
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 9, 2016

 87

Abstract—In this paper, we compare several Python tools for

automatic differentiation. In order to assess the difference in

performance and their precision, the problem of finding the

optimal geometrical structure of a cluster of identical atoms is

used as follows. First, we compare the performance of

calculating gradients for the objective function. We showed

that the PyADOL-C and PyCppAD tools have much better

performance for big clusters than the other ones. Second, we

assess the precision of these two tools by calculating the

difference between the obtained at the optimal configuration

gradient norms. We conclude that PyCppAD has the best

performance among others, while having almost the same

precision as the second-best performing tool – PyADOL-C.

Keywords—Automatic differentiation, Python, PyADOL-C,

PyCppAD, CasADi, Theano, CGT, AD.

I. INTRODUCTION

In many different applications, one who solves numerical

computing problems has to deal with the exact derivative

calculation task. This includes Jacobians and Hessians

calculation which are used for solving ordinary and partial

differential equations as well as for finding solutions to

different optimization problems. Nowadays one of the

possibilities to solve the task is to apply the algorithmic or

automatic differentiation technique (see, for instance,

[1,2,3]). It should be noted that automatic differentiation is

neither numerical nor symbolic differentiation, though the

main principle behind the procedure of computing

derivatives is partly symbolic and partly numerical [4].

There are two ways to implement automatic

differentiation for computer programs: operator overloading

and source transformation. Operator overloading is a

technique that implies redefinition of such elementary

operation as summation, multiplication, division to update

the associated gradient object by means of differentiation

rules. Source transformation is another way to implement

differentiation, which implies rewriting the code so that it

contains the implementation of a gradient for the piece of

code. While the implementation of a source transformation

technique is much more complex than the operator

overloaded one, it usually leads to faster run-time speeds [5].

Manuscript received June 5, 2016.

A. Turkin is with the National Research University of Electronic

Technology; Dorodnicyn Computing Center, Federal Research Center

“Computer Science and Control” of Russian Academy of Sciences, Russia

(e-mail: andrei_turkin@hotmail.com).

Aung Thu is with the National Research University of Electronic

Technology (e-mail: aungaungthu61050@gmail.com)

For further speculations on some advantages and

disadvantages of these approaches, we refer to [6].

Nowadays, many researcher use Python as a scientific

environment, while applying many third-party open source

libraries to computation tasks. Some of them can be used to

implement automatic differentiation for Python code. The

simplest way to apply automatic differentiation to Python

programs is to use one of the following tools: PyADOL-C

[7], PyCppAD [8], CasADi[9], Computation Graph Toolkit

(CGT) [10], Theano [11,12], or AD [13]. All of these tools

can be used for Jacobian evaluation by applying the operator

overloading technique to implement automatic

differentiation except CasADi, which is based on source

code transformation (see issue 884 on the GitHub page for

CasADi project for further details). In the next section, we

briefly describe these tools and provide information about

their features, while solving a cluster of identical atoms

optimization problem that we describe in Section 3.

The purpose of this benchmarking is to call attention to

automatic differentiation in Python, to provide information

on main features of the programming tools, and to highlight

the advantages of using each of them. The next section is a

brief description of several tools for automatic

differentiation that can be used in Python. In section 3, we

provide information on the problem we solve, while

speculating on the features of the tools we use. We conclude

with the experimental results for the problem of finding an

optimal cluster of identical atoms.

II. AUTOMATIC DIFFERENTIATION IN PYTHON

In this section, we provide information on the automatic

differentiation tools in Python and point out some

difficulties in using them. First, it is important for any tool to

be easy-to-install and to-use i.e. one should use it with no or

little modifications of the code to implement automatic

differentiation. Second, it should be mentioned, that the

main challenge of using automatic differentiation tools is the

difference in syntax and data initialization for the procedure.

In this section, we provide information about the tools listed

before as well as point out some aspects of their usage.

Before discussing some details, it should be mentioned that

not all of the tools can be easily installed with the pip

environment. PyCppAd, CasADi as well as CGT must be

installed manually by using the information from the

corresponding web-sites, while PyADOL-C, Theano, and

AD may be installed by using special environment. For

instance, Theano and AD can be installed by means of pip,

while PyADOL-C by using, for instance, Homebrew in

MacOS. For further details, we refer to the web-sites of

Benchmarking Python Tools for Automatic

Differentiation

Andrei Turkin, Aung Thu

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 9, 2016

 88

these packages.

A. PyADOL-C

ADOL-C [14] is a well-known C++ tool for automatic

differentiation that implements it by operator overloading

technique. A Python wrapper for it is PyADOL-C that uses

the same convenient driver to include automatic

differentiation into a Python program by means of the

following functions. The trace_on and trace_off functions

mark some code section that is going to be differentiated; the

adouble function declares active variables i.e. ones to be

used for differentiation; the independent and dependent

functions is used to mark independent variables. For more

details, we refer to [7], because the functionality of the C++

package and the one in Python almost the same except usage

of adouble variables.

B. PyCppAD

The PyCppAD [8] tool is another wrapper for a C++

package, which is called CppAD [15]. In order to implement

its functionality in Python, it uses the same Boost.Python

[16] interface to its C++ implementation, as PyADOL-C

does. PyCppAD uses independent function to mark an

independent variable and adfun one to mark a section of

code, which one would like to differentiate. For instance, it

can be done by using jacobian method of the object that

adfun returns.

C. CasADi

CasADi is a framework for automatic differentiation and

numeric optimization [9,17]. This is a tool with broad

functionality which focus is on optimal control. While the

other packages use operator overloading technique to

implement automatic differentiation, CasADi, in its current

form, uses source transformation. As the tools above,

CasADi exploits the same approach to provide its

functionality and efficiency of C++ implementation to

Python, but uses SWIG [18] instead of Boost.Python [16]

that we mentioned before. CasADi uses special syntax for

marking active variables and creating function objects. The

later ones can be used for the purpose of automatic

differentiation.

D. Theano

Theano is a large Python library that has tight integration

with Numpy as well as possibilities to use GPU for data-

intensive calculations. Even though Theano is used mainly in

the field of deep learning, it has the differentiation

capabilities, which seems useful to speculate on in this

article. Theano uses special macros from the theano.tensor

module to create variables and to calculate derivatives. In

order to mark active variables, Theano provides a list of data

types. For instance, dvector returns, as it calls, a symbolic

variable for a 1-dimensional ndarray with float64 precision.

To differentiate some expression, Theano uses the macro

grad from the theano.tensor module.

E. Computation Graph Toolkit

This package replicates Theano functionality for automatic

differentiation, when increasing computational efficiency.

Despite the fact that CGT [10] is underdevelopment, we

would like to provide some information on it. Computation

Graph Toolkin (CGT) uses several functions to define active

variables: scalar, vector, matrix as well as the shared, which

can be used for the same purposes as the ones in Theano.

F. AD

The tool, which is called AD [13], is a Python library that

uses adnumber function to declare an active variable that is

an object with several methods. These methods are used to

perform automatic differentiation. An important feature of

this tool is the possibility to calculate gradients and hessians

from a Python function by means of gh function. Two

functions that gh returns can be used in optimization module

of the SciPy package.

It should be noted that all the aforementioned tools may

be used only after the code modifications by means of the

aforementioned functions. The only exception is the AD tool

that can be applied directly to a Python function that one is

going to differentiate by using gf function.

III. EXPERIMENTS AND RESULTS

All the Python tools we mention in section 2 can be used to

calculate derivatives of Python functions, however, they are

not equally fast. Since in many applications the computation

of derivatives is the main task, it is important to use an

efficient tool, which has maximal run-time speed. Moreover,

it should have such precision of gradient calculation that is

almost equal to machine one. Therefore, we would like to

assess the performance each of the tools as well as their

precision. For the purpose of this assessment, we chose a

cluster optimization problem [19,20], which can be

described as follows. We are looking for a geometrical

structure of the cluster with identical atoms, the interaction

between which is described by pair potentials. Thus, we

have to minimize the following energy function [20]:

()()∑
<

−
ji

ix=)E(jxρνx (1)

For the purpose of exemplification, we are using Lennard-

Jones potential as it is in [19] and [20]:

() 612 2 −− −= ρρρν (2)

The results of this section can be replicated by using the

code one may found on GitHub
1
.

In Figures 1(a) and 1(b), we present the results of our

benchmark. All the calculations have been performed on a

laptop with a 2.2 GHz Intel Core i7 processor and 16 GB of

RAM, running MacOS X (10.10.5). We use 1610 clusters

with different number of atoms to get information on the

performance and precision each of the tools we mentioned

before. First, we find average time of gradient calculation to

assess the performance of the tools. Second, by using

predefined clusters
2
, we calculate norm of the gradients for

each of these clusters to assess the precision of the tools.

Note, despite the usage of the dataset with optimal cluster

configurations, we find the precise optimum by using

optimize.minimize function of the SciPy package with the L-

1 An implementation of all the experiments presented in this paper was

published on https://github.com/andreiturkin/Python_ClusterOpt.git
2 see http://doye.chem.ox.ac.uk/jon/structures/LJ.html

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 9, 2016

 89

BFGS[21] method. It is necessary due to rounding that takes

place when the configurations are stored to the dataset we

use for these experiments.

Figure 1. The results of using different tools for automatic differentiation in Python. First, we apply the aforementioned

tools to the task of gradient calculation. (a) shows that PyAdolc and PyCppAD have almost the same performance for small

clusters, however, for bigger ones the PyCppAD tool is faster. Second, we perform the precision test for the fastest tools from

the previous test: PyAdolc and PyCppAD. Since they almost equally close to zero (c) we assess the mean of absolute

difference, which is 1.10485E-09 and 1.24189E-09 for PyADOL-C and PyCppAD correspondingly (b); the variances are

1.13743E-16 and 1.77091E-16 for PyADOL-C and PyCppAD.

We calculate norm of the gradient for the cluster, which is

the optimal solution, in order to find out how precise our

result is.

In Figure 1, we show the average time for gradient

calculation obtained by using values from the dataset.

[20,22,23,24,25] that consists clusters of up to 1610 atoms.

We observe that the PyCppAD-C package shows best results

for big clusters, while having almost the same average

performance as PyADOL-C. The insufficient performance

for clusters with more than 100 atoms as well as the large

gap in performance between CGT, Theano, AD, CasADi

and the tools we have already mentioned, makes it possible

to conclude that it is more convenient to use PyCppAD or

PyADOL-C for the purpose of the task.

Note that for all of our tests we use CGT with double

precision (precision = string(default=double)) and native

backend (backend =

option("python","native",default="native")) enabled. We

don't use the parallel execution graph interpreter, because it

makes the results worse.

In Figure 1(b), we provide information on the precision

assessment for the following tools, which have the best

performance in our previous test: PyCppAD and PyADOLC.

Here we exploit the same dataset as in the test before, but

use it for the following precision test. First, the initial cluster

is obtained from the dataset to calculate gradient norm.

Then, we use the L-BFGS algorithm [21] to get the exact

location of the minimum by using the following three types

of gradients: manually calculated, PyADOL-C and

PyCppAD ones. Finally, we calculate the gradient norm at

the obtained point by using the same gradients.

We compare the gradient norm values obtained manually

with the ones obtained for every cluster by using the

PyADOL-C and PyCppAD tools. They almost equally close

to zero (see figure 1(c)); thus, it is necessary to assess the

absolute difference of two gradient norms: the one that was

obtained manually and the one obtained by using some tool.

The results show that the automatic differentiation tools give

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 9, 2016

almost the same results: the mean values of the absolute

difference is 1.10485E-09 for PyADOL-C and is 1.24189E-

09 for PyCppAD; the variances are 1.13743E-16 and

1.77091E-16 for PyADOL-C and PyCppAD

correspondingly. Thus, this section can be concluded as

follows. PyADOL-C and PyCppAD have almost the same

precision of derivative calculation for function 1 with

Lennard-Jones potential, however, the PyCppAD tool is

distinguishably faster for clusters with more than 600 atoms.

IV. CONCLUSION

In this paper we have reviewed different Python tools for

automatic differentiation and assessed their performance on

cluster optimization problem with Lennard-Jones potentials.

We showed that PyADOL-C and PyCppAD much faster

than the CasADi, CGT, Theano or AD packages. Although

the CasADi tool uses source code transformation, the results

show that its run-time speed slower than a Python function,

which calculates the derivatives manually. Moreover, it

performs slower than such tools, which are based on the

operator overloading technique, as PyCppAD and PyADOL-

C. While both of them have almost the same precision,

PyCppAD calculates gradients distinguishably faster for the

clusters with more 600 atoms. Therefore, the PyCppAD tool

has the best performance for the problem we solve among

others, which we use for this benchmarking, while having

almost the same precision as PyADOL-C.

REFERENCES

[1] Y. G. Evtushenko. Optimization and fast automatic differentiation.

Dorodnicyn Computing Center of Russian Academy of Sciences,

2013. [Online]. Available:

http://www.ccas.ru/personal/evtush/p/198.pdf

[2] A. Griewank and A. Walther. Evaluating Derivatives: Principles and

Techniques of Algorithmic Differentiation. Society for Industrial

Mathematics, 2nd edition, November 2008.

[3] A. Griewank. A mathematical view of automatic differentiation. Acta

Numerica, 12:321-398, 2003.

[4] A. G. Baydin, and B. A. Pearlmutter. Automatic differentiation of

algorithms for machine learning. arXiv preprint

arXiv:1404.7456 (2014). Anailable:

http://arxiv.org/pdf/1404.7456.pdf

[5] M. J. Weinstein and A.V. Rao. A source transformation via operator

overloading method for the automatic differentiation of mathematical

functions in MATLAB. ACM Transactions on Mathematical

Software (2014).

[6] C. H. Bischof and H. M. Bucker. Computing derivatives of computer

programs. Modern Methods and Algorithms of Quantum Chemistry:

Proceedings, Second Edition, NIC Series, 3:315-327, 2000.

[7] S. F. Walter. PyADOL-C: a python module to differentiate complex

algorithms written in python. Available:

www.github.com/b45ch1/pyadolc/

[8] B. M. Bell and S.F. Walter. Pycppad: Python algorithmic

differentiation using cppad. Available:

http://www.seanet.com/~bradbell/pycppad/pycppad.htm

[9] J. Andersson. A General-Purpose Software Framework for Dynamic

Optimization, October 2013.

[10] B. Stadie, Z. Xie, P. Moritz, J. Schulman, J. Ho. Computational graph

toolkit: a library for evaluation and differentiation of functions of

multidimensional arrays.

[11] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A.

Bergeron, N. Bouchard, and Y. Bengio. Theano: new features and

speed improvements. Deep Learning and Unsupervised Feature

Learning NIPS 2012 Workshop, 2012.

[12] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G.

Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A

CPU and GPU math expression compiler. In Porceedings of the

Python for Scientific Computing Conference (SciPy), June 2010.

Oral Presentation.

[13] A.D. Lee AD: python package for first- and second-order automatic

differentiation. Available: http://pythonhosted.org/ad

[14] A. Walther and A. Griewank. Getting started with ADOL-C. In

Combinatorial scientific computing, pages 181–202, 2009.

[15] B.M. Bell. Cppad: A package for differentiation of c++ algorithms.

Available: http://www.coin-or.org/CppAD

[16] D. Abrahams and R. W. Grosse-Kunstleve. Building hybrid systems

with boost. python. CC Plus Plus Users �Journal, 21(7):29–36, 2003.

[17] J. Andersson, J. Akesson, and M. Diehl. Recent Advances in

Algorithmic Differentiation, chapter CasADi: A Symbolic Package

for Automatic Differentiation and Optimal Control, pages 297–307.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.�

[18] D.M Beazley. Automated scientific software scripting with swig.

Future Generation Computer Systems, 19(5):599–609, 2003. �

[19] M.A. Posypkin. Searching for minimum energy molecular cluster:

Methods and distributed software infrastructure for numerical

solution of the problem. Vestnik of Lobachevsky University of Nizhni

Novgorod, (1):210 – 219, 2010. �

[20] D.J Wales and J.P.K. Doye. Global optimization by basin-hopping

and the lowest energy structures of Lennard-Jones clusters containing

up to 110 atoms. The Journal of Physical Chemistry A,

101(28):5111–5116, 1997.

[21] D.C. Liu and J. Nocedal. On the limited memory BFGS method for

large scale optimization. Mathematical programming, 45(1-3):503–

528, 1989.

[22] J.A. Northby. Structure and binding of Lennard-Jones clusters: 13 ≤ n

≤ 147. The Journal of chemical physics, 87(10):6166–6177, 1987. �

[23] X. Shao, H. Jiang, and W. Cai. Parallel random tunneling algorithm

for structural optimization of Lennard-Jones clusters up to n= 330.

Journal of chemical information and computer sciences, 44(1):193–

199, 2004. �

[24] Y. Xiang, L. Cheng, W. Cai, and X. Shao. Structural distribution of

Lennard-Jones clusters containing 562 to 1000 atoms. The Journal of

Physical Chemistry A, 108(44):9516–9520, 2004. �

[25] X. Shao, Y. Xiang, and W. Cai. Structural transition from icosahedra

to decahedra of large Lennard-Jones clusters. The Journal of Physical

Chemistry A, 109(23):5193–5197, 2005.

90

