic finite au-
tomaton. This algorithm preserves basic properties of automata,
i.e. the languages of the given and the obtained automata are the
same, and the value of star-height for the obtained automaton
is no more than such value for the given automaton.

Like Part I, we consider two states having the same values
of the state marking functions. Then we could apply the same
algorithms, but, generally speaking, in the case of the initial
conditions considered in this part, the application of combining
algorithm of previous part increases the value of star-height
of the automaton under consideration. Then we should apply
another algorithm, we consider such algorithm in this part. We
call it by deleting algorithm, because it deletes a state; however,
we not only delete a state, but sometimes add some edges, inputs
and outputs before deleting.

We also consider some examples of using the described
deleting algorithm.

Keywords—nondeterministic finite automata, regular lan-
guages, equivalent transformations, deleting state, the star-
height problem.

VII. INTRODUCTION TO PART II
(ONCE MORE ABOUT THE MOTIVATION)

This paper is the continuation of [1], i.e. Part I. Moreover,
as we noted in that part, it can be considered also as a
continuation of some our previous papers, i.e. [2], [3], [4],
[5] etc. We continue the numeration of sections, equations,
definitions, propositions, theorems, tables, and figures, but
use new numbers of references and footnotes.

As we said in Part I and in [5], we already reformulated
the star-height problem for regular languages in the following
way: for the given regular language, we have to construct
the equivalent finite automaton having the minimum possi-
ble star-height. After that, considering n! bijective “order”
functions (n is the number of the states of the “minimum”
automaton), we construct corresponding regular expressions
and choose one having the minimum possible star-height.
Thus, a possible solution of the star-height problem for
regular language is constructing such “minimum” automaton.

To build such an automaton, we perform some auxiliary
equivalent transformations. The description of such transfor-
mations is the main subject of this paper.

Received June 27, 2019.
Boris F. Melnikov, Shenzhen MSU – BIT University (email: bf-melnikov

@yandex.ru).

In Part I, we combined two states having the same values
of the state marking functions: i.e., for states q′ and q′′ under
consideration we should have

ϕinK (q′) = ϕinK (q′′) and ϕoutK (q′) = ϕoutK (q′′). (4)

In this part of the paper, we also could apply the same
algorithms (because below, both the equations of (4) also
hold). However, we shall consider in this part the case, when
both (2) and (3) 1 do not hold. Therefore, generally speaking,
in the case of the initial conditions considered in this part,
the application of combining algorithm of Part I (i.e. The-
orem 1) increases the value of SH of the automaton under
consideration. Then, also generally speaking, the combining
algorithm is also applicable, but we should apply another
one. We shall consider this algorithm below.

Thus, similarly to Part I, we shall consider an algorithm
for equivalent transformation of nondeterministic finite au-
tomaton. Also similarly to Part I, we shall not fully describe
why we are doing this 2: we are going to give details in
some subsequent publications. Let us repeat, that we only
describe algorithms for equivalent transformation and prove
non-increasing the value of star-height for the obtained
automaton.

This paper has the following structure. In Section IX,
we consider the first stage of the deleting algorithm: we
add some new inputs and outputs (i.e., initial and final
states) without changing the language and value SH of the
automaton under considerstion. In Section X, we give the
second stage of this algorithm: we add some new edges and
fulfill the same condition at the same time. In Section XI, we
consider the last stage of this algorithm: this is direct deleting
the state. In Section XII, we consider some examples for the
deleting algorithm.

VIII. SOME MORE ON PRELIMINARIES

All designations used below were already given in [1],
i.e. Part I. However, in Part I, no specific reference to
designations Ψ and Ψ̂ was given (despite these designations
were used). This notation can be found in [6] (cited there).

In [7], we explained our use of single and double circles
to denote states. In the current paper, only “ordinary” non-
deterministic finite automata are used, therefore all states in
the figures are represented by double circles.

Remark also, that the terminology related to the graph
theory is agreed with [8].

1 As we said before, we continue the numbering of the equations of Part I.
2 “You’re far too keen on where and how, but not so hot on why”.

1

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 9, 2019

IX. THE DELETING ALGORITHM:
THE FIRST STAGE, ADDING THE INPUTS AND OUTPUTS

Thus, in this part of the paper, we also are working with
the case when at least two states have the same values of the
both state-marking functions, i.e. functions ϕin and ϕout. Of
course, we remove one of these states, namely, one of them
that has the greater value of the order function τ .

However, the algorithm we are describing is not simple:
despite these states have the same values of the both state-
marking functions, the different sets of initial / final states
may correspond to them. Let us consider a simple example
for this thing.

First, consider the “usual” language of the regular expres-
sion

(a+ ab+ ba)∗. (5)

Its “usual” nondeterministic automaton is the following:
?6

��
��
��
��
q2

� a

-b ��
��
��
��
q1 ����

I
a

?
b

6
a

��
��
��
��
q3

Figure 4. Automaton for the language of (5)

In the process of the most usual determinisation ([9] etc.),
we obtained the automaton given by the following table:

Tab. 3. An equivalent deterministic automaton

a b
→
← A B C
← B B D

C A –
← D B C

(see [13] and [14, Footnote 1] about total (everywhere-defi-
ned) deterministic automata).

By [9] etc., we should combine states A and D for
obtaining the canonical automaton. But for this paper, we
need example of Tab. 3: we have two different states A and
D having the same values of state-marking functions 3, but
only A (not D) in an initial state.

Proposition 6: Let L = L(K) and for the state q of
automaton (1) (where q /∈ S), condition ϕinK (q) 3 sπ holds
(by [13], [14], sπ is the only initial state of automaton L̃).
Then for automaton

K ′ = (Q,Σ, δ, S ∪ {q}, F) , (6)

condition L(K ′) = L(K) holds.
Proof. Evidently, LoutK′ (q) = LoutK (q). But, generally

speaking,
LinK′(q) 6= LinK (q) ∪ {ε},

3 In the usual designations of states of canonical automata L̃ and L̃R for
such language L,

ϕin
K (A) = ϕin

K (D) = {A} , ϕout
K (A) = ϕout

K (D) = {X,Y }.

(because, generally speaking, q /∈ S). Despite this fact, the
following equation is also evident:

LinK′(q) · LoutK′ (q) = (LinK (q) ∪ {ε}) · LoutK (q). (7)

Since ϕinK (q) 3 sπ , the following holds:

(∃u ∈ LinBA(L)(sπ)) (∀v ∈ LoutK (q)) (uv ∈ L).

Besides, because automaton L̃ is deterministic, we obtain,
that

(∀u ∈ LinBA(L)(sπ)) (∀v ∈ LoutK (q)) (uv ∈ L).

We have sπ ∈ ϕinK (q), then ε ∈ LinBA(L)(sπ), therefore

(∀v ∈ LoutK (q)) (εv ∈ L).

The last fact and (7) prove the proposition. �

The following statement about outputs is proved similarly.

Proposition 7: Let L = L(K), and for the state q of
automaton (1) (where q /∈ F), condition ϕoutK (q) 3 sρ holds
(sρ is the only initial state of automaton L̃R). Then for
automaton

K ′ = (Q,Σ, δ, S, F ∪ {q}) , (8)

condition L(K ′) = L(K) holds. �

X. THE DELETING ALGORITHM:
THE SECOND STAGE, ADDING THE EDGES

Like previous section, despite two states may have the
same values of the both state-marking functions, the different
sets of edges may correspond to them. Let us consider two
simple examples for this thing.

First, let us continue to consider the automaton of Figure 4
and its language (5). We can also consider the universal
automaton (automaton COM) for the same language (about
the universal automaton, see details in [10], [11], [12]):

-

6 ?6

��
��
��
��
q2

� a

-a, b ��
��
��
��
q1 ����

I
a

����
I

a

����
�

a

?
a, b

6
a

��
��
��
��
q3

Z
Z
Z
Z
Z~

a, b

Figure 5. The second automaton for the language of (5)

Based on calculations similar to those in [13], we find that
the values of functions of the same name (ϕin and ϕout) are
the same for two states labelled q1.

Secondly, let us consider the other language of [13], [14].

��
��
��
��
q3����

�b
?

��
��
��
��
q2 ����

Ia, b
?

��
��
��
��
q1

?

�
�
�
��

a

�
�
�
��

b

A
A
A
AU

b

Figure 6. The first automaton for the second language

2

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 9, 2019

Its first automaton is given on Fig. 6. The second automaton
for the same language is the following:

��
��
��
��
q3����

�b
?

��
��
��
��
q2 ����

Ia, b
?

��
��
��
��
q1

?

�
�
�
��

a, b

�
�
�
��

b

A
A
A
AU

b

�
b

Figure 7. The second automaton for the second language

Like previous example, the identical states of two automata
have the same values of functions ϕin and ϕout, but the set of
edges of the first automaton is an own subset for the second
one.

As we noted above, the algorithm described in this paper
is based on the following auxiliary algorithms.
• First, we add the “missing” edges for the state having a

smaller value of the order function τ (see [5] and Part I
of this paper for details of τ).

• Secondly, we delete the the state having a greater value
of τ .

Proposition 8: Let the following objects be given:
• the regular language L;
• some automaton (1) defining L;
• some states q1, q2 ∈ Q, belonging to two different

highly connected components of automaton (1).
Let for some states A

X and B
Y of the equivalent basis automa-

ton BA(L) (we allow possibilities A = B and X = Y) and
for some letter a ∈ Σ, the following hold:

[q1 3 A
X] , [q2 3 B

Y] and A
X

a−→
BA(L)

B
Y (9)

(for notation [q 3 q̂] and corresponding examples, see [6]).
Then automaton

K ′ = K
+(q1

a−→ q2)

is equivalent to the given one, i.e., the equality

L(K ′) = L(K)

holds. 4

Besides, for each state q ∈ Q the following conditions
hold:

ϕinK (q) = ϕinK′(q) and ϕoutK (q) = ϕoutK′ (q). (10)

Proof. It is sufficient to prove, that L(K ′) ⊆ L(K).
Let us consider any state

Y ′ ∈ ϕoutK (q2)

and any corresponding word v′, such that

(v′)R ∈ Lin
L̃R

(Y ′).

4 Let us remark, that the simultaneous fulfillment of equalities A = B and
X = Y is impossible, because we consider two different strongly connected
components of (the transition graph of) the basis automaton BA(L).

Let us also remark, that we can reformulate the condition about the
difference of the strongly connected components, in the following simpler
way: the transition graph of automaton BA(L) has no path from B

Y
to A

X
.

Let u be some word of the language Lin
L̃

(A). We have

ua ∈ Lin
L̃

(B).

(This fact is proved simple; for example, it could be consid-
ered as the consequence of [4, Prop. 2.1].)

Besides, the condition

B ∈ ϕinK (q2)

holds, then we obtain, that

uav′ ∈ L.

From the last fact, we obtain, that for automaton L̃R, the
condition

(v′)Ra ∈ Lin
L̃R

(X)

holds. The same fact is true for each state X ′ ∈ Qρ, such
that A#X ′.

Thus,
LoutK (q1) 3 av′,

then for each state

A′ ∈ ϕinK (q1),

there exists some word

u′ ∈ Lin
L̃

(A′),

such that u′av′ ∈ L; therefore for each word

u′ ∈ Lin
L̃

(A′)

the condition u′av′ ∈ L holds. 5 The last condition proves
the equality L(K ′) = L(K), which is also explained by the
following two facts:
• for each pair of states, i.e.

A′ ∈ ϕinK (q1) and Y ′ ∈ ϕoutK (q2),

and for each pair of corresponding input words, i.e.

u′ ∈ Lin
L̃

(A′) and (v′)R ∈ Lin
L̃R

(Y ′),

condition u′av′ ∈ L holds;
• in automaton, the new loops (i.e. the loops, that were

absent in the transition graph of automaton K) cannot
appear. 6

Thus, L(K ′) = L. Then for automaton K ′, the equivalent
canonical automaton is L̃. Therefore we can use notation,
associated to L̃, also for automaton K ′; we mean, at first, the
use of subsets of their states as values of function ϕinK′ (not
only for function ϕinK). Similarly, automaton L̃R is equivalent
to (K ′)R, and we can use sets of their states for values of
function ϕoutK′ .

We proved in fact, that(
∀A′ ∈ ϕinK (q1)

) (
∃B′ ∈ ϕinK (q2)

) (
A′

a−→̃
L
B′
)

;

5 This fact (i.e. the possibility of replacement in this situation the word
“exists” for “for each”) can be considered as a property of the canonical
automaton L̃.

6 The impossibility of new loops is a consequence of the fact that q1 and
q2 belongs to the different strongly connected components.

Let us also remark, that if we did not impose such a requirement, then
the condition L(K′) = L(K), generally speaking, was false. However, the
more detailed consideration of such examples is not included in the scope
of this paper.

3

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 9, 2019

then
ϕinK′(q2) = ϕinK (q2).

Similarly
ϕoutK′ (q1) = ϕoutK (q1).

The conditions

ϕinK′(q1) = ϕinK (q1) and ϕoutK′ (q2) = ϕoutK (q2),

as well as (10) for q /∈ {q1, q2}, are evident. �

Definition 6: We shall call such edges q1
a−→ q2 by inter-

component edges.
We shall use this notation in the following papers.

Proposition 9: For the conditions of Proposition 8, the
equality

SH(K ′) = SH(K)

holds.
Proof. In the transition graph of automaton K ′, there

cannot be paths from the state q2 in the state q1 because
of the following. If such a path would exist, then we obtain
existing of corresponding path of automaton BA(L), i.e.
a path from state B

Y to state A
X . And the last existing

contradicts to the supposition we make before, i.e., that A
X

and B
Y belongs to different strongly connected components

of automaton BA(L).
Thus considering the same order function τ (it was given

for automaton K) for the new automaton K ′, we obtain, that
SH(K ′) = SH(K). �

XI. THE DELETING ALGORITHM:
THE THIRD STAGE, DIRECT DELETING THE STATE

We shall not explain the initial conditions necessary for
the following proposition (as we noted in Introduction). An
explanation of the need to fulfill these conditions for the
deleting algorithm will be given in one of the following
publications.

Proposition 10: Let the following condition hold:(
∃i ∈ {1, . . . ,m−1}

)(
Ψ(qi) = Ψ(qm)

)
, (11)

and the following condition does not hold:(
∃(A,X) ∈

⋃
q∈{qm}∪T̂m

Ψ̂(qi)
)(

(A,X) /∈ Ψ̂m

)
. (12)

Then there exists automaton

K ′ =
(
Q \ {qm},Σ, δ′, S \ {qm}, F \ {qm}

)
,

such that:
• L(K ′) = L(K);
• SH(K ′) = SH(K);
• for each state q ∈ Q \ {qm}, conditions

ϕinK (q) = ϕinK′(q) and ϕoutK (q) = ϕoutK′ (q)

hold.
Let us consider some important comments to the initial

conditions.
• There is convenient to write the second condition as

above, that is, as non-performance of (12).

• The non-performance of (12) implies the following fact:⋃
q∈{qm}∪T̂m

Ψ̂(qi) ⊆ Ψ̂m . (13)

• The performance of (12) does not guarantee, that the
set

{qm} ∪ T̂m

contains a complete A
X -cyclic state (see [6] for this

definition) for the considered states

A ∈ Qπ and X ∈ Qρ.

Proof. Let us describe the preliminary equivalent transfor-
mation of automaton K, consisting of adding some edges.

For this, let bus consider any accepted path of automaton
K, passes through the state qm. Let it be the path

→ p1
a1−→
K

p2
a2−→
K

. . .
akp−1−→
K

(pkp=p)

b′−→
K

(t′=t1)
b1−→
K

t2
b2−→
K

. . .
bkt−1−→
K

(tkt=t
′′)

b′′−→
K

(14)

(r=r1)
c1−→
K

r2
c2−→
K

. . .
ckr−1−→
K

rkr → ,

where:
• the states t1, t2, . . . tkt (these ones only) belong to the

strongly connected component which contains the state
qm;

• from the states t1, t2, . . . tkt , at least one coincides with
qm;

• we allow the possibility kp = 0; in this case, the first
string of the path (14) is empty, t′ is some initial state
(it is the first state of this path), i.e. in this case, the
edge b′−→

K
is being replaced for →;

• we also allow the possibility kr = 0 (the comments are
similar to those above).

Because t1, t2, . . . tkt belong to the same strongly con-
nected component, we can consider this sequence as a part
of some loop. For instance, we can consider the loop

(t′=t1)
b1−→
K

t2
b2−→
K

. . .
bkt−1−→
K

(tkt=t
′′)

bkt−→
K

tkt+1
bkt+1−→
K

. . .
bkn−1−→
K

(tkn=t′) .
(15)

Evidently, there exists a corresponding path of automaton
BA(L) (because the automata K and BA(L) accept the same
language); let this path (of automaton BA(L)) be λ. Also
evidently, the loops (15) and λ, are, generally speaking, not
simple loops.

According to the state qm selection method, there exists
some other loop of automaton K, which:
• corresponds to the loop λ;
• does not contain the state qm (because all the states of

the set Qm are important states). 7

7 The important states were defined before.
Let us explain this fact in details, i.e., we explain the existing of the loop

of automaton K, possessing the properties described here.
By our suppositions (13), the condition Ψ̂(qm) ⊆ Ψ̂m holds. Considering

arbitrary pair (A,X) ∈ Ψ̂(qm), we obtain that for some l < m, the state
ql is a complete A

X
-cyclic state.

Then, also by (13), for each loop of automaton BA(L) passing throw
state A

X
, there exists a corresponding loop of automaton K, which does not

contain other complete A
X

-cyclic states. (I.e., the such state is the already
selected ql.)

4

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 9, 2019

(We again used some notation of [6].)
Let this loop of automaton K be

(h′=h1)
b1−→
K

h2
b2−→
K

. . .
bkh−1−→
K

(hkt=h
′′)

bkt−→
K

hkt+1
bkt+1−→
K

. . .
bkn−1−→
K

(hkn=h′) .

Then the path

(h′=h1)
b1−→
K

h2
b2−→
K

. . .
bkh−1−→
K

(hkt=h
′′) (16)

(it also is the part of the last loop) also does not contain the
state qm.

For both states h′ and h′′, the conditions of Proposition 8
hold. Then we can add the edges

p
b′−→
K

h′ and h′′
b′′−→
K

r

without changing the accepted language and the star-height
of the considered automaton. Thus, we obtain the following
accepting path of the obtained automaton:

→ p1
a1−→
K

p2
a2−→
K

. . .
akp−1−→
K

(pkp=p)

b′−→
K

(h′=h1)
b1−→
K

h2
b2−→
K

. . .
bkh−1−→
K

(hkt=h
′′)

b′′−→
K

(r=r1)
c1−→
K

r2
c2−→
K

. . .
ckr−1−→
K

rkr →

(like before, the first and / or the last strings can be empty),
which accepts the same word, like the path (14).

Evidently, we can make such equivalent transformation
(which also does not change the value SH of the considered
automaton) for each possible pairs t′ and t′′. 8 Then for each
word of the considered language, there exists corresponding
accepting path, which does not contain the set qm.

Thus, we obtain

L(K−qm) = L(K).

Moreover, for each state q ∈ Q \ {qm}, equalities

ϕinK (q) = ϕinK′(q) and ϕoutK (q) = ϕoutK′ (q)

are evident. �

XII. SOME EXAMPLES FOR THE DELETING ALGORITHM

Like Part I, we shall continue to consider examples where
the sets Ψ (and, therefore, Ψ̂ etc.) consist of one element.
I.e., by [6, Def. 2],

|ϕinK (q)| = |ϕoutK (q)| = 1 ;

the examples for the sets ϕinK (q) and / or ϕoutK (q) consisting of
2 or more elements are complicated. Also like [6] and Part I,
all the examples are special modifications of automaton
BA(L) for the language of regular expression (5).

First, let us repeat automaton of [1, Fig. 1], see Figure 8.
Now, unlike [1], we shall consider the other automaton:
• without an input present in Figure 8 (i.e., the state A

Y 1
is now not the initial one);

• without an edge present in Figure 8 (i.e., the edge

B
X 2

b−→
BA(L)

A
Y 2

8 Generally speaking, there exist infinitely many accepting paths of the
type (14), but the finite number of such states t′ and t′′.

Figure 8. The previous automaton (for the language (a + ab + ba)∗)

is now absent); 9

• the other order function τ .
For the new automaton and order function, see Figure 9.

Figure 9. The given automaton (for the language (a + ab + ba)∗)

We should show, that the values of the two state-marking
functions for all states coincide with those shown in the
figure. We can do it in the following two ways:
• either complete the procedure of canonization for this

automaton (like [13]);
• or for each state for both state-marking functions,

strictly prove equality by specifying the “necessary”

9 We especially designate the transition function as belonging to the
automaton BA(L), although this is not entirely correct.

5

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 9, 2019

input (output) words and additionally proving that there
are no “extra” input (output) words.

However, both these ways need a very long time, then we
shall apply the following simple method. 10

The inputs, outputs and edges of the automaton of Figure 9
are the own subsets of corresponding sets of the automaton
of Figure 8; then both input and output words for all states of
Figure 9 are also the own subsets for such ones of Figure 8.
We know the state-marking functions for the first automaton;
all their values consist of one element. Besides, the automa-
ton of Figure 9 have neither useless nor inaccessible states,
then each value of its state-marking function is not empty.
Therefore, for each value we have the only possibility, which
should be the same as shown in the figure.

We shall look at the last example quite briefly. Deleting
the edge

B
X 1

b−→
BA(L)

B
Z

leads to almost the same comments that we had for the
previous automaton. However, in this case, we can also
consider a new inter-component edge

B
X 1

b−→
BA(L)

A
Y 2,

instead of
B
X 2

b−→
BA(L)

A
Y 2

(the last one was already deleted for automaton on Figure 9).
The last automaton for this language is depicted on Fig-
ure 10; its detailed consideration is beyond the scope of this
paper.

Figure 10. The last automaton (for the language (a + ab + ba)∗)

10 Sometimes, we use this method in the computer programs, for example,
in heuristic algorithms checking the equivalence of two automata, obtained
by transformation of basis automata. However, this topic is beyond the scope
of this paper.

ON THE PART III

In Part III, we are going to describe the algorithm for
special adding a state. This algorithm will also have the same
feature of transformations, i.e. the values of star-height for
the obtained automata will be no more than such value for
the given automaton.

Let us very briefly say, why we shall consider this case. We
shall add not only edges (like combining case of Part I), but
also states. The meaning of this addition is not the “urgent”
combining states; we “improve the structure” of the automa-
ton under consideration; this will help to subsequently apply
one of the algorithms discussed in the first two parts. In other
words, even the “adding” algorithm does not “complicate”
the considered automaton; the details will be described later.

REFERENCES

[1] Melnikov B. An approach to the classification of the loops of finite
automata. Part I: Long corresponding loops // International Journal of
Open Information Technologies. 2019, vol. 7, no. 4, pp. 1–5.

[2] Melnikov B., Melnikova A. Some properties of the basis finite automa-
ton // The Korean Journal of Computational and Applied Mathematics
(Journal of Applied Mathematics and Computing). 2002, vol. 9, no. 1.
pp. 135–150.

[3] Melnikov B., Sayfullina M. On some algorithms for the equivalent
transformation of nondeterministic finite automata // Izvestiya of Higher
Educational Institutions. Mathematics. 2009, no. 4, pp. 67–72. (in Rus-
sian, https://elibrary.ru/item.asp?id=11749888)

[4] Melnikov B. Extended nondeterministic finite automata // Fundamenta
Informaticae. 2010, vol. 104, no. 3, pp. 255–265.

[5] Melnikov B. The star-height of a finite automaton and some related
questions // International Journal of Open Information Technologies.
2018, vol. 6, no. 7, pp. 1–5.

[6] Melnikov B., Melnikova A. An approach to the classification of the
loops of finite automata. Part II: The classification of the states based
on the loops // International Journal of Open Information Technologies.
2018, vol. 6, no. 11, pp. 1–6.

[7] Melnikov B., Melnikova A. Pseudo-automata for generalized regular
expressions // International Journal of Open Information Technologies.
2018, vol. 6, no. 1, pp. 1–8.

[8] Harary F. Graph Theory. Addison Wesley (Boston), 1969, 274 p.
[9] Aho A., Ullman J. The Theory of Parsing, Translation, and Compiling,

Vol. 1: Parsing. Prentice Hall (NJ), 1972, 560 p.
[10] Melnikov B., Sciarini-Guryanova N. Possible edges of a finite automa-

ton defining a given regular language // The Korean Journal of Com-
putational and Applied Mathematics (Journal of Applied Mathematics
and Computing). 2002, vol. 9, no. 2. pp. 475–485.

[11] Polák L. Minimizations of NFA using the universal automaton // In-
ternational Journal of Foundations of Computer Science. 2005, vol. 16,
no. 5. pp. 999–1010.

[12] Lombardy S., Sakarovitch J. The Universal Automaton // Logic and
Automata, Texts in Logic and Games, Amsterdam Univ. Press. 2008,
vol. 2, pp. 457–504.

[13] Melnikov B. Once more on the edge-minimization of nondeterministic
finite automata and the connected problems // Fundamenta Informaticae.
2010, vol. 104, no. 3, pp. 267–283.

[14] Melnikov B. The complete finite automaton // International Journal of
Open Information Technologies. 2017, vol. 5, no. 10, pp. 9–17.

Boris Feliksovich MELNIKOV,
Professor of Shenzhen MSU – BIT University, China
(http://szmsubit.ru/),
Professor of Russian State Social University
(http://www.rgsu.net/),
email: bf-melnikov@yandex.ru,
mathnet.ru: personid=27967,
elibrary.ru: authorid=15715,
scopus.com: authorId=55954040300,
ORCID: orcidID=0000-0002-6765-6800.

6

	Introduction to Part II (Once more about the motivation)
	
	
	
	
	
	References

