Определение параметров гидрологической модели

Е.С. Засухина, С.В. Засухин

Аннотация—В статье рассматривается залача нахождения параметров гидрофизических характеристик, многие гидрологические вхоляших BO модели формирования стока на водосборе. Задача нахождения параметров формулируется как задача оптимального управления, в которой в качестве целевой функции выступает среднеквадратическое отклонение значений профилей влажности от вычисленных некоторых предписанных значений, а в качестве управления — Численное искомые параметры. решение дискретизированной задачи находится градиентным методом, при этом значения точного градиента целевой функции вычисляются с применением метода быстрого автоматического дифференцирования.

Ключевые слова—оптимизация, оптимальное управление, градиентный метод, быстрое автоматическое дифференцирование.

I. Введение

Физико-математические модели, используемые при изучении процессов формирования стока на речном водосборе, содержат параметры, которые определяются особенностями того или иного водосбора. Некоторые параметры определяются экспериментально, но не все. Часть из них измерить напрямую зачастую бывает невозможно. Большинство таких параметров задают либо из физических соображений, либо находят с помощью эмпирически установленных зависимостей от измеряемых характеристик речного водосбора. Однако среди них есть и такие, для которых найти подобные соотношения не удается, и которые приходится подбирать по измерениям стока.

Альтернативой прямому измерению и одним из самых привлекательных подходов решению к залачи определения параметров физико-математических моделей является их определение путем сравнения значений измеряемых физических величин c полученными в результате моделирования значениями этих физических величин. Причем, желательно, чтобы указанные физические величины были достаточно легко измеряемы. Искомые параметры модели, как правило, находятся в результате оптимизации некоторой целевой функции, выражающей разницу между смоделированными И измеренными значениями Такой физических величин. подход называется обратным моделированием.

При моделировании процессов формирования стока водосборе важная роль отводится моделям на передвижения воды в почве. Присутствующие в эти моделях гидрофизические характеристики почвы коэффициент диффузии И гидравлическая проводимость, как правило, рассчитываемые ПО формулам ван Генухтена [1], содержат трулно определяемые параметры. Задание точных значений этих параметров имеет критическое значение при моделировании и прогнозировании потока воды и переноса растворенных веществ в зоне аэрации. Этому вопросу посвящено огромное число работ. В некоторых них при нахождении параметров модели из используются методы типа градиентных [2-6].Разработаны компьютерные программы лля Здесь определения гидрологических параметров. следует отметить компьютерную программу RETC [6], позволяющую, в том числе, определять эти параметры по измеренной функции водоудерживания, а также программу Rosetta [7], которая позволяет, в частности, находить гидрологические параметры с помощью функций, получаемых педотрансферных методом нейронных сетей. В ряде работ для нахождения гидрофизических параметров в процессе численной оптимизации был использован алгоритм имитации отжига, например в [8]. В работах [9, 10] искомые параметры находились с применением генетического алгоритма. В [11] применяется алгоритм глобальной оптимизации с покоординатным дроблением области целевой определения функции. Ha протяжении последних десятилетий появилось много работ, в гидрофизических которых для поиска искомых параметров применяются оптимизационные алгоритмы, имитирующие поведение биологических популяций в условиях нелостатка жизненных ресурсов И мигрирующих с целью найти место с благоприятными проживания, алгоритмы, имитирующие условиями социальное поведение [12-13]. В ряде работ при нахождении искомых гидрофизических параметров применяют стохастические методы оптимизации [14-17].

В предлагаемой статье рассматривается задача

Статья получена 20 декабря 2016 г.

Работа выполнена при поддержке Российского фонда фундаментальных исследований № 15-07-08952.

Е. С. Засухина, научный сотрудник Вычислительного центра им. А. А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук. elenzet@bk.ru.

С. В. Засухин, аспирант Московского физико-технического института (государственного университета). s.zasukhin@yandex.ru.

определения этих параметров по измеренным профилям влажности почвы, т.е. по значениям влажности почвы в точках, находящихся на различной глубине почвенной колонки. Задача нахождения этих параметров формулируется как задача оптимального управления, в которой в качестве управления выступают искомые параметры, входящие в формулы для вычисления коэффициента диффузии гидравлической И проводимости. Целевой функцией является среднеквадратическое отклонение вычисленных при выбранных значениях параметров профилей влажности от некоторых предписанных значений.

II. Постановка задачи

Рассматривается одномерная модель вертикального передвижения воды в почве. Предполагается, что почва представляет собой изотермическую недеформируемую пористую среду. В этом случае вертикальное передвижение влаги в почве хорошо описывается одномерным нелинейным уравнением с частными производными параболического типа.

Рассмотрим следующую начально-краевую задачу:

$$\begin{aligned} \frac{\partial \theta}{\partial t} &= \frac{\partial}{\partial z} \left(D(\theta) \frac{\partial \theta}{\partial z} - K(\theta) \right), & (z,t) \in Q, \\ \theta(z,0) &= \varphi(z), & z \in (0,L), \\ \theta(L,t) &= \psi(t), & t \in (0,T), \\ - \left(D(\theta) \frac{\partial \theta}{\partial z} - K(\theta) \right) \Big|_{z=0} &= R(t) - E(t), & t \in (0,T), \\ \theta_{\min} &\le \theta(0,t) \le \theta_{\max}, & t \in (0,T), \end{aligned}$$
(1)

где z – пространственная координата по оси, направленной вниз от поверхности почвы; t – время; $\theta(z,t)$ – искомая влажность в точке (z,t), так называемая «объемная» влажность почвы, выражаемая в единицах объема воды в единичном объеме почвы (безразмерная величина); $Q = (0, L) \times (0, T)$; $\phi(z)$ и $\psi(t)$ – заданные функции; $D(\theta)$ и $K(\theta)$ – коэффициент диффузии и гидравлическая проводимость – гидрофизические характеристики почвы; R(t) и E(t) – интенсивности осадков и испарения – линейные потоки влаги; $0 \le E(t) \le G, t \in (0,T), G$ — некоторая константа.

Входящие в уравнение коэффициент диффузии $D(\theta)$ и гидравлическая проводимость $K(\theta)$ вычисляются по широко применяемым формулам ван Генухтена [1]

$$K(\theta) = K_0 S^{0.5} \left[1 - \left(1 - S^{1/m} \right)^m \right]^2,$$

$$D(\theta) = K_0 \frac{1 - m}{\alpha m (\theta_s - \theta_{\min})} S^{0.5^{-1}/m} \times$$

$$\left[\left(1 - S^{1/m} \right)^{-m} + \left(1 - S^{1/m} \right)^m - 2 \right],$$
The $S = (\theta - \theta_{1,s})/(\theta_s - \theta_{1,s})$ is $K_0 - \theta_{1,s} = \theta_{1,s}$
(2)

где $S = (\theta - \theta_{\min})/(\theta_s - \theta_{\min})$, и K_0 , α , m, θ_{\min} , θ_s – некоторые параметры, причем $0 < \theta_s - \theta_{\max} << \theta_s$. Назовем описанную задачу (1) прямой задачей.

Сформулируем задачу идентификации параметров α и *m*. Предположим, что на некотором множестве

 $Q_0 \subseteq Q$ задана функция $\hat{\theta}(z,t)$. Назовем эту функцию "экспериментальными данными." Поставим задачу подобрать параметры α и *m* таким образом, чтобы соответствующее решение прямой задачи было как можно ближе к функции $\hat{\theta}(z,t)$ на множестве $Q_0 \subseteq Q$. Или, более точно, найти α^{opt} и m^{opt} и соответствующее решение $\theta^{opt}(z,t)$ прямой задачи (1)

такие, чтобы функционал
$$J = \frac{1}{2} \int_{Q_0} \left(\theta^{opt} - \hat{\theta} \right)^2 dz dt$$

достигал минимума.

Перейдем к дискретному аналогу задачи (1). Разобьем интервалы (0, L) и (0, T) на I и N равных подынтервалов с концевыми точками $z_i = hi$, $0 \le i \le I$, и $t^n = \tau n, 0 \le n \le N$, соответственно, где $\tau = T/N$ и h = L/I. Аппроксимируем прямую задачу (1) с помощью следующей конечно-разностной схемы:

$$\begin{aligned} \frac{\theta_i^{n+1} - \theta_i^n}{\tau} &= \frac{1}{h} \Biggl(D_{i+1/2}^{n+1} \frac{\theta_{i+1}^{n+1} - \theta_i^{n+1}}{h} - K_{i+1/2}^{n+1} \Biggr) - \\ &- \frac{1}{h} \Biggl(D_{i-1/2}^{n+1} \frac{\theta_i^{n+1} - \theta_{i-1}^{n+1}}{h} - K_{i-1/2}^{n+1} \Biggr), \end{aligned}$$

 $\begin{aligned} 1 < i < I, \quad 0 \le n < N, \\ \theta_i^0 = \varphi_i, \quad 1 \le i \le I, \quad \theta_I^n = \psi^n, \quad 1 \le n \le N, \end{aligned}$

где θ_i^n , $D_{i+1/2}^n$, $K_{i-1/2}^n$ есть значения функций $\theta(z,t)$, $D(\theta(z,t))$, $K(\theta(z,t))$ в точках (z_i, t^n) , $((i+1/2)h, \tau n)$, $((i-1/2)h, \tau n)$ соответственно.

Краевое условие слева имеет вид:

$$\frac{\theta_0^{n+1} - \theta_0^n}{\tau} = \frac{2}{h} \left(D_{1/2}^{n+1} \frac{\theta_1^{n+1} - \theta_0^{n+1}}{h} - K_{1/2}^{n+1} + R^{n+1} - E^{n+1} \right), \quad 0 \le n < N,$$

где R^{n+1} , E^{n+1} есть значения функций R(t) и E(t) в точках $t^{n+1} = \tau(n+1)$.

Дискретный аналог прямой задачи выглядит следующий образом:

$$\begin{split} \Phi_{0}^{n} &= -\left(\frac{1}{\tau} + \frac{2}{h^{2}} D_{1/2}^{n}\right) \theta_{0}^{n} + \frac{2}{h^{2}} D_{1/2}^{n} \theta_{1}^{n} + \frac{1}{\tau} \theta_{0}^{n-1} + \\ &\quad + \frac{2}{h} \left(-K_{1/2}^{n} + R^{n} - E^{n}\right) = 0, \\ \theta_{\min} &\leq \theta_{0}^{n} \leq \theta_{\max}, \quad 1 \leq n \leq N, \\ \Phi_{i}^{n} &= \frac{1}{h^{2}} D_{i-1/2}^{n} \theta_{i-1}^{n} - \left[\frac{1}{\tau} + \frac{1}{h^{2}} \left(D_{i+1/2}^{n} + D_{i-1/2}^{n}\right)\right] \theta_{i}^{n} + \frac{1}{h^{2}} D_{i+1/2}^{n} \theta_{i+1}^{n} + \\ &\quad + \left[\frac{\theta_{i}^{n-1}}{\tau} + \frac{1}{h} \left(K_{i-1/2}^{n} - K_{i+1/2}^{n}\right)\right] = 0, \quad 1 \leq i < I, \quad 1 \leq n \leq N, \\ \Phi_{I}^{n} &= \psi^{n} - \theta_{I}^{n} = 0, \quad 1 \leq n \leq N, \\ \theta_{i}^{0} &= \varphi_{i}, \qquad 0 \leq i \leq I. \end{split}$$

При этом фигурирующие в формулах (3) коэффициент диффузии *D* и гидравлическую проводимость *K* в промежуточных точках будем вычислять по следующим формулам:

$$D_{i+1/2}^{n} = \frac{D_{i}^{n-1} + D_{i+1}^{n-1}}{2}, \quad K_{i+1/2}^{n} = \frac{K_{i}^{n-1} + K_{i+1}^{n-1}}{3}, \quad (4)$$

$$1 \le n \le N, \quad 0 \le i < I.$$

Положим $Q_0 = \{(z,t): z = ih, t = l\tau, (i,l) \in A\}$, где $A = \{(i,n): i = kj, n = ql, j = 0, ..., [I/k], l = 0, ..., [N/q]\}, k \ge 1, q \ge 1$ — некоторые фиксированные натуральные числа. Зададим целевой функционал в виде

$$W(\theta, u) = \frac{1}{2} \sum_{(i,n) \in A} \left(\theta_j^n - \hat{\theta}_j^n \right)^2 h \tau.$$
⁽⁵⁾

Дискретная задача оптимального управления формулируется следующим образом: найти оптимальное управление $u^{opt} = \{\alpha^{opt}, m^{opt}\}$ и соответствующее оптимальное решение задачи (3) такие, что функционал W(u) (1.5) достигал бы минимального значения.

Поиск численного решения полученной задачи конечномерной оптимизации предлагается проводить методом наискорейшего спуска, при этом градиент будет вычисляться с применением метода быстрого автоматического дифференцирования (БАД) [18–21]. Изложим кратко суть этого метода. Приведем содержащийся в [20] способ получения формул БАД для вычисления производных сложной функции, основанный на теореме о неявной функции.

III. ФОРМУЛЫ БАД

Предположим, что для векторов $z \in R^n$ и $u \in R^r$ дифференцируемые функции W(z,u) и $\Phi(z,u)$ определяют отображения $W: R^n \times R^r \to R^1$ и $\Phi: R^n \times R^r \to R^n$. Пусть z и u удовлетворяют системе из n скалярных алгебраических уравнений $\Phi(z,u) = 0_n$, (6)

где 0_n есть нулевой *n*-мерный вектор. Предположим также, что матрица $\Phi_z^T(z,u)$ неособенная всюду в интересующей нас области. Тогда по теореме о неявной функции система связей (6) определяет непрерывнодифференцируемую функцию z = z(u). Согласно методу БАД градиент функции W(z(u),u) вычисляется по формуле

$$dW(z(u),u)/du = W_u(z(u),u) + \Phi_u^T(z(u),u)p.$$
 (7)

Входящий в эту формулу вектор $p \in \mathbb{R}^n$ является множителем Лагранжа и определяется в результате решения системы линейных уравнений

$$W_{z}(z(u),u) + \Phi_{z}^{T}(z(u),u)p = 0_{n}.$$
(8)

Линейная система (8) является сопряженной к исходной системе связей (6).

IV. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Полученные формулы были применены при нахождении численного решения описанной выше дискретной задачи оптимального управления градиентным методом. Использовалась сетка с параметрами: *I* = 100, *N* = 96.

Расчеты производились со следующими значениями входных параметров:

$$L = 100 \text{ (cm)}, \quad T = 1 \text{ (cym)}, \quad K_0 = 100 \text{ (cm/cym)}, \\ \theta_{\min} = 0.05 \text{ (cm}^3/\text{cm}^3), \quad \theta_{\max} = 0.5 \text{ (cm}^3/\text{cm}^3), \\ \varphi(z) = 0.3, \quad z \in (0, L), \quad \psi(t) = 0.3, \quad t \in (0, T). \end{cases}$$

Расчеты проводились следующим образом. Сначала решалась прямая задача (3) со значениями параметров $\alpha^{true} = 0.01$ и $m^{true} = 0.2$. Из вида уравнений (3) и с учетом формул для вычисления коэффициентов в промежуточных точках (4) следует, что система уравнений (3) расщепляется на N подсистем, каждая из которых соответствует определенному временному слою, и может решаться отдельно от других. Каждая система решается методом прогонки, так как ее основная матрица является трехдиагональной. Полученное решение $\theta(z,t)$ задачи (3) принималось в качестве предписанной функции $\hat{\theta}(z,t)$.

Далее было проведено несколько серий численных экспериментов. Каждая серия численных экспериментов состояла из решения описанной дискретной задачи оптимального управления с целевой функцией, вычисляемой по формуле (5), при этом множество А имело вид: $A = \{(i, n) : i = kj, j = 0, \dots, \lfloor I/k \rfloor, n = 1, \dots, d\},\$ где d = 1, 2, 3, ..., 26, а k оставалось постоянным. Было проведено четыре серии таких численных экспериментов с k = 1, 2, 5, 10. В качестве начального приближения были приняты следующие значения параметров: $\alpha^{init} = 0.03$ и $m^{init} = 0.11$. Поиск численного решения каждой задачи производился методом наискорейшего спуска с применением точного градиента, вычисляемого по формулам БАД (7)-(8). Величина шага вдоль выбранного направления определялась в результате выполнения процедуры одномерной минимизации вдоль этого направления функции, интерполирующей целевую функцию с помощью сплайнов по 40 точкам. Процесс численной оптимизации прекращался, когда чебышевская норма градиента становилась меньше 10^{-7} .

Результаты численных расчетов представлены в четырех таблицах. Каждая таблица содержит численные результаты отдельной серии экспериментов: таблица I содержит результаты расчетов серии экспериментов, в которой k = 1; таблица II содержит результаты серии экспериментов с k = 2; таблица III содержит численные результаты серии с k = 5; таблица IV содержит результаты численных расчетов серии экспериментов с k = 10.

Организованные таким образом численные эксперименты допускают следующую интерпретацию. Предположим, мы составляем план измерений профилей влажности почвы, результаты этих измерений впоследствии будут использоваться для нахождения гидрофизических параметров рассматриваемого вида почвы с применением описанного выше подхода. Предположим также, что имеющиеся у нас технические возможности позволяют проводить указанные измерения влажности почвы через каждые 15 минут и с шагом в 1, 2, 5 и 10 см по глубине. Выделим четыре группы измерений, в каждой из которых измерения влажности почвы проводятся с постоянным шагом по глубине в 1, 2, 5 и 10 см и через каждые 15 минут. В каждой группе произведем по 26 измерений профилей влажности, следующих одно за другим через каждые 15 минут, и рассмотрим 26 наборов данных, состоящих из 1, 2, ..., 26 последовательно измеренных профилей влажности. И теперь рассмотрим каждый из этих наборов данных в качестве предписанных значений, среднеквадратическое отклонение которых от полученных в результате решения соответствующей прямой задачи при искомых параметрах должно быть минимальным. Зададимся вопросом, какое количество профилей влажности необходимо измерить для того, чтобы в результате решения соответствующей задачи оптимального управления найти искомые параметры с заданной точностью? В предположении о том, что ошибки измерения пренебрежимо малы, можно сказать, что анализ проведенных численных экспериментов позволяет ответить на этот вопрос.

Таблица I содержит результаты решения дискретной задачи оптимального управления с целевой функцией (5), в которой множество A имеет вид: $A = \{(i, n): i = kj, j = 0, ..., [I/k], n = 1, ..., d\}$, где k = 1, d = 1, 2, 3, ..., 26, т. е. вычисленные и предписанные значения влажности почвы сравниваются в точках, следующих друг за другом через 1 см.

	Таблица I				
n	opt $_{10}2$	opt 10	Число	Значение	
п	$\alpha^{*r} \cdot 10$	$m^{*} \cdot 10$	итераций	функции	
1	1.16155	1.95558	47813	$2.2 \cdot 10^{-10}$	
2	1.01417	1.99477	18320	$2.7 \cdot 10^{-11}$	
3	1.00772	1.99689	12151	$1.6 \cdot 10^{-11}$	
4	1.00593	1.99750	10056	$1.3 \cdot 10^{-11}$	
5	1.00517	1.99776	9093	$1.2 \cdot 10^{-11}$	
6	1.00476	1.99790	8564	$1.1 \cdot 10^{-11}$	
7	1.00451	1.99799	8237	$1.1 \cdot 10^{-11}$	
8	1.00434	1.99805	8017	$1.0 \cdot 10^{-11}$	
9	1.00421	1.99809	7860	$1.0 \cdot 10^{-11}$	
1 0 1	1.00412	1.99812	7742	$9.9 \cdot 10^{-12}$	
1	1.00405	1.99815	7651	$9.8 \cdot 10^{-12}$	
1 2 1	1.00399	1.99817	7578	$9.7 \cdot 10^{-12}$	
1 3 1	1.00394	1.99819	7519	$9.6 \cdot 10^{-12}$	
1 4	1.00390	1.99820	7470	$9.5 \cdot 10^{-12}$	
1 5	1.00387	1.99821	7428	$9.5 \cdot 10^{-12}$	

1				
1 6	1.00384	1.99822	7393	$9.4 \cdot 10^{-12}$
1 7	1.00381	1.99823	7362	$9.4 \cdot 10^{-12}$
1 8	1.00379	1.99824	7336	$9.3 \cdot 10^{-12}$
1	1 00377	1 99824	7312	$9.3 \cdot 10^{-12}$
2	1.00275	1.00925	7312	$0.3 \ 10^{-12}$
2	1.00373	1.99823	7291	9.5.10
12	1.00406	1.99811	/185	1.1·10 _11
2 2	1.00430	1.99799	7198	1.2.10
3 2	1.00424	1.99802	7349	$1.2 \cdot 10^{-11}$
4	1.00417	1.99805	7491	$1.2 \cdot 10^{-11}$
5	1.00411	1.99808	7655	$1.1 \cdot 10^{-11}$
6	1.00412	1.99807	7865	$1.1 \cdot 10^{-11}$

Как видно из таблицы I с увеличением n увеличивается точность нахождения искомых параметров: точность в определении α изменяется от 16% до 0.4% при изменении n от 1 до 26, а точность в определении m — от 2.3% до 0.1%. При этом уменьшается количество итераций, за которое процесс численной оптимизации приводит к решению. Отклонение α^{opt} и m^{opt} от истинных значений α^{true}

и m^{true} резко уменьшается при переходе от n = 1 к n = 2. Далее с увеличением n от 2 до 10 происходит дальнейшее уменьшение отклонений вычисленных значений параметров α и m от их истинных значений. С последующим увеличением n от 10 до 26 эти отклонения уменьшаются очень незначительно. Таким образом, в свете описанной интерпретации при составлении плана измерений профилей влажности через каждые 15 минут с шагом по глубине в 1 см для получения экспериментальных данных, которые будут использованы в рамках предлагаемого подхода для нахождения α с точностью 0.4% и m с точностью 0.1%, можно было ограничиться измерением 8–10 таких профилей.

Таблица II содержит результаты численных расчетов дискретной задачи оптимального управления с целевой функцией (5), в которой множество A имеет вид: $A = \{(i,n): i = kj, j = 0, ..., [I/k], n = 1, ..., d\}$, где k = 2, d = 1, 2, 3, ..., 26, т. е. сравнение полученных в результате решения прямой задачи (3) значений влажности почвы с предписанными значениями происходит в точках, следующих друг за другом через каждые 2 см.

Таблица II

10	opt2	opt	Число	Значение
п	$\alpha^{\circ p} \cdot 10^{-1}$	$m^{opt} \cdot 10$	итераций	функции

1	1.27157	1.93120	58793	$3.3 \cdot 10^{-10}$
2	1.02775	1.98988	29503	$5.2 \cdot 10^{-11}$
3	1.01516	1.99393	19986	$3.2 \cdot 10^{-11}$
4	1.01167	1.99510	16621	$2.5 \cdot 10^{-11}$
5	1.01017	1.99561	15053	$2.3 \cdot 10^{-11}$
6	1.00936	1.99589	14189	$2.2 \cdot 10^{-11}$
7	1.00887	1.99606	13654	$2.1 \cdot 10^{-11}$
8	1.00853	1.99617	13295	$2.0 \cdot 10^{-11}$
9	1.00829	1.99626	13039	$2.0 \cdot 10^{-11}$
1 0 1	1.00811	1.99632	12847	$1.9 \cdot 10^{-11}$
1	1.00797	1.99637	12699	$1.9 \cdot 10^{-11}$
2	1.00785	1.99641	12582	$1.9 \cdot 10^{-11}$
3	1.00776	1.99644	12486	$1.9 \cdot 10^{-11}$
4	1.00768	1.99647	12406	$1.9 \cdot 10^{-11}$
1 5	1.00761	1.99649	12340	$1.9 \cdot 10^{-11}$
1 6 1	1.00755	1.99651	12283	$1.8 \cdot 10^{-11}$
1 7 1	1.00751	1.99653	12233	$1.8 \cdot 10^{-11}$
1 8 1	1.00746	1.99654	12191	$1.8 \cdot 10^{-11}$
1 9 2	1.00742	1.99655	12153	$1.8 \cdot 10^{-11}$
	1.00739	1.99657	12120	$1.8 \cdot 10^{-11}$
2 1 2	1.00736	1.99658	12090	$1.8 \cdot 10^{-11}$
2	1.00733	1.99659	12063	$1.8 \cdot 10^{-11}$
2 3 2	1.00730	1.99660	12039	$1.8 \cdot 10^{-11}$
4 2	1.00728	1.99660	12017	$1.8 \cdot 10^{-11}$
2 5 2	1.00726	1.99661	11997	$1.8 \cdot 10^{-11}$
2 6	1.00724	1.99662	11978	$1.8 \cdot 10^{-11}$

Результаты, содержащиеся в таблице II, аналогичны результатам из таблицы I. С увеличением n уменьшается разница между найденными значениями параметров и их истинными значениями, а именно: разница между найденными значениями α и его истинным значением изменяется от 27% до 0.7% при изменении n от 1 до 26, а в отношении m эта разница изменяется от 3.5% до 0.2%. С увеличением n количество итераций, за которое процесс численной оптимизации приводит к решению, уменьшается. Отклонение α^{opt} и m^{opt} от истинных значений α^{true}

и m^{true} резко уменьшается при переходе от n = 1 к n = 2. Далее с увеличением n от 2 до 15 происходит дальнейшее уменьшение отклонений вычисленных значений параметров α и m от их истинных значений. С последующим увеличением n от 16 до 26 эта разница снижается гораздо медленнее,. Таким образом, при составлении плана измерений профилей влажности через каждые 15 минут с шагом по глубине в 2 см для получения экспериментальных данных, которые будут использованы в рамках предлагаемого подхода для нахождения α с точностью 0.8% и m с точностью 0.2%, можно было ограничиться измерением 10–15 таких профилей.

В таблице III приводятся результаты серии численных экспериментов, когда решалась дискретная задача оптимального управления с целевой функцией (5), в которой множество A имеет вид: $A = \{(i, n): i = kj, j = 0, ..., [I/k], n = 1, ..., d\}$, где k = 5, d = 1, 2, 3, ..., 26, т. е. сравнение полученных в результате решения прямой задачи (3) значений влажности почвы с предписанными значениями происходит в точках, следующих друг за другом через каждые 5 см.

Таблица III

n	$\alpha^{opt} \cdot 10^2$	$m^{opt} \cdot 10$	Число итераций	Значение функции
			терации	<u>функции</u> _10
1	1.50588	1.88993	72516	$5.3 \cdot 10^{-10}$
2	1.06549	1.97679	51740	$1.2 \cdot 10^{-10}$
3	1.03599	1.98581	36323	$7.3 \cdot 10^{-11}$
4	1.02775	1.98849	30424	$6.0 \cdot 10^{-11}$
5	1.02420	1.98966	27610	$5.4 \cdot 10^{-11}$
6	1.02230	1.99029	26046	$5.1 \cdot 10^{-11}$
7	1.02113	1.99069	25078	$4.9 \cdot 10^{-11}$
8	1.02034	1.99095	24429	$4.7 \cdot 10^{-11}$
9	1.01977	1.99114	23968	$4.6 \cdot 10^{-11}$
1 0	1.01934	1.99129	23625	$4.6 \cdot 10^{-11}$
1 1 1	1.01900	1.99140	23361	$4.5 \cdot 10^{-11}$
1 2 1	1.01873	1.99149	23152	$4.5 \cdot 10^{-11}$
1 3 1	1.01851	1.99157	22982	$4.4 \cdot 10^{-11}$
4	1.01832	1.99163	22842	$4.4 \cdot 10^{-11}$
5	1.01816	1.99168	22725	$4.4 \cdot 10^{-11}$
1 6	1.01803	1.99173	22625	$4.3 \cdot 10^{-11}$
1 7	1.01791	1.99177	22539	$4.3 \cdot 10^{-11}$
1 8	1.01781	1.99180	22464	$4.3 \cdot 10^{-11}$

1 9	1.01771	1.99184	22399	$4.3 \cdot 10^{-11}$
2 0 2	1.01763	1.99186	22341	$4.3 \cdot 10^{-11}$
2 1 2	1.01756	1.99189	22289	$4.2 \cdot 10^{-11}$
2	1.01749	1.99191	22243	$4.2 \cdot 10^{-11}$
2 3 2	1.01744	1.99193	22201	$4.2 \cdot 10^{-11}$
4	1.01738	1.99195	22163	$4.2 \cdot 10^{-11}$
2 5	1.01733	1.99197	22129	$4.2 \cdot 10^{-11}$
2 6	1.01729	1.99198	22097	$4.2 \cdot 10^{-11}$

Как видно из таблицы III, результаты численных расчетов, приведенные в ней, подчиняются тем же закономерностям, что и результаты, содержащиеся в таблицах I и II. С увеличением *n* увеличивается точность нахождения искомых параметров: точность в определении а изменяется от 50,6% до 1.7% при изменении *n* от 1 до 26, а точность в определении *m* от 5.5% до 0.4%. При этом уменьшается количество итераций, за которое процесс численной оптимизации приводит к решению. Отклонение α^{opt} и m^{opt} от истинных значений α^{true} и m^{true} резко уменьшается при переходе от n = 1 к n = 2. Далее с увеличением nот 2 до 12 происходит дальнейшее уменьшение отклонений вычисленных значений параметров α и mот их истинных значений, при этом это уменьшение все более замедляется. С последующим более И увеличением *n* от 12 до 26 такие отклонения практически остаются неизменными. Таким образом, при составлении плана измерений профилей влажности через каждые 15 минут с шагом по глубине в 5 см для получения экспериментальных данных, которые в дальнейшем будут использованы рамках в предлагаемого подхода для нахождения α с точностью 2% и *т* с точностью 0.5%, можно было ограничиться измерением 10-12 таких профилей.

Таблица IV содержит результаты численных расчетов дискретной задачи оптимального управления с целевой функцией (5), в которой множество A имеет вид: $A = \{(i,n): i = kj, j = 0, ..., [I/k], n = 1, ..., d\}$, где k = 10, d = 1, 2, 3, ..., 26, т. е. сравнение полученных в результате решения прямой задачи (3) значений влажности почвы с предписанными значениями происходит в точках, следующих друг за другом через каждые 10 см.

Таблица IV

n	$\alpha^{opt} \cdot 10^2$	$m^{opt} \cdot 10$	Число итераций	Значение функции
1	1.79506	1.85193	79097	$7.8 \cdot 10^{-10}$
2	1.12074	1.95891	74318	$2.1 \cdot 10^{-10}$

.

31.066601.9743153916 $1.3 \cdot 10^{-10}$ 41.051441.9790145382 $1.1 \cdot 10^{-10}$ 51.044921.9810941202 $9.7 \cdot 10^{-11}$ 51.041421.9822138859 $9.2 \cdot 10^{-11}$ 71.039261.9829137407 $8.8 \cdot 10^{-11}$ 81.037801.9833936436 $8.6 \cdot 10^{-11}$ 91.036751.9837335749 $8.4 \cdot 10^{-11}$ 91.035961.9839935241 $8.3 \cdot 10^{-11}$ 11.035341.9841934851 $8.2 \cdot 10^{-11}$ 11.035341.9844934926 $8.0 \cdot 10^{-11}$ 11.034441.9844834296 $8.0 \cdot 10^{-11}$ 11.034101.9845934092 $8.0 \cdot 10^{-11}$ 51.033811.9846933922 $7.9 \cdot 10^{-11}$ 61.033341.9846933524 $7.8 \cdot 10^{-11}$ 71.032991.9849033546 $7.8 \cdot 10^{-11}$ 91.032701.9850533296 $7.8 \cdot 10^{-11}$ 91.032701.9850533230 $7.7 \cdot 10^{-11}$ 91.032771.9851333171 $7.7 \cdot 10^{-11}$ 91.032371.9851633118 $7.7 \cdot 10^{-11}$ 91.032281.9851933069 $7.7 \cdot 10^{-11}$ 91.032201.9852233025 $7.7 \cdot 10^{-11}$					
41.051441.9790145382 $1.1 \cdot 10^{-10}$ 51.044921.9810941202 $9.7 \cdot 10^{-11}$ 51.041421.9822138859 $9.2 \cdot 10^{-11}$ 71.039261.98291 37407 $8.8 \cdot 10^{-11}$ 81.037801.9833936436 $8.6 \cdot 10^{-11}$ 91.036751.9837335749 $8.4 \cdot 10^{-11}$ 11.035961.9839935241 $8.3 \cdot 10^{-11}$ 11.035341.9841934851 $8.2 \cdot 10^{-11}$ 11.035341.984934544 $8.1 \cdot 10^{-11}$ 21.034841.9844834296 $8.0 \cdot 10^{-11}$ 31.034101.9845934092 $8.0 \cdot 10^{-11}$ 41.033561.9847733777 $7.9 \cdot 10^{-11}$ 51.033561.9847733777 $7.9 \cdot 10^{-11}$ 61.032991.9849033546 $7.8 \cdot 10^{-11}$ 71.032831.9850133370 $7.8 \cdot 10^{-11}$ 11.032701.9850533296 $7.8 \cdot 10^{-11}$ 21.032711.9851333171 $7.7 \cdot 10^{-11}$ 21.032371.9851633118 $7.7 \cdot 10^{-11}$ 31.032281.9851933069 $7.7 \cdot 10^{-11}$ 61.032201.9852233025 $7.7 \cdot 10^{-11}$	3	1.06660	1.97431	53916	$1.3 \cdot 10^{-10}$
5 1.04492 1.98109 41202 $9.7 \cdot 10^{-11}$ 5 1.04142 1.98221 38859 $9.2 \cdot 10^{-11}$ 7 1.03926 1.98291 37407 $8.8 \cdot 10^{-11}$ 8 1.03780 1.98339 36436 $8.6 \cdot 10^{-11}$ 9 1.03675 1.98373 35749 $8.4 \cdot 10^{-11}$ 9 1.03596 1.98399 35241 $8.3 \cdot 10^{-11}$ 1 1.03534 1.98419 34851 $8.2 \cdot 10^{-11}$ 1 1.03534 1.98419 34851 $8.2 \cdot 10^{-11}$ 2 1.03484 1.98435 34544 $8.0 \cdot 10^{-11}$ 1 1.03410 1.98459 34092 $8.0 \cdot 10^{-11}$ 4 1.03311 1.98469 33922 $7.9 \cdot 10^{-11}$ 5 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 6 1.03315 1.98490 33546 $7.8 \cdot 10^{-11}$ 7 1.0329 1.98496 33452 $7.8 \cdot 10^{-11}$ 9 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1 1.03270 1.98505 33230 $7.7 \cdot 10^{-11}$ 1 1.03237 1.98516 33118 $7.7 \cdot 10^{-11}$ 1 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	1	1.05144	1.97901	45382	$1.1 \cdot 10^{-10}$
5 1.04142 1.98221 38859 $9.2 \cdot 10^{-11}$ 7 1.03926 1.98291 37407 $8.8 \cdot 10^{-11}$ 8 1.03780 1.98339 36436 $8.6 \cdot 10^{-11}$ 9 1.03675 1.98373 35749 $8.4 \cdot 10^{-11}$ 9 1.03596 1.98399 35241 $8.3 \cdot 10^{-11}$ 1 1.03534 1.98419 34851 $8.2 \cdot 10^{-11}$ 1 1.03534 1.98419 34851 $8.2 \cdot 10^{-11}$ 1 1.03484 1.98435 34544 $8.0 \cdot 10^{-11}$ 1 1.03444 1.98448 34296 $8.0 \cdot 10^{-11}$ 1 1.033410 1.98459 34092 $8.0 \cdot 10^{-11}$ 1 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1 1.03334 1.98484 33654 $7.8 \cdot 10^{-11}$ 1 1.03299 1.98490 33546 $7.8 \cdot 10^{-11}$ 1 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1 1.03270 1.98505 33230 $7.7 \cdot 10^{-11}$ 1 1.03237 1.98516 33118 $7.7 \cdot 10^{-11}$ 1 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	5	1.04492	1.98109	41202	$9.7 \cdot 10^{-11}$
71.039261.9829137407 $8.8 \cdot 10^{-11}$ 81.037801.9833936436 $8.6 \cdot 10^{-11}$ 91.036751.9837335749 $8.4 \cdot 10^{-11}$ 91.035961.9839935241 $8.3 \cdot 10^{-11}$ 1.035341.9841934851 $8.2 \cdot 10^{-11}$ 1.034441.9843534544 $8.1 \cdot 10^{-11}$ 1.034441.9844834296 $8.0 \cdot 10^{-11}$ 1.033811.9846933922 $7.9 \cdot 10^{-11}$ 1.033341.9846933922 $7.9 \cdot 10^{-11}$ 1.033341.9848433654 $7.9 \cdot 10^{-11}$ 1.033351.9849033546 $7.8 \cdot 10^{-11}$ 1.032991.9849633452 $7.8 \cdot 10^{-11}$ 1.032701.9850533296 $7.8 \cdot 10^{-11}$ 1.032371.9851333171 $7.7 \cdot 10^{-11}$ 1.032281.9851933069 $7.7 \cdot 10^{-11}$ 1.032201.9852233025 $7.7 \cdot 10^{-11}$	5	1.04142	1.98221	38859	$9.2 \cdot 10^{-11}$
31.037801.98339 36436 $8.6 \cdot 10^{-11}$ 01.036751.98373 35749 $8.4 \cdot 10^{-11}$ 11.035961.98399 35241 $8.3 \cdot 10^{-11}$ 11.035341.98419 34851 $8.2 \cdot 10^{-11}$ 21.034841.98435 34544 $8.1 \cdot 10^{-11}$ 31.034441.98448 34296 $8.0 \cdot 10^{-11}$ 41.034101.98459 34092 $8.0 \cdot 10^{-11}$ 51.033811.98469 33922 $7.9 \cdot 10^{-11}$ 51.033561.98477 33777 $7.9 \cdot 10^{-11}$ 61.033151.98490 33546 $7.8 \cdot 10^{-11}$ 71.032991.98496 33452 $7.8 \cdot 10^{-11}$ 61.032701.98505 33296 $7.8 \cdot 10^{-11}$ 71.032711.98513 33171 $7.7 \cdot 10^{-11}$ 71.032371.98516 33118 $7.7 \cdot 10^{-11}$ 71.032281.98519 33069 $7.7 \cdot 10^{-11}$	7	1.03926	1.98291	37407	$8.8 \cdot 10^{-11}$
0 1.03675 1.98373 35749 $8.4 \cdot 10^{-11}$ 1.03596 1.98399 35241 $8.3 \cdot 10^{-11}$ 1.03534 1.98419 34851 $8.2 \cdot 10^{-11}$ 1.03534 1.98419 34851 $8.2 \cdot 10^{-11}$ 1.03484 1.98435 34544 $8.1 \cdot 10^{-11}$ 1.03444 1.98448 34296 $8.0 \cdot 10^{-11}$ 1.03410 1.98459 34092 $8.0 \cdot 10^{-11}$ 1.03381 1.98469 33922 $7.9 \cdot 10^{-11}$ 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1.03334 1.98484 33654 $7.9 \cdot 10^{-11}$ 1.03315 1.98490 33452 $7.8 \cdot 10^{-11}$ 1.03299 1.98496 33452 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1.03247 1.98513 31118 $7.7 \cdot 10^{-11}$ 1.03237 1.98516 33118 $7.7 \cdot 10^{-11}$ 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	3	1.03780	1.98339	36436	$8.6 \cdot 10^{-11}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)	1.03675	1.98373	35749	$8.4 \cdot 10^{-11}$
11.035341.9841934851 $8.2 \cdot 10^{-11}$ 1.034841.9843534544 $8.1 \cdot 10^{-11}$ 1.034841.9844834296 $8.0 \cdot 10^{-11}$ 1.034101.9845934092 $8.0 \cdot 10^{-11}$ 1.033811.9846933922 $7.9 \cdot 10^{-11}$ 1.033561.9847733777 $7.9 \cdot 10^{-11}$ 1.033341.9848433654 $7.9 \cdot 10^{-11}$ 1.033351.9849033546 $7.8 \cdot 10^{-11}$ 1.032991.9849633452 $7.8 \cdot 10^{-11}$ 1.032701.9850533296 $7.8 \cdot 10^{-11}$ 1.032701.9850533296 $7.8 \cdot 10^{-11}$ 1.032371.9851333171 $7.7 \cdot 10^{-11}$ 1.032281.9851933069 $7.7 \cdot 10^{-11}$ 1.032201.9852233025 $7.7 \cdot 10^{-11}$	l)	1.03596	1.98399	35241	$8.3 \cdot 10^{-11}$
2 1.03484 1.98435 34544 $8.1 \cdot 10^{-11}$ 3 1.03444 1.98448 34296 $8.0 \cdot 10^{-11}$ 4 1.03410 1.98459 34092 $8.0 \cdot 10^{-11}$ 5 1.03381 1.98469 33922 $7.9 \cdot 10^{-11}$ 5 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 6 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 7 1.03334 1.98484 33654 $7.9 \cdot 10^{-11}$ 8 1.03315 1.98490 33546 $7.8 \cdot 10^{-11}$ 9 1.03299 1.98496 33452 $7.8 \cdot 10^{-11}$ 1 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1 1.03270 1.98509 33230 $7.7 \cdot 10^{-11}$ 1 1.03247 1.98513 33171 $7.7 \cdot 10^{-11}$ 1 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$		1.03534	1.98419	34851	$8.2 \cdot 10^{-11}$
3 1.03444 1.98448 34296 $8.0 \cdot 10^{-11}$ 1.03410 1.98459 34092 $8.0 \cdot 10^{-11}$ 1.03381 1.98469 33922 $7.9 \cdot 10^{-11}$ 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1.03334 1.98484 33654 $7.9 \cdot 10^{-11}$ 1.03315 1.98490 33546 $7.8 \cdot 10^{-11}$ 1.03299 1.98496 33452 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33230 $7.7 \cdot 10^{-11}$ 1.03247 1.98513 33171 $7.7 \cdot 10^{-11}$ 1.03228 1.98516 33118 $7.7 \cdot 10^{-11}$ 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	2	1.03484	1.98435	34544	$8.1 \cdot 10^{-11}$
41.034101.98459 34092 $8.0 \cdot 10^{-11}$ 51.033811.98469 33922 $7.9 \cdot 10^{-11}$ 51.033561.98477 33777 $7.9 \cdot 10^{-11}$ 61.033561.98477 33777 $7.9 \cdot 10^{-11}$ 71.033341.98484 33654 $7.9 \cdot 10^{-11}$ 81.033151.98490 33546 $7.8 \cdot 10^{-11}$ 91.032991.98496 33452 $7.8 \cdot 10^{-11}$ 91.032831.98501 33370 $7.8 \cdot 10^{-11}$ 91.032701.98505 33296 $7.8 \cdot 10^{-11}$ 91.032701.98505 33230 $7.7 \cdot 10^{-11}$ 91.032471.98513 33171 $7.7 \cdot 10^{-11}$ 91.032281.98516 33118 $7.7 \cdot 10^{-11}$ 91.032201.98522 33025 $7.7 \cdot 10^{-11}$	3	1.03444	1.98448	34296	$8.0 \cdot 10^{-11}$
5 1.03381 1.98469 33922 $7.9 \cdot 10^{-11}$ 5 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1.03334 1.98484 33654 $7.9 \cdot 10^{-11}$ 1.03315 1.98490 33546 $7.8 \cdot 10^{-11}$ 1.03299 1.98496 33452 $7.8 \cdot 10^{-11}$ 1.03299 1.98496 33370 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1.03258 1.98509 33230 $7.7 \cdot 10^{-11}$ 1.03247 1.98513 33171 $7.7 \cdot 10^{-11}$ 1.03237 1.98516 33118 $7.7 \cdot 10^{-11}$ 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	1	1.03410	1.98459	34092	$8.0 \cdot 10^{-11}$
5 1.03356 1.98477 33777 $7.9 \cdot 10^{-11}$ 1.03334 1.98484 33654 $7.9 \cdot 10^{-11}$ 1.03334 1.98490 33546 $7.8 \cdot 10^{-11}$ 1.03315 1.98490 33546 $7.8 \cdot 10^{-11}$ 1.03299 1.98496 33452 $7.8 \cdot 10^{-11}$ 1.03283 1.98501 33370 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1.03258 1.98509 33230 $7.7 \cdot 10^{-11}$ 1.03247 1.98513 33171 $7.7 \cdot 10^{-11}$ 1.03237 1.98516 33118 $7.7 \cdot 10^{-11}$ 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	5	1.03381	1.98469	33922	$7.9 \cdot 10^{-11}$
7 1.03334 1.98484 33654 $7.9 \cdot 10^{-11}$ 1.03315 1.98490 33546 $7.8 \cdot 10^{-11}$ 1.03299 1.98496 33452 $7.8 \cdot 10^{-11}$ 1.03283 1.98501 33370 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1.03258 1.98509 33230 $7.7 \cdot 10^{-11}$ 1.03247 1.98513 33171 $7.7 \cdot 10^{-11}$ 1.03237 1.98516 33118 $7.7 \cdot 10^{-11}$ 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	5	1.03356	1.98477	33777	$7.9 \cdot 10^{-11}$
3 1.03315 1.98490 33546 $7.8 \cdot 10^{-11}$ 1.03299 1.98496 33452 $7.8 \cdot 10^{-11}$ 1.03283 1.98501 33370 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1.03270 1.98505 33296 $7.8 \cdot 10^{-11}$ 1.03270 1.98509 33230 $7.7 \cdot 10^{-11}$ 1.03258 1.98509 33230 $7.7 \cdot 10^{-11}$ 1.03247 1.98513 33171 $7.7 \cdot 10^{-11}$ 1.03237 1.98516 33118 $7.7 \cdot 10^{-11}$ 1.03228 1.98519 33069 $7.7 \cdot 10^{-11}$ 1.03220 1.98522 33025 $7.7 \cdot 10^{-11}$	7	1.03334	1.98484	33654	$7.9 \cdot 10^{-11}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1.03315	1.98490	33546	$7.8 \cdot 10^{-11}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$))	1.03299	1.98496	33452	$7.8 \cdot 10^{-11}$
11.032701.9850533296 $7.8 \cdot 10^{-11}$ 11.032581.9850933230 $7.7 \cdot 10^{-11}$ 11.032471.9851333171 $7.7 \cdot 10^{-11}$ 11.032371.9851633118 $7.7 \cdot 10^{-11}$ 11.032281.9851933069 $7.7 \cdot 10^{-11}$ 11.032201.9852233025 $7.7 \cdot 10^{-11}$)	1.03283	1.98501	33370	$7.8 \cdot 10^{-11}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 	1.03270	1.98505	33296	$7.8 \cdot 10^{-11}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1.03258	1.98509	33230	$7.7 \cdot 10^{-11}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1.03247	1.98513	33171	$7.7 \cdot 10^{-11}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.03237	1.98516	33118	$7.7 \cdot 10^{-11}$
5 1.03220 1.98522 33025 7.7 $\cdot 10^{-11}$	5	1.03228	1.98519	33069	$7.7 \cdot 10^{-11}$
	5	1.03220	1.98522	33025	$7.7 \cdot 10^{-11}$

расчетов, приведенных в таблице IV, приводит к выводам, аналогичным полученным в результате анализа таблиц I-III. С увеличением *n* увеличивается точность нахождения искомых параметров: точность В определении α изменяется от 79,5% до 3% при изменении *n* от 1 до 26, а точность в определении *m* от 15% до 0.8%. При этом уменьшается количество итераций, за которое процесс численной оптимизации приводит к решению. Отклонение α^{opt} и m^{opt} от истинных значений α^{true} и m^{true} резко уменьшается при переходе от n = 1 к n = 2. Далее с увеличением nот 2 до 15 происходит дальнейшее уменьшение отклонений вычисленных значений параметров α и mот их истинных значений, при этом это уменьшение все более И более замедляется. С последующим увеличением *n* от 16 до 26 такие отклонения практически остаются неизменными. Таким образом, при составлении плана измерений профилей влажности через каждые 15 минут с шагом по глубине в 10 см для получения экспериментальных данных, которые в рамках дальнейшем будут использованы в предлагаемого подхода для нахождения α с точностью 3% и *m* с точностью 0.8%, можно было бы ограничиться измерением 12-15 таких профилей.

Таким образом, мы можем ограничиться измерением 10-15 профилей влажности почвы и в зависимости от шага по глубине при проведении измерений рассчитывать на различную точность нахождения параметров α и *m* в результате применения описанного подхода. Так, при шаге в 1 см эта точность составляет 0.4% для α и 0.1% для *m*, при шаге в 2 см — 0.8% для α и 0.2% для *m*, при шаге в 5 см — 2% для α и 0.5% для *m*, при шаге в 10 см — 3% для α и 0.8% для *m*.

Описанные численные эксперименты могут быть проведены для различных значений длины временного промежутка, отделяющего одно измерение профиля влажности почвы от следующего за ним, чтобы выбрать наиболее подходящие значение такого временного промежутка. Понятно, что с получением все более детальной информации о планируемых измерениях влажности почвы возрастают возможности составления наиболее подходящего плана таких измерений, в результате осуществления которого мы получим данные, по которым в рамках предлагаемого подхода определим искомые параметры с достаточной точностью, и, кроме того, проведение этих измерений не будет трудно реализуемым и затратным. И здесь весьма актуальным становится применение параллельных вычислений, многократно увеличивающих возможности получения интересующей нас детальной информации [22–23].

V. ЗАКЛЮЧЕНИЕ

Анализ полученных результатов приводит к следующим выводам. Описанный подход позволяет находить значения параметров α и *m* по профилям влажности с хорошей точностью. Кроме того, описанные численные эксперименты дают возможность построить наиболее подходящий план измерений профилей влажности почвы, в результате выполнения которого будут получены данные, позволяющие в рамках предлагаемого подхода найти значения параметров α и *m* с оцененной Если предварительно точностью известно приблизительное значение параметров α и m, то выбирая в соответствии с имеющимися в нашем распоряжении техническими возможностями значения длины временного промежутка, отделяющего одно измерение профиля влажности почвы от следующего за ним, а также шаги по глубине при проведении измерений профиля влажности почвы, мы можем, проведя описанные численные эксперименты, приблизительно оценить, с какой точностью будут найдены значения параметров α и m, а также необходимых измерений количество профилей влажностей почвы, т. е. составить план измерений, результаты которых впоследствии будут использованы для нахождения значений параметров α и m с применением описанного подхода. Этот алгоритм уточнения значений параметров α и m может быть применен и тогда, когда нет никаких предварительных данных о значениях параметров α и *m*. В этом случае, как представляется, целесообразно провести измерения профилей влажности почвы с минимальным шагом по глубине, минимальным среди тех, что допускаются имеющимися распоряжении техническими в возможностями. Далее, используя полученные данные, мы с применением описанного подхода можем найти значения параметров α и *m*. После этого найденные значения параметров α и m могут быть уточнены в результате выполнения описанного выше алгоритма.

Следует отметить недостаток описанного подхода: применяемый в процессе численной оптимизации метод градиентного спуска относится к числу локальных методов. В связи с этим возникает вопрос о возможности применения в данной ситуации метода глобальной оптимизации, например, известного метода неравномерных покрытий [24].

Библиография

- [1] M. Th. van Genuchten, "A closed form equation for predicting the hydraulic conductivity of unsaturated soils," *Soil. Sci. Soc. Am. J.* vol. 44, pp. 892–898, Sept. 1980.
- [2] S. O. Eching and J.W. Hopman, "Optimization of hydraulic functions from transient outflow and soil water pressure head data," *Soil. Sci. Soc. Am. J.* vol. 57, pp. 1167–1175, Sept. 1993.
- [3] J. B. Kool and J. C. Parker, "Analysis of the inverse problem for transient unsaturated flow," *Water Resour. Res.* vol. 24(6), pp. 817– 830, Jun. 1999.
- [4] N. Romano and A. Santini, "Determining soil hydraulic functions from evaporation experiments by a parameter estimation approach: experimental verifications and numerical studies," *Water Resour. Res.* vol. 35(11), pp. 3342–3359, Nov. 1999.
- [5] J. Simunek and M. Th. van Genuchten, "Estimating unsaturated soil parameters from multiple tension disc infiltrometer data," *Soil Sci.* vol. 162 (6), pp. 383–398, Jun. 1997.
- [6] M. Th. van Genuchten, F. J. Leij and S. R. Yates, "The RETC code for quantifying the hydraulic functions of unsaturated soils," U.S. Salinity Lab., USDA, ARS, Riverside, California. EPA Report 600/2-91/065, 1991.
- [7] M. G.Scaap., F.J. Leij and M. Th. van Genuchten, "Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions," *J. Hydrol.* vol. 251, pp. 163– 176, Oct. 2001.
- [8] L. H.. Pan and L. S. Wu, "A hybrid global optimization method for inverse estimation of hydraulic parameters: annealing-simplex method," *Water Resour. Res.* vol. 34, pp. 2261–2269, Nov. 1998.
- [9] Y. Takeshita, "Parameter estimation of unsaturated soil hydraulic properties from transient outfl ow experiments using genetic algorithms," in *Proc. Int. Worksh., Riverside, CA. 22–24 Oct. 1997,* U.S. Salinity Lab., Riverside, CA, New York, 1999, pp. 761–768.
- [10] J. A. Vrugt, A. H. Weerts, and W. Bouten, "Information content of data for identifying soil hydraulic parameters from outfl ow experiments," *Soil. Sci. Soc. Am. J.* vol. 65, pp. 19–27, Jan. 2001.
- [11] S. Lambot, M. Javaux, F. Hupet, and M. Vanclooster, "A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties," *Water Resour. Res.* vol. 38(11), pp. 1224– ?, Nov. 2002.
- [12] K. C. Abbaspour, R. Schulin, and M.Th. van Genuchten, "Estimating unsaturated soil hydraulic parameters using ant colony optimization," *Adv. Water Resour.* vol. 24, pp. 827–841, Aug. 2001.

- [13] X. Yang and X. You, "Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms," *Appl. Math. Inf. Sci.* vol. 7(5), pp. 1977–1983, Sept. 2013.
- [14] J. A. Vrugt and W. Bouten, "Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models," *Soil. Sci. Soc. Am. J.* vol. 66(6), pp. 1740–1752, Nov. 2002.
- [15] J. A. Vrugt, H. V. Gupta, W. Bouten, L. A. Bastidas, and S. Sorooshian, "Effective and efficient algorithm for multi-objective optimization of hydrologic models," *Water Resour. Res.* vol. 39(8), pp. 1214–1232, Aug. 2003.
- [16] J. Mertens, H. Madsen, M. Kristensen, D. Jacques, and J. Feyen, "Sensitivity of soil parameters in unsaturated zone modeling and the relation between effective, laboratory and in situ estimates," *Hydrol. Processes.* vol. 19(8), pp. 1611–1633, May. 2005.
- [17] J. Mertens, R. Stenger, and G. F. Barkle, "Multiobjective inverse modeling for soil parameter estimation and model verification," *Vadose Zone J.* vol. 5(3), pp. 917–933, Aug. 2006.
- [18] К. Р. 2. Айда-Заде, Ю. Г. Евтушенко, "Быстрое автоматическое дифференцирование на ЭВМ," *Математическое моделирование*. Т. 1, № 1, С. 121–139, 1989.
- [19] Automatic Differentiation of Algorithms. Theory, Implementation and Application, A. Griewank and G. F. Corliss, Ed. Philadelphia: SIAM, 1991.
- [20] Yu. Evtushenko, "Automatic differentiation viewed from optimal control theory," in *Automatic Differentiation of Algorithms. Theory, Implementation and Application*, A. Griewank and G. F. Corliss, Ed. Philadelphia: SIAM, 1991, pp. 25–30.
- [21] Yu. Evtushenko, "Computation of exact gradients in distributed dynamic systems," *Optimization methods and software*. vol. 9, pp. 45–75, Sept. 1998.
- [22] С. А. Лупин, М. А. Посыпкин, Технологии параллельного программирования. М: Форум Инфра-М, 2008. 208 с.
- [23] Y. Evtushenko, M. Posypkin and I. Sigal, "A framework for parallel large-scale global optimization," *Computer Science – Research and Development*. vol. 23, № 3, pp. 211–215, Jun. 2009.
- [24] Y. Evtushenko and M. Posypkin, "A deterministic approach to global box-constrained optimization," *Optimization Letters*. vol. 7, № 4, pp. 819–829, Apr. 2013.

Determining parameters of hydrological model

E. S. Zasukhina, S. V. Zasukhin

Abstract—The study considers a problem of determining parameters of hydro-physical characteristics included in many hydrological models of runoff formation in the catchment area. The problem of parameters determination is formulated as an optimal control problem. The object function is standard deviation of modeled soil moisture profiles from some prescribed values, and the control is defined parameters. The discretized optimal control problem is solved numerically by gradient method and exact values of gradient of the objective function are calculated by fast automatic differentiation method.

Keywords—optimization, optimal control, gradient method, fast automatic differentiation.