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Abstract—In this paper, we compare several Python tools for 

automatic differentiation. In order to assess the difference in 

performance and their precision, the problem of finding the 

optimal geometrical structure of a cluster of identical atoms is 

used as follows. First, we compare the performance of 

calculating gradients for the objective function. We showed 

that the PyADOL-C and PyCppAD tools have much better 

performance for big clusters than the other ones. Second, we 

assess the precision of these two tools by calculating the 

difference between the obtained at the optimal configuration 

gradient norms. We conclude that PyCppAD has the best 

performance among others, while having almost the same 

precision as the second-best performing tool – PyADOL-C. 
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I. INTRODUCTION 

In many different applications, one who solves numerical 

computing problems has to deal with the exact derivative 

calculation task. This includes Jacobians and Hessians 

calculation which are used for solving ordinary and partial 

differential equations as well as for finding solutions to 

different optimization problems. Nowadays one of the 

possibilities to solve the task is to apply the algorithmic or 

automatic differentiation technique (see, for instance, 

[1,2,3]). It should be noted that automatic differentiation is 

neither numerical nor symbolic differentiation, though the 

main principle behind the procedure of computing 

derivatives is partly symbolic and partly numerical [4]. 

There are two ways to implement automatic 

differentiation for computer programs: operator overloading 

and source transformation. Operator overloading is a 

technique that implies redefinition of such elementary 

operation as summation, multiplication, division to update 

the associated gradient object by means of differentiation 

rules. Source transformation is another way to implement 

differentiation, which implies rewriting the code so that it 

contains the implementation of a gradient for the piece of 

code. While the implementation of a source transformation 

technique is much more complex than the operator 

overloaded one, it usually leads to faster run-time speeds [5]. 
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For further speculations on some advantages and 

disadvantages of these approaches, we refer to [6]. 

Nowadays, many researcher use Python as a scientific 

environment, while applying many third-party open source 

libraries to computation tasks. Some of them can be used to 

implement automatic differentiation for Python code. The 

simplest way to apply automatic differentiation to Python 

programs is to use one of the following tools: PyADOL-C 

[7], PyCppAD [8], CasADi[9], Computation Graph Toolkit 

(CGT) [10], Theano [11,12], or AD [13]. All of these tools 

can be used for Jacobian evaluation by applying the operator 

overloading technique to implement automatic 

differentiation except CasADi, which is based on source 

code transformation (see issue 884 on the GitHub page for 

CasADi project for further details). In the next section, we 

briefly describe these tools and provide information about 

their features, while solving a cluster of identical atoms 

optimization problem that we describe in Section 3. 

The purpose of this benchmarking is to call attention to 

automatic differentiation in Python, to provide information 

on main features of the programming tools, and to highlight 

the advantages of using each of them. The next section is a 

brief description of several tools for automatic 

differentiation that can be used in Python. In section 3, we 

provide information on the problem we solve, while 

speculating on the features of the tools we use. We conclude 

with the experimental results for the problem of finding an 

optimal cluster of identical atoms. 

II. AUTOMATIC DIFFERENTIATION IN PYTHON 

In this section, we provide information on the automatic 

differentiation tools in Python and point out some 

difficulties in using them. First, it is important for any tool to 

be easy-to-install and to-use i.e. one should use it with no or 

little modifications of the code to implement automatic 

differentiation. Second, it should be mentioned, that the 

main challenge of using automatic differentiation tools is the 

difference in syntax and data initialization for the procedure. 

In this section, we provide information about the tools listed 

before as well as point out some aspects of their usage. 

Before discussing some details, it should be mentioned that 

not all of the tools can be easily installed with the pip 

environment. PyCppAd, CasADi as well as CGT must be 

installed manually by using the information from the 

corresponding web-sites, while PyADOL-C, Theano, and 

AD may be installed by using special environment. For 

instance, Theano and AD can be installed by means of pip, 

while PyADOL-C by using, for instance, Homebrew in 

MacOS. For further details, we refer to the web-sites of 
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these packages. 

A. PyADOL-C 

ADOL-C [14] is a well-known C++ tool for automatic 

differentiation that implements it by operator overloading 

technique. A Python wrapper for it is PyADOL-C that uses 

the same convenient driver to include automatic 

differentiation into a Python program by means of the 

following functions. The trace_on and trace_off functions 

mark some code section that is going to be differentiated; the 

adouble function declares active variables i.e. ones to be 

used for differentiation; the independent and dependent 

functions is used to mark independent variables. For more 

details, we refer to [7], because the functionality of the C++ 

package and the one in Python almost the same except usage 

of adouble variables. 

B. PyCppAD 

The PyCppAD [8] tool is another wrapper for a C++ 

package, which is called CppAD [15]. In order to implement 

its functionality in Python, it uses the same Boost.Python 

[16] interface to its C++ implementation, as PyADOL-C 

does. PyCppAD uses independent function to mark an 

independent variable and adfun one to mark a section of 

code, which one would like to differentiate. For instance, it 

can be done by using jacobian method of the object that 

adfun returns. 

C. CasADi 

CasADi is a framework for automatic differentiation and 

numeric optimization [9,17]. This is a tool with broad 

functionality which focus is on optimal control. While the 

other packages use operator overloading technique to 

implement automatic differentiation, CasADi, in its current 

form, uses source transformation. As the tools above, 

CasADi exploits the same approach to provide its 

functionality and efficiency of C++ implementation to 

Python, but uses SWIG [18] instead of Boost.Python [16] 

that we mentioned before. CasADi uses special syntax for 

marking active variables and creating function objects. The 

later ones can be used for the purpose of automatic 

differentiation. 

D. Theano 

Theano is a large Python library that has tight integration 

with Numpy as well as possibilities to use GPU for data-

intensive calculations. Even though Theano is used mainly in 

the field of deep learning, it has the differentiation 

capabilities, which seems useful to speculate on in this 

article. Theano uses special macros from the theano.tensor 

module to create variables and to calculate derivatives. In 

order to mark active variables, Theano provides a list of data 

types. For instance, dvector returns, as it calls, a symbolic 

variable for a 1-dimensional ndarray with float64 precision. 

To differentiate some expression, Theano uses the macro 

grad from the theano.tensor module. 

E. Computation Graph Toolkit 

This package replicates Theano functionality for automatic 

differentiation, when increasing computational efficiency. 

Despite the fact that CGT [10] is underdevelopment, we 

would like to provide some information on it. Computation 

Graph Toolkin (CGT) uses several functions to define active 

variables: scalar, vector, matrix as well as the shared, which 

can be used for the same purposes as the ones in Theano. 

F. AD 

The tool, which is called AD [13], is a Python library that 

uses adnumber function to declare an active variable that is 

an object with several methods. These methods are used to 

perform automatic differentiation. An important feature of 

this tool is the possibility to calculate gradients and hessians 

from a Python function by means of gh function. Two 

functions that gh returns can be used in optimization module 

of the SciPy package. 

It should be noted that all the aforementioned tools may 

be used only after the code modifications by means of the 

aforementioned functions. The only exception is the AD tool 

that can be applied directly to a Python function that one is 

going to differentiate by using gf function. 

III. EXPERIMENTS AND RESULTS 

All the Python tools we mention in section 2 can be used to 

calculate derivatives of Python functions, however, they are 

not equally fast. Since in many applications the computation 

of derivatives is the main task, it is important to use an 

efficient tool, which has maximal run-time speed. Moreover, 

it should have such precision of gradient calculation that is 

almost equal to machine one. Therefore, we would like to 

assess the performance each of the tools as well as their 

precision. For the purpose of this assessment, we chose a 

cluster optimization problem [19,20], which can be 

described as follows. We are looking for a geometrical 

structure of the cluster with identical atoms, the interaction 

between which is described by pair potentials. Thus, we 

have to minimize the following energy function [20]: 

( )( )∑
<

−
ji

ix=)E( jxρνx  (1) 

For the purpose of exemplification, we are using Lennard-

Jones potential as it is in [19] and [20]: 

( ) 612 2 −− −= ρρρν       (2) 

The results of this section can be replicated by using the 

code one may found on GitHub
1
. 

In Figures 1(a) and 1(b), we present the results of our 

benchmark. All the calculations have been performed on a 

laptop with a 2.2 GHz Intel Core i7 processor and 16 GB of 

RAM, running MacOS X (10.10.5). We use 1610 clusters 

with different number of atoms to get information on the 

performance and precision each of the tools we mentioned 

before. First, we find average time of gradient calculation to 

assess the performance of the tools. Second, by using 

predefined clusters
2
, we calculate norm of the gradients for 

each of these clusters to assess the precision of the tools. 

Note, despite the usage of the dataset with optimal cluster 

configurations, we find the precise optimum by using 

optimize.minimize function of the SciPy package with the L-

 
1 An implementation of all the experiments presented in this paper was 

published on https://github.com/andreiturkin/Python_ClusterOpt.git 
2 see http://doye.chem.ox.ac.uk/jon/structures/LJ.html 
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BFGS[21] method. It is necessary due to rounding that takes 

place when the configurations are stored to the dataset we 

use for these experiments. 

 
 
Figure 1. The results of using different tools for automatic differentiation in Python. First, we apply the aforementioned 

tools to the task of gradient calculation. (a) shows that PyAdolc and PyCppAD have almost the same performance for small 

clusters, however, for bigger ones the PyCppAD tool is faster. Second, we perform the precision test for the fastest tools from 

the previous test: PyAdolc and PyCppAD. Since they almost equally close to zero (c) we assess the mean of absolute 

difference, which is 1.10485E-09 and 1.24189E-09 for PyADOL-C and PyCppAD correspondingly (b); the variances are 

1.13743E-16 and 1.77091E-16 for PyADOL-C and PyCppAD. 

 
We calculate norm of the gradient for the cluster, which is 

the optimal solution, in order to find out how precise our 

result is.  

In Figure 1, we show the average time for gradient 

calculation obtained by using values from the dataset. 

[20,22,23,24,25] that consists clusters of up to 1610 atoms. 

We observe that the PyCppAD-C package shows best results 

for big clusters, while having almost the same average 

performance as PyADOL-C. The insufficient performance 

for clusters with more than 100 atoms as well as the large 

gap in performance between CGT, Theano, AD, CasADi 

and the tools we have already mentioned, makes it possible 

to conclude that it is more convenient to use PyCppAD or 

PyADOL-C for the purpose of the task. 

Note that for all of our tests we use CGT with double 

precision (precision = string(default=double)) and native 

backend (backend = 

option("python","native",default="native")) enabled. We 

don't use the parallel execution graph interpreter, because it 

makes the results worse. 

In Figure 1(b), we provide information on the precision 

assessment for the following tools, which have the best 

performance in our previous test: PyCppAD and PyADOLC. 

Here we exploit the same dataset as in the test before, but 

use it for the following precision test. First, the initial cluster 

is obtained from the dataset to calculate gradient norm. 

Then, we use the L-BFGS algorithm [21] to get the exact 

location of the minimum by using the following three types 

of gradients: manually calculated, PyADOL-C and 

PyCppAD ones. Finally, we calculate the gradient norm at 

the obtained point by using the same gradients. 

We compare the gradient norm values obtained manually 

with the ones obtained for every cluster by using the 

PyADOL-C and PyCppAD tools. They almost equally close 

to zero (see figure 1(c)); thus, it is necessary to assess the 

absolute difference of two gradient norms: the one that was 

obtained manually and the one obtained by using some tool. 

The results show that the automatic differentiation tools give 
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almost the same results: the mean values of the absolute 

difference is 1.10485E-09 for PyADOL-C and is 1.24189E-

09 for PyCppAD; the variances are 1.13743E-16 and 

1.77091E-16 for PyADOL-C and PyCppAD 

correspondingly. Thus, this section can be concluded as 

follows. PyADOL-C and PyCppAD have almost the same 

precision of derivative calculation for function 1 with 

Lennard-Jones potential, however, the PyCppAD tool is 

distinguishably faster for clusters with more than 600 atoms. 

IV. CONCLUSION 

In this paper we have reviewed different Python tools for 

automatic differentiation and assessed their performance on 

cluster optimization problem with Lennard-Jones potentials. 

We showed that PyADOL-C and PyCppAD much faster 

than the CasADi, CGT, Theano or AD packages. Although 

the CasADi tool uses source code transformation, the results 

show that its run-time speed slower than a Python function, 

which calculates the derivatives manually. Moreover, it 

performs slower than such tools, which are based on the 

operator overloading technique, as PyCppAD and PyADOL-

C. While both of them have almost the same precision, 

PyCppAD calculates gradients distinguishably faster for the 

clusters with more 600 atoms. Therefore, the PyCppAD tool 

has the best performance for the problem we solve among 

others, which we use for this benchmarking, while having 

almost the same precision as PyADOL-C. 
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