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Application of the repeated quantization method
to the problem of making asymptotic solutions
of equations with holomorphic coefficients

Maria V. Korovina

Abstract— In this work, we derive asymptotics of solutions
of ordinary differential equations with holomorphic coefficients
in the neighborhood of infinity.

This problem represents a particular case of the general
problem of constructing asymptotics of linear differential
equations with irregular singularities, namely the Poincare
problem. The case of infinitely distant singular point is an
example of irregular singularity and the problem of derivation
of asymptotics of its solutions is reduced to the problem of
constructing asymptotics of solutions in the neighborhood of
zero of linear differential equations with the cusp-type
singularity of the second order. If the principal symbol of
differential operator has simple roots, then asymptotics of
solution of equation in the neighborhood of an irregular
singular point can be represented as a classic non-Fuchs
asymptotics, which is a familiar fact. In the case of multiple
roots, the method of repeated quantization is used. The method
is based on the Laplace-Borel transform. Using repeated
guantization in this paper we solve the problem of derivation of
asymptotics of solutions in the neighborhood of infinity for a
model problem whose singularity index has a special form. The
derived asymptotics of solutions differ from the classic non-
Fuchs asymptotics and represent their generalizations. The
method of solution of this model problem in its essential part is
transferred to the general case. Thus, this work is one of steps
in solving Poincare problem.

Keywords—differential equations with cuspidal singularitus,
Laplas-Borel transformation, resurgent function, principle
operator symbol, asymptotic expansion.

l. INTRODUCTION

The work aims to analyze methods for constructing
asymptotic solutions in ordinary differential equations with
holomorphic coefficients with degeneracies. Namely, we
study ordinary differential equations with holomorphic
coefficients

bn(r)(%j”u(r)mn1(r)(%j“u(r)+...
+b|(r)(%jiu(r)+...+b0(r)u(r):0

here, b, (r) are holomorphic functions.

(1)

If the coefficient of the highest derivative b, (r) vanishes
at some point, without loss of generality, it can be assumed
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that this point is r=0, then the equation (1), generally
speaking, has a singularity at zero. In this case, zero can be a
regular or irregular singular point. The problem of
representing asymptotic solutions to an equation with
holomorphic coefficients near an irregular singular point was
first formulated by H. Poincaré in [1], [2]. In these papers, it
was first shown that the solution of an equation with
holomorphic coefficients near an irregular singular point in
some cases can be decomposed into an asymptotic series.
One of the possible methods for summing the asymptotic
divergent series - using integral transforms - was also
formulated by Poincaré in [2]. As the integral transform,
Poincaré used the Laplace transform, but it is applicable
only in some special cases. In this paper, the Laplace-Borel
transform, which was introduced by Ecalle in [3] and is the
basis of resurgent analysis, will be used to sum the
corresponding asymptotic series.

Thome's work was one of the first papers, considering the
problem of making asymptotic solutions in the vicinity an
irregular singular point [4]. An equation with holomorphic
coefficients is considered.

(%jn u(x)+ anl(x{%)“u(xﬁ
+a, (x{%ju(x% ot a,(xu(x)=0

here, the coefficients a,(x) are regular at infinity, this means

: ()

that there is such an exterior of the circle |x|>athat the

functions ai(X),i=0,1,...,n—1 decompose in it into
© j

convergent power series a, (x):zb—j Our study aims at
0 X

making asymptotic solutions of the equation (2) in the

vicinity of infinity.

Il. MAIN RESULTS

Let’s note that the equation (1) can be reduced to an
equation, looking like this

Hu = H[r,—rkiju =0, 3)
dr
where H is a differential operator with holomorphic
coefficients

H(r, p)=§]ai(r)p‘-
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Here, a,(r) are holomorphic functions, and a,(0)=0. In
[4], it was shown that one can find a minimum integer
nonnegative k and a formula for calculating this minimum
value k was obtained. The equation (3) is called the equation
with the cuspidal degeneration of the k-th order.

By replacement of x:l, the problem (2) also reduces to
r

the equation (3) for the case, when k =2. In other words,
the problem of constructing asymptotic solutions of the
equation (2) at infinity requires to study the equation with a
second-order cuspidal degeneracy. In this case,

H(r,p)=p’ +_"Zl‘,ai(r)pi 4)

In the beginning, we will consider the case, when the
principal symbol of a differential operator H(O, p), has one

root; without loss of generality, we assume that this root is at

© b_i
2

zero. It follows that in this case a,(x)=

Let’s write the equation (2) as

—rZi nu+ r™| - : 4 ku+ rm — rzi Hu+
dr % dr % dr

k-2
m,+2 2 m, +k
+a,r (—r Ej U+..+a.,r u+ (5)

+Zr12a( r—ju+r“*12a { jiu=0

=1 i=h
Here, h,+j>m +k. Lets h=m+k call the

singularity index; in other words, members of a;rj(rzdij
r

provided that j+i>h are the minor members. Let's divide

them into two types. To the first type, let’s assign members,
for which h> j, and to the second type — h< j. In this

article we will consider a special case of this problem. We
will consider the case, when m, =1; i.e., the singularity

index is 1+k . This equation is a model, and the asymptotics
construction at infinity is an important step in solving the
problem of constructing asymptotic solutions of the equation
(3) in the general case.

The method of constructing the asymptotic solutions of
the model problem is largely carried over to the general
case. We show that will be fair

THEOREM. The asymptotic solution of the equation (2)
with x —» o is

where  «! ,,j=1..,n—-k are polynomial  roots
n-k
p™* +a, n—k , o,a,k, and «, j=1..,n—k-2
n-k-1
are some numbers; if N <h, then A|j =0,vi,]j.

This theorem is the main result of this paper; the proof of
this theorem is given below.

Proof.

Without loss of generality, let's assume that the equation
includes only one term of the first type and one term of the

second type, namely
d k d k-1
r‘—lu+ar’-r’—| u+
drj % ( drj

—rzi nu+ rl—
dr %
k-2 k—i+1
+a,r’ —rzi U+..+a,r —rZi +..
dr dr

, d k—i+1+p;
r’— u-+

dr

+ bzr““”{— rzij u=0
dr

Here, the last two terms belong to the lower members; one
of them belongs to the first type, and the second to the
second type. We will look for the asymptotic solution of the
equation (7) in the vicinity of zero, using the repeated
quantization method, see [6].

()

+a,ru+ blr'[—

The proof of the theorem can be divided into several
stages. At the first stage, the equation is transformed, using
the Laplace-Borel transform, and the singular points of the
transformed equation's solution are determined. At the
second stage, using the repeated quantization method,
asymptotic solutions are made near singular points; then the
inverse Laplace-Borel transform from the asymptotics is
taken.

Let's recall the definition of the Laplace-Borel transform.

Let’s denote S, , = {r|—g <argr<eg|r|< R} by sector

Sk, - We will seek a solution to the equation (7) in the space
Ek(SR‘g) of holomorphic functions in the domain S_ that

grow k-exponentially at zero.

By the E(ﬁR‘S), let’s denote the space of holomorphic

functions of exponential growth in the domain

£~2R‘.g={I0‘—%—8<61r9|O<%+s,||0|>R}; by E(C), the

space of entire functions of exponential growth will be
denoted.

Kk -th  Laplace-Borel
f(r)eE(S..) is

B, : E,(S..)~ E(Q,,)/E(C)

function
function

transform of the
called a
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- oo dr
f(p)=B.f =" f(n.
0

The inverse Laplace-Borel k-transform is defined by the
formula

LKoo
it~ X (e f(p)d
27:1! (p)dp

The loop y is depicted in Fig. 1, in [7].

Let’s apply the Laplace-Borel transform to the equation
(7), see [8]. The converted equation (7) will look like this

(8)

-

P
+b2(—1)k*ﬂz*1j...f p™G(p, Jdp,...dp,.,.. = f(p)

1 1

Here, f is an arbitrary holomorphic function. Let's consider
the case n < h. Let’s rewrite the equation (8) as

o3 it
“ p,”"d(p, Jdp.dp, +
p

!

1)k +1

2

plk i+l A pl)dpl dp

|
: (©)
J-

P,

[ 6(p.Hp,...dp, ., -

1

b _1i [ T i+1+,

1(pn ) Jj plk A (pl)jpl dp
b(—1)f7t e & f
e B R

Let's apply the method of successive approximations to
the equation (9), then, just as it was done in [9], it can be
shown that the asymptotic solutions of the equation (9) in the
vicinity of the point p =0 are conormal.

Now let n> h . Let's differentiate the equation k+1 times;
we get the equation

(10)

; aka<p>+bl<—1>{ij““ - 4i(p)s

dp
p P, d k+1
+b2(_1)k+/f2+1-|....J. p,"d(p, )dp,...dp, = [d_pj f

Let's note that, when n=h, we obtain an equation with a
conic degeneracy. As is known, the solution of such an
equation has a conormal asymptotics at zero. Let's assume
that n>h. This is the most difficult case.

n-k-1)

Let's multiply the equation (10) by p*
show that the equation (10) can be rewritten as

k+1
1 d)T
(—n_k_lp dpJ (p)+
k
1 dY
|~ P dij(p)+

k-1
O I S

. It is easy to

+a

k-2
1 n—-k-1 1 n-| d ~
+a, pZ( ‘ )(_ p k_j U(p)+ (11)

+a1pknk1

k=i 1 d k+1-i-j
bj pe(i+j-1)(n-k-1)| _ nk 9 0
+2. blp rra L B GON

=
D
knk1J'
1

plm p1 dp1 dp/i -

,_\'.—.1:

Here, a; = b, j=0,.,k—i are

" Thn-k-1"
corresponding numbers. Let’s note that the equation (11)
differs from an equation of n-k order of cuspidal degeneracy;

we only have an integral member
p

P,
pk(wH)J‘“_J‘ prG(p, )dp,...dp, . In [6], it was proved that

1

p q 4,
B[Iu(p)dp] = —EHJ(ql)dqldqz; from this it follows that
o q Go o

the Laplace-Borel transform increases the multiplicity of the
integral, so the proof of the resurgence of the solution, given
in [7], [10] can be transferred without change to the equation
(8). Solution of the equation (11) is a resurgent function. It
follows that the Laplace-Borel transform can be applied to
this equation in the same way as it was done for the equation

(7).
16



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.9, 2019

To make asymptotic solution of the equation (11) at
p — 0, we apply the repeated quantization method [6]. To

do this, in the equation (11), we make for the Laplace-Borel
(n—k) transform. The main symbol of the differential

function on the left side of the equation (11) is

gt +—2—qg“=q"| g+ % . The principal symbol
n-k-1 n-k-1
has two roots: q=0 and q=- 1 Let’s introduce the
n_ —
notation c¢=- {t R We will find the asymptotic
n_ —

solution of the transformed equation (11). First let's find an
asymptotic member, corresponding to the root g=c.

Without loss of generality, let's assume that ail =0. If this
is not the case, this factor can be reset by replacing

G,(p)=pd(p).

Let’s find the asymptotics of the Laplace-Borel
transform of the equation’s (11) right side in the vicinity the
point g=c¢

Bn—k pk(”’k’l)f = Bn k p

k(n—k-1) N b. pi —
k(n—Kk—1}1 © k(n—k-1)+i

:aoqkillnq"‘alq n-k-1 +Za‘iq n-k-1 71:

i=2

(12)

—a,q'Ing+ Z:aiqkf1+m
i=1
Here, by b,, the coefficients in the expansion are indicated

= Zbi p', and the sequence a, has at least a factorial

i=0
decrease. From the last equation it follows that, in the
vicinity the point g =c, the Laplace-Borel transform of the

equation's (12) right side is a holomorphic function. Let’s
apply the Laplace-Borel transform to the equation (12); it
can be rewritten as

q 9,

q“(a—c)i(a)+a; H 6"

(g, Jdo,dg, +...+

q G

+ akzj....J. G(q,)dg,...dg, +

1 1

k=i ) - 1 d k+1-i—j _
+B bj B+i+j-1)(n-k-1) nk Y i n
nfk; HP n—k-1" dp (@)

+b3B, p*[..[ p"d(p.)dp..dp,, =

PP
1 1

a0 g+ Yag T
i=1

Here, as before, by a’,i =2,...,k , some constants are

denoted.

LEMMA. The asymptotics of the function {(g) with
g — c look like this

n—k-1 o 0

£ Z‘ Al(a—c) + ;Ci(q—C)iln(q—c)
Proof.

Let’s convert the last equation as follows

2

9,
0@ ==y | ol e, -
1

N

q
=l
q 9

j [ a0(a, )d,...dg, , -

2

k_c)jl...]‘ a(q, )dg,...dg, —

B, x (13)

k+1-i-j
X. bll' pﬁﬁ(iﬂ'l)(nkl)[ 1 pnfk i} L—]-(q)_

"0(p, )dp,...dp,, +

To construct the asymptotics of the function U (q) let’s

apply the method of successive approximations. Let's
imagine that near the point q = c there is the equation’s (13)

right side,
Inq+iaiq_1+$ c
aa-c)

here and after, by A(q), we denote holomorphic function
near the point q=c,; by C,, we denote the corresponding
constants.

L+ A(a), (14)

_q—c

It is obvious that all the members in (13), containing
multiple integrals, when substituting the free members into
them, give the minor asymptotic members, for example, by
substituting (14) into the first integral, we get

Ifce

—tA ql)]dqldq IC In(q—c)+ A, (a)dg
_ca-9In(a-o)+ A)

At the next step, the method of successive approximations
C_(a-c)In(a-c); by
x3

method  of

1

continuing to apply the successive

approximations, we obtain a series
n(a-c)>ala-c)’
i=l

C, . . .
Here, the sequence a, :_—'l is factorially decreasing. Let's
il

show that the other members give minor asymptotic
members. Obviously, if the multiplicity of the integrals is

17
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greater than or equal to two, we obtain the minor asymptotic
members. Let’s consider the last integral. Let’s substitute the
expression (14) into the last integral from the right side (13).
If B,>2, itis obvious that the function is a mollifier. Let

S, =1, then
jpmuB—l _dp—
1 ﬁ n-k+m, n-k+m,-1 %
=——[e p °—(n—k+m0)jp lgP dpj:

c(n-k-1)
m, +1 j
n-k-1 pi(n—k—1)+m(,+1.

. . (1+ m°k+llj...[i—l+
:ep”klz n_ —

= c(n-k-1)

Finally, we get that
1
k(n-k-1) m Q-1 _
Bn—k p I p Bn—k q —c dp
1+ m, +1 L i=1+ m, +1
< n-k-1 n-k-1)
=2 mo+l )
" oen—k-)r|i+k+—2
n-k-1

my+l

= (q — C)n—k—l X

—1

. my+l
i+k+—2
—C)+ Tk =

5 (g

T -k Mot Mt e Mot
n-k-1 n-k-1 n-k-1

It follows that, when applying the method of successive
approximations, the last integral function of (13) gives a
convergent series in powers (q —c).

It remains to consider the member

i 1 d Kk+1-i—j A
B bi S+(i+j-1)(nk-1) nk M a 15
Z /P [n — P dpJ (p) (5
Let's assume that i >1. Since the equation is fulfilled,
1 d K+1-i—j
B A (i+j-1)(n—k-1) L l:i —
B,..p"p (n_k_lp dpj (p)
k+1-i-j
. 1 d .
-B (|+j—1)(n—k71}+/i]B—1 B n-k M G —
nfkp n—k —n-k n—k—l p dp (p)

=B, p B L g T (q),

by substituting the right side (14) instead of U(q), we get
““*G(q) -
- +Al) -

C

=B » p(i+jfl)(n—k71)+/;]ew _
_ (g-c)

F(i +j-1+

Bn—k p(i+j71)(n—k71)+/71 B—l

=B p(H] -1)(n—k 1M‘B

n—k

+|+] -2

ﬁlj
n-k-1

Since ﬁl;l 1 +i+ j—1>0, the function (15) is a mollifier
n — —_
and, when applying the method of successive

approximations, we get a convergent series in powers
(q—c). Let i=1j=0,8 <n—k-1. This case must be

considered  separately. We  have the  member

k
1 d) .
B, b’ pA ———p"*— | U(p)
0P (n_k_lp dp) ()
By replacement let's move the root q=c to zero; in this

case, zero will be a simple root. We will solve the resulting
equation in the same way as it was done in [11] for equations
with simple roots. As shown in this paper, the equation will
be performed.

p
BrB™p‘U I p—p)- =y "p’*dp’
Since % >0 and k >0, the last integral will be a
n_ —

holomorphic function.

Finally, we get that the asymptotic member,

corresponding to the root q = c, looks like this

>, (@-c) 3 Ala—c) + 3¢ (a-c)infa—c)

j=0

Where A’ ,C, are corresponding constants. The lemma is
proved.

Now let’s consider the singularity at zero. We have the
equation

q“*U(q)-cq“i(q +a_[q 0(q)dg +
“*0(q, )dq,da, +

a;

q
+a,,[..[ad(a, g, .dg, , +
1 1

q

+a
-
d k—|~

+ankpﬁ’p"“[p"k%J 0(q)+

oot ] o

—a,q"Ing+Yag T
i=l

(16)

g,
1

| (g, )do,...dg, +

i(p, )dp,...dp, =

First, let's consider a special case, when the minor members
are absent, i. e., when the equation looks like this

g d;

q*0(a)-ca“d(a)+a [ a*u(g dq+ajj q”"

q
[
1

(g, )da,da, +

a,

| G(a, d,.. qu—aq“lnq+zaq

1

18
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The last equation, by differencing by g k times, is
transformed to an equation with a conic singularity, the right
side of which has a conormal asymptotics. As is known, the
solution of such equations has conormal asymptotics. It
would be natural to assume that, in the general case, i. e.,
with minor members, the solution will also look like a
conormal asymptotics. Let's prove it.

Let's consider a group of members.

8,0'u(a)+a,[ 9"(g dq+qul 0(q,)dg.dg, +.

q
vaf-
1

Let's show that this sum of integrals (17) can be represented
as a single integral. Let's consider the sum

(17)
[q,0(q, )d,...dq, , ++a, |-

Ht_,n
Ht_,g

G,
I U(q, )da,...da,

1,0(0)=2,0"G(a)+a | q"d(a)da

Let's denote G(q)=q°0,(q).

1,0 =2,'0(a)+a,[ q"d(a)dg =
=a0qk+o- +aI qk+o-l Q)dq—
—(a +—al j u
7 k4o a 1

Let's choose o so that 4
k+o

. d d(q)
d — k+o = d ,
0(a)Ma=2,[ g g

Peved K —u (a)dg

=—a,; we get

IZG = aOJ- qk“’ d_ (18)

We have shown that, in the case, when the sum (17) consists
of two members, it can be represented as a single integral
(18).

Now let's consider a group of three members.
1,0 =2,q"T(q)+

+ajq u dq+a” q, "

- [ao + kilojqk“’ﬁl(w
+j(_

Let’s introduce the notation T,(q) = diﬁl(q). Since
q

U (g, )dg,dg =

1 k+o d ~ t k—-2+0 ~
o aul(q)+a2! a,""T,(q,)da, da.

al k+o
k+0'q dq

k- 2+rr

(a)dg =

q e Jl (q ) -

0,(a)+a,[

_ al k+o 7 a2
B k+0q u2<q)+k—1+0'

a

—m_[ q“tu, <Q)dQ.

then

— o] o, )da)do,

1

Since the equation is fulfilled,

a+al (p)+——
°k+a 1p kl

=|a,+ & + a, 1 k+a""’1_
k+t+o k-l+ok+o

a, 1 ¢ ., d-
k—1+0k+ajq dqui(q)dq’

—[a*"d,(akda=

and, since we can choose o so that equality is fulfilled,

a, N a, 1
k+o k-l+ock+o

:_aO’

by denoting T,(q)=q*0,(q) we get the equation

U=

]jq 0,(q)dg -

_ al a2
k+0' k—-1l+oc k+o

- I ( j 6,4, (g, g, )dg, =

k l+o k+o-+o-

:—J.( al i az 1 + az 1 k+z7+:7 (q)dq_
k+o k-l+ok+o k-1l+ok+o+o,

_ az 1 J‘ k+o+o,
k-1+oc k+o+0,

(Q)dq

let's choose o, so that equation is fulfilled

a a, 1 a, 1

+ =0.
k+o k-l+ok+o k-l+ok+o+o

We finally get
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1,0(a)=2,0'0(a)+a, [ g uq)dQ+aH 0,”

Js (q1 )dq1dqz =

dqg,

q,
I
- aOZ[ 1 koo dc(qu Uqfql)dqldqz =

d 1

q
=a qikww_ uig, qldqz
” dg, g,” da, g, o)X

Like the previous case, we get

10 =a,q"U(q +an U(q)dg +

(0, )da,da, +. +aj----fu 0, )da,..dg, =
' (19)

=a°! !ql dql q,”

U(q, )Jdg,...da,,

+ajj%

d 1 d
dg, q,” dql q,”

Let’s substitute the obtained integral in the equation (16); it
looks like this

q“q”i a5

H'—‘-P
'-"—.é’

d,
7 [, (9, )dg,do, .o, -

q

_Cj‘___quk*ga'ﬁk(ql)dql...qu +

1 1

k=i
+bB,  p” p“"“)( pm ;—pj B, X

d, d; d,
oz a7 [G, (o, da,.. qu

(20)

k-1+———
=a,0"Ing+> aq "
i=1

Let's transform the equation (20), expressing U, (q)

(g, )da,da, =

_ 1 *Ya( d .
0(a)=-=q = [d—) (aq Inq+2aq j+

c q

+2q z(:qJI JoeJa [.(a.)doda, .do, +
nkpﬂp'"“[p”;—pjlx

XBnlk[Q“‘j---qfq? qfq I 0, (g, Jdc.. quj (1)
k

+2q—k—;m (ij Bn,k pk(n—k—l)><
C

(el

Tq f (0,)da,.. quJdpl dp,,

To find the asymptotics of the function T,(q) at g — 0, let's
apply the method of successive approximations.

LEMMA. The asymptotics of the function T,(q) at g — 0 is
conormal

Proof.

The free member in (21), at  — 0, has asymptotics

—*-Y o PP -1 n k—i

. 2( Maoqkl,nmzaq S

Let's introduce the notion « =-1+ 1k 1—k %a, we
n—-k-— i1

k-m
will assume that a+Zai +m=-1, withall 1<m<k; by

i=1
substituting the free member into the first integral of (21),
we get.

—k— ZJ
Ilqa :q [dq] qk+1qUJ.

qjq qjq *qu“dqldqz---qu =

1 7k72°“ d : 1+a+2k+zk:o-‘
= - q - d_ q " =
(a+l)(a+ak+2)...(a+§di+kj q

(1+a+2k+gaij(a+2k+go-i}..(a+go-i +k)

(a +1X0[+O’k +2)...(a+gai +k)

_ nlta
=q

From the last equation, it follows that, when applying the
method of successive approximations, the function 1, will

correspond to a convergent series in powers q. If, for some
k-m

1<m<k , the equation a+ X o,+m=-1 is satisfied, the
i=1

asymptotics, corresponding to the function 1, will look like

20
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1k— g
this g Za Inq ; in other words, the asymptotics
will be conormal.

Let’s consider the second member from (21) and substitute
the free member in it

zqa =

— kz“ d By pi(nk-1) n—k d -
_q [dqj nkp p (p dp X
q

L a3 q

dq
here
C,= ! - X
(a+1fa+0, +2) (ourz o, +k)
1
X

k k '
(“*Z ai+2k—i+1)..{a+z ai+2k+1)
i=1 i=1

Since

k
a1 a+2k—§o—,
n—k

(n—k —1)F(a +2k —ijai +l)sin ﬂ(a+ 2k —iai +1j
i=1 i

i=1
= X
T
y p[a+2k—éo—,+1)(n—k—1)’
then by introducing the notion
C,=
(n—k —1)1“(0: +2k + fo—i +1jsin 7[(0{ +2k + ﬁo—i +1)
_ C i=1 i=1
z v
we get

» *kfiaw d ‘ a+2k+ 30,41 (kL)
1,g°=Cq *~ [aj B, p( h ) .

For definiteness, we assume that

a+2k +iai +1+L1 ¢ Z ; we obtain the equation
i=1 n—K-—
/fo

La“=C,a ",

(22)

where

C,=
sin;r(a+2k+ﬁo-i+l) F(a+2k+iai+1)
— i=1 =1 X
Kk
sinz o(+2k+Zo-i+l+L a+2k+2cr +1+
= n-k-1 = —k—l

[a+2k +i0i +1+ . ’i{) 1]...[a+k+iai +1+

(@+a+o, +2)..(0¢+Zk10'i + k)

i=1

B, j
n-k-1 y

X

1
Kk
[0:+Zo-i +2k —i+1}.{a+

It follows that, when applying the method of successive
approximations to the equation (21), the function 1, also

induces a convergent series in powers q. A similar result
can be obtained for the last integral in (21).

X

Zk:ai +2k+1]

i=l

We obtain the asymptotic behavior of the function G(q)
with g —0; it is a conormal asymptotics. The lemma is

proved. As is known [5], the inverse Laplace-Borel
transform of conormal asymptotics is also conormal
asymptotics. It remains to find the inverse transform of the
asymptotic member, corresponding to the singular point

g=c.

( @-c) 73 A (Q—C)‘+ici(q—c)‘In(q—c)]z

j=0 i=0 i=0

= ewpgici pi

We will find the asymptotic member, corresponding to the
root g=c. In [6], the asymptotics of the function's inverse

ffffff

Laplace-Borel transform p“e’ ST with r—>0 was
found; in this work, it has been shown that

where ¢!, are polynomial roots p +(

1) (1-n)s, , and

and o', i=1..,n—2 are corresponding numbers.
1

From this formula, it follows that the asymptotic solution of
the equation looks like this

u(r) = Ze T “r"kZA’r"k+Z (Inr Jr°"Zw:b,Jr',

O-ilo-l

The theorem is proved.

Previously, we assumed that the main symbol of the
differential function has one root, even if it is not. Let the
main symbol have two roots, i. e.

H,(p)=p"+c,p" +c,p"* +..4¢,p"" = p"™(p-h)*
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Here, C; are corresponding numbers. In this case, instead of
the equation (7), we will have the equation

)
—r*—|u+c|-r’*—| u+c,|-r’—| u+..
dr dr dr

,d"™" ,dY o o d)"
+c,|—-r’—| u+ar -r’—|u+ar’y-r’—| u+

dr dr dr

k-2 Kk—i+1
+a,r’ red Ut..+a,r 4 +otaru+
dr dr

k=i+1+p3, my
br' —rzi u+b,r<” —rzi u=0
dr dr

Let’s make the Laplace-Borel transform

p""(p+b)d(p)+a,| p'(p)dp+
p P,

+ a1” p,“"G(p, )dp,dp, +

p

+aiflj‘...i)|‘2pk”1 (p,)dp,...dp, +..

1

+a j j G(p. )dp,..dp,., +

+b1'[....[ p, " *d(p, dp,...dp, +

(23)

b P i R
+b2j.._J' p, " "(p, Jdp,...dp,..,.. = f(p)

Let’s find the asymptotic solution of the equation (23) with
p — 0; for this, let's rewrite the equation (23) like this

p""ad

(p)+(pj—°b)n,j pd(p)dp+

p,"d(p, Jdp,dp, +

+
—
o

+ |

I

(=

El
—

k=i+1 ~

p,"(p, Jdp,...dp, +..

'—"'—uP ’_‘"_'ﬁ e P — T

a (24)
(p+%yh I 0(p, )dp,...dp,., +
p
n] J' plk i+1+4, ~ pl)dpl dp

b ( i i+1+ /3, f
+—ZI-..ka "a(p, )dp,.. dpwﬂzﬂ

(p+b) 474 (p+b)®

Since the functions have no singularities at zero,

&
(p+b)
the asymptotics of the solution to the equation (22) near the
point p=0 is obtained, using the method of successive
approximations, similar to how it was done for the equation
(9). To find the asymptotics, corresponding to the root —b,
this root should be shifted to zero; this can be done by

b
replacing u(r)=e "u,(r) and finding the asymptotics at zero
as it is done above.

Let's note that, if k > n—n,, the solution will not have
singularity; in case k =n—n, -1, the asymptotics of the
solution is conormal.
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