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Abstract — The problem of optimal reorientation of the 

spacecraft orbit is considered in quaternion formulation. 
Control (acceleration from jet thrust vector orthogonal to the 
plane of the orbit) is limited in magnitude. It is necessary to 
minimize the energy costs for the process of reorientation of the 
spacecraft orbit. The actual special case of the problem, when 
the spacecraft's orbit is circular and control is constant on 
adjacent parts of active spacecraft motion was considered. We 
have to determine the lengths of the sections of the spacecraft 
motion and the magnitude of control on each section. Original 
genetic algorithm for finding the trajectories of spacecraft 
optimal flights is built. Examples of numerical solution of the 
problem for the case when the difference between the initial 
and final orientations of the spacecraft's orbit is equal to a few 
degrees in angular measure are given. Specific features and 
regularities of the process of optimal reorientation of the 
spacecraft orbit are established. 
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I. INTRODUCTION 
In this paper we consider the problem of optimal 

reorientation of a circular spacecraft orbit regarded as a 
unchangeable figure in the course of motion control. It is 
known that the orbits of the satellite groups GLONASS and 
GPS are close to circular. The motion of a spacecraft, which 
is considered as a material point of a variable mass, is 
studied in the orbital coordinate system with an origin at the 
spacecraft center of mass. It is required to determine the 
optimal control u  (vector of jet acceleration) which 
transfers spacecraft from its initial orbit to desired one. Also 
we have to minimize the energy consumption for this 
reorientation.  

It is well known that the problem of spacecraft interorbital 
flights is greatly simplified if the start and final orbits lie in 
the same plane. It becomes possible to find the optimal 
transition trajectories analytically (accurately or 
approximately). This has led to the significant number of 
publications in this area. Note also that due to its 
complexity, the problem of performance was rarely solved 
(we can note papers [1]–[4]). Basically the energy cost or 
the characteristic velocity was minimized (refer to the papers 
of I.S. Grigoriev, K.G. Grigoriev [5]–[8], S.N. Kirpichnikov 
and coauthors [9], [10]).  
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In these papers optimal control problems were solved on 
the basis of the maximum principle. Boundary value 
problems of the maximum principle were solved numerically 
by shooting method. In the present article we propose a 
genetic algorithm to solve the problem of reorientation of 
the spacecraft orbit.  

II. STATEMENT OF THE PROBLEM 
It is required to transfer spacecraft whose motion on the 
circular orbit is described by equations [11] 
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Here λ  is the quaternion of orientation of the orbital 
system of coordinates, u is the projection of control u  on 
the axis orthogonal to the orbital plane, r is the radius of the 
spacecraft orbit, c is the modulo of the spacecraft velocity 
moment, , 1,3k k =i  are the unit vectors of a hypercomplex 

space (Hamilton imaginary units), ϕ  is the true anomaly, λ  
is the conjugate quaternion, “ ” is the symbol of quaternion 
multiplication, Λ  is the quaternion of orientation of the 
spacecraft orbit. 
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Note that the quantity of active motion parts M  is 
assumed to be given, but the final time *t is not fixed. 

Functional (3) characterizes the energy consumption for a 
spacecraft transfer from the initial to final state. We have to 
determine the value of control ku  on each part of the 
spacecraft active motion and durations k∆ of those parts. 

It is known that similar problems were considered earlier 
by S.A Ishkov and V.A Romanenko [12]; O.M. Kamel, B.E. 
Mabsout and A.S. Soliman [13], [14]; A. Miele and T. 
Wang [15]; S.Yu. Ryzhov and I.S. Grigoriev [16]. 
Unfortunately, most authors were deal with equations in 
angular elements (or Cartesian coordinates). Also they were 
often studied only transfers between coplanar or closed to 
each other orbits.   

III. NUMERICAL ALGORITHM 
To obtain numerical solution, the equations and relations of 
the boundary optimization problem were written in the 
dimensionless form. The dimensionless variables and control 
are connected with dimension analogues by the relations: 

dlr Rr= , dlt Tt= , max
dlu u u= . Here R  is a typical 

distance (radius of the initial orbit of the controlled 
spacecraft), V  is a typical velocity, C  is a typical sector 
velocity, and T  is a typical time, determined as 

/attrV fM R= , C RV=  and /T R V= , 

respectively. Here f  is the gravitational constant, attrM  is 
the mass of attracting body (Earth). Note that in the 
transition to dimensionless variables in the equations the 
typical dimensionless parameter 3 2

max /bN u R C=  
arises. 

Let us present the equations and relations of the 
optimization boundary value problem in the dimensionless 
variables (superscripts “dl” are omitted). The equations of 
the motion of the spacecraft center of mass take the form 
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The dimensionless optimal control is subject to condition 
1 1u− ≤ ≤ . 
Earlier in papers [17], [18], the posed problem was solved 

with the help of the L.S. Pontryagin maximum principle 
[19]. As a result of the maximum principle application, a 
boundary value problem with a movable right end was 
obtained. It was solved numerically using the shooting 
method [20]. Unfortunately, there are no formulas for 
finding unknown initial values of conjugate variables in this 
problem. The initial approximations for the values of 
conjugate variables do not converge well to those values that 
deliver zeros to the residual functions. Iterative methods 
constantly fall into local minima of residual functions. In this 
paper genetic algorithm for solving this problem is 
constructed. Using this algorithm, one does not need to 
search for the initial values of the conjugate variables. Such 
methods based on artificial intelligence and machine 

learning were considered, for example, in [21], [22]. Let us 
describe the main stages of the proposed genetic algorithm, 
following the book [23]. 

First of all, one needs to randomly generate a population 
of maxN  candidate solutions (individuals or phenotypes). 
Each of them is a set of M pairs of real numbers. In this 
paper, instead of real numbers k∆  and ku , we store in the 

memory pair of integer numbers ( )int int,k ku∆  (gene). The 

relationship between the desired real numbers and the gene 
is given by the formula 
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The integer numbers int
k∆ , int

ku  are from interval 

0;2 1L −  . 

At the second step of the algorithm for each individual 
one should find the quaternion of orbital coordinate system 
orientation at *t t=  by the formula [24]: 
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with initial conditions (1) (control corresponds to chosen 
gene). 

Fitness function is given by the formula 

*
3( ) vect ( ) cos sin .

2 2
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The fitness function (4) describes accuracy of fulfillment of 
conditions (2) on the right end of the spacecraft trajectory. 
We compute the value of the fitness function at the point 

*t t= . 
It is well known that natural selection is the process 

whereby organisms better adapted to their environment tend 
to survive and produce more offspring. In our case, the 
smaller value of the fitness function corresponds to the more 
adapted individual, i.e. the candidate solution used as the 
argument of the fitness function. If at this step the value of 
the fitness function for some individual is less than the given 
small number ε  then the algorithm ends, and the control 
corresponding to this individual is the solution of the 
problem. If the maximum number of iterations max

iterN  is 
exceeded, the control corresponding to the individual with 
the minimum value of the fitness function is a solution to the 
problem.  

At the third step of the algorithm we should discard half 
of the individuals with the highest (worst) values of the 
fitness function (the number of individuals should be even). 
Then the crossing of the individual with the lowest value of 
the objective function with all the others, including itself, is 
performed. The method of intermediate recombination was 
chosen as the crossover operator [23]. Children are created 
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according to the following rule: 

( )Child Parent1 Parent2 Parent1 .= + α ⋅ −  

Here α  is a floating-point pseudo-random number in the 
range of -0.25 up to 1.25. 

A separate multiplier α  is selected for each gene of the 
child. Both numbers in the resulting child genes are rounded 
to the nearest integers lying on the interval 0;2 1L −  . At 

the end of this step we will create a new population of 

maxN  individuals. 
At the last step of the algorithm we calculate the average 

value of the fitness function for the population obtained in 
the third step. If it is greater than the average value of the 
fitness function, calculated at the second step, then 
individuals in the population mutate. To do this, we write 
genes of all individuals in binary form (for both numbers in 
each gene, exactly L  bits are allocated) and we invert of a 
randomly selected bit of in these numbers with 
probability ( ]0;1mutp ∈ . Then we return to the second step 

of the algorithm. 
Note that the described algorithm should be used 

repeatedly for different initial populations. In this case, 
several solutions will be obtained, from which it is necessary 
to choose the one that corresponds to the reorientation of the 
spacecraft orbit with less energy consumption. 

IV. AN EXAMPLE OF NUMERICAL SOLUTION 
The components of the quaternion λ  and Λ  can be 
expressed through angular elements of an orbit (the 
longitude of the ascending node uΩ , the orbit inclination 

I , the pericenter angular distance 
πω ) and the true 

anomaly: 
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The quantities characterizing the forms and dimensions of 
spacecraft orbits, initial and final orientations of spacecraft 
orbit are equal to ( 0 (0)u uΩ = Ω , 0 (0)I I= , 

0 (0)π πω = ω ; * *( )u u tΩ = Ω , * *( )I I t= , 
* *( )tπ πω = ω ): 

2
max 0.101907 m/sec , 0.35;bu N= =  

initial spacecraft position ( 0 3.940323 radϕ = ): 
0 0 0
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final spacecraft position (it corresponds to the orientation of 
the orbit of GLONASS satellites): 

* * *

* *
0 1

* *
2 3

215.25 , 64.8 , 0.0 ;

0.255650, 0.162241,

0.510674, 0.804694.
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Scaling factors are equal to 
26000000 m, 2751.405874 m/sec,
9449.714506 sec.

R V
T

= =
=

 

The scaling factors correspond to spacecraft whose initial 
and final coordinates and velocity projections were taken 
from [25]. 

The parameters of the genetic algorithm are equal to 

max40, 10000, 0.9.mutL N p= = =  
In table 1 the results of the numerical solution of the 

problem for different numbers of the sections of the 
spacecraft active motion are presented. 

 
TABLE 1. RESULTS OF THE GENETIC ALGORITHM 

M J M J 
2 0.373953 7 0.496462 
3 0.374595 8 0.513247 
4 0.623807 9 0.696981 
5 0.336295 10 1.257639 
6 0.386022   

It was found that the functional J  reaches its minimal 
value when there are five parts of spacecraft active motion. 

Figures 1-4 present the results of numerical solution of the 
problem of reorientation of the spacecraft orbit.  

 
Fig. 1. Quaternion of orientation of the orbital coordinate system 
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Fig. 2. Quaternion of orientation of the spacecraft orbit 

 
Fig. 3. Difference between current and desired spacecraft orbits 
 

 
Fig. 4. Optimal control 
 

In this case the time of flight of a controlled spacecraft is 
equal to 9.007084 dimensionless units. It corresponds to 
approximately 85114.37 sec (or 23.643 hours). We can see 
that the ranges of variation of the components of the 
quaternion of orientation of the orbit are smaller than the 
ranges for the components of the quaternion of orientation of 
the orbital coordinate system. 

Note that duration of the first part of spacecraft active 
motion is smaller than other parts. But we should keep this 
part because solution with four parts of spacecraft active 
motion corresponds to bigger value of minimized functional. 

V. CONCLUSION 
In this paper we discussed the problem of spacecraft orbit 

reorientation. The proposed genetic algorithm can help us 
quickly find quasi-optimal solution of the problem. To 
obtain more optimal solution one can assume that the 
number of the parts of spacecraft active motion parts is not 
given. Next time we will try to modify the proposed 
algorithm to find this quantity. 
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