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On the System of Reaction-Diffusion Equations
in a Limited Region

Nikita Borisov, Vladimir Nefedov

Abstract — This paper addresses problems of dynamics and
long-term behavior of replicator (nonlinear) systems of partial
differential equations. The primary focus is on the influence of
the spatial factor on the behavior of distributed systems
described by partial differential equations. A general problem
formulation with Neumann, Dirichlet, and Robin boundary
conditions is considered, and both spatially homogeneous and
inhomogeneous stationary equilibrium states are analyzed. The
stability of these states is investigated using spectral analysis and
the energy method, including generalizations for various types
of boundary conditions. The paper demonstrates that for
sufficiently large diffusion coefficients, solutions tend to a
stationary regime, with Dirichlet and Robin conditions
enhancing stability compared to Neumann conditions.
Examples, such as the Fisher-Kolmogorov equation and a two-
component system, are provided to illustrate the application of
the proposed methods. The results emphasize the importance of
accounting for boundary conditions and diffusion in predicting
the long-term behavior of reaction-diffusion systems.
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I. INTRODUCTION
Let us consider the general formulation of such a problem.
Let a system of differential equationsof the form be given in
aboundeddomain 2 ¢ R™:

ou 6ixi <aij () :le) +fwx € 2,0 )

at
T T
where u = (ul,...,un) Jf= (fl,...,fn) X = (xl,...,xm)
Here Alx) = (aij (x)) ij=1,...m is a symmetric matrix
with real positive eigenvalues.
At theinitial time t=0, the initial conditions are given:
u(x,0) =y, x €N )
and on the boundary 2 of the domain 2 3homogeneous
boundary conditions of the 2nd kind (Neumann conditions)
are specified:
Z—:=O,X € 00,50 ®3)
where dv is the unit outward normalto the boundary 0.2.
The system (1)-(3) is closed because the fluxes of the
reacting componentsthrough the domain boundary are zero.

In the literature, such systemsare called "reaction-diffusion”
systems.

Manuscript received December 9, 2025.
N. D. Borisov — Moscow Institute of Physics and Technology (National
Research University) (borisov.nd@phystech.edu)

Here the vector function f(u) determines the reaction of
the components, which is described by the dynamicalsystem:
N rw
dt flu

The matrix of coefficients A(x) describes the diffusion
fluxes arising in the domain .

In the classical case, diagonal matrices A(x) are
considered. In this case, the so-called cross-diffusion fluxes
are not taken into account, where the diffusion flux of one
component of the system influences the dynamics of another
component.

In this work, we will subsequently considerweak solutions
[2] of problem (1)-(3), which are elements (for each fixed t)
of the Sobolev space W'~ (2) with the norm

Il = (| (2l + 17D ax)

and for any t>0 they represent smooth functions in the
variablet.

The class of such functions satisfying the above
requirements will henceforth be denotedasV'.

1/2

Il. STATIONARY EQUILIBRIUM STATES
A. Definition1
A vector function 2(x) € V such that:

zaixl,(aij ) :—J) + F@=0x € 0 @)
is called a stationary equilibrium position (or steady state) of
system (1)-(3).

If the equilibrium position is #(x) # const, theniit is called
spatially inhomogeneous. The problem of finding spatially
inhomogeneous equilibria is very complex. We will assume
that w(x) s a spatially homogeneous equilibrium position,
i.e., there exists a solution to the problem:

£ (@=0 Q)

The study of such equilibrium positions provides
information about the limiting state of system (1)-(3)ast —
o, As in the case of dynamical systems, we introduce an
analogue of the concept of Lyapunov stability for stationary
equilibrium positions.

B. Definition2

The equilibrium position @(x) of system (1)-(3) is called
Lyapunov stable if for ve>0 there exists >0 takoe, uto such
thatu, € V for all solutions u(tx) cof system (1)—(3) with
initial data u, satisfying:

luy — all, <3, forallt = 0, lut,) —all, < ¢
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If, in addition, the following condition holds:
llu,) —all, - 0,fort —» oo
then the equilibrium position is called asymptotically stable.
Let be @(x) aspatially homogeneous equilibrium position
of system (1)-(3).
Consider the Jacobian matrix of the vector function f:
— i ()
/= du u
The investigation of the stability of the equilibrium
position can be carried out using an analogue of the
Lyapunov—Poincaré theorem on stability with respect to first
approximation [4]. It then reduces to studying the spectrum
of the following eigenvalue problem:

Zi(aij €9 %) +J§ = Mx EN 6)

ax; j
with boundary conditions
d¢
—=0,x € 0
v

The corresponding eigenvalues form a non-decreasing
sequence:
A<k, <
If the condition holds for all eigenvalues of problem (6)
Re(1,)<0k=1,2,.. , then the equilibrium position is
asymptotically stable. The precise formulation of this
theorem can be found in [5].
Consider the linear transformation v = P-' ¢, where P —
is a matrix such that PT JP==A,P” is the transposed matrix.
Taking this transformation into account, the spectral
problem (6) takesthe form:
2 aixi(aij (x) ;—:j) +Av=2Avx €N )
where A = diag(yl,...,yn).
We will seek a solution to problem (7) in the form:
v(x) = L h 6 ¢, € R™ 8)
where v, ,quadk=1,2,.. are the eigenfunctions of the
following boundary eigenvalue problem:

9 )\ _
% o (aij () axj) py,x € 2 9
with boundary conditions

%:o,x € an.

It is known [3,6,7] that problem (9) has a biorthonormal
system of eigenfunctions ,, which form a complete system
in the space L2(12), and the following holds:

W) 2y = I Wi hrdx = 8 kI=12,.. (10)
where &y is the Kronecker delta.

The corresponding eigenvalues form a non-decreasing
sequence 0=p; <p, < ...

Taking the representation (8) into account, the original
problem takesthe form:

Z(_chkwk + Ac ) = Az Cr P

If we multiply this equality scalarly in the space L2(2) by
the functions v, , where [=1,2,.., ¥ BOCHOIB30BaATHCA
cooTHomeHueM (10), To MoTy4YrM Ma TPUYHBIE paBEHCTBA TS
Bekrand use relation (10), we obtain matrix equalities for the

vectors ¢, in the form of eigenvalue problems:
A —uDey, = ke k=1.2,... (11)
Thus, the problem of finding the eigenvalues of the
continuum system (6) reduces to the algebraic problem of

finding the eigenvalues of a countable sequence of matrices
of the form:
/’lkzj = }/] - ,uk,k=1,2,...,j=l yeeell (12)
If forall eigenvalues of problem (11) the condition:
Re(2,;)<0.k=12,...j=1,...n
holds, then the spatially homogeneous equilibrium position @
of system (1)—(3) is stable.
If, however, this condition fails for at least one value k,j
then the equilibrium position is unstable.

1. EXAMPLES
Let's consider several examplesof applyingthe formulated
results to specific problems.
A. Example 1

Let us write the Fisher—-Kolmogorov equation on the

interval 2 = (0,m) with homogeneous Neumann boundary
conditions:

u 9%u

% =Dzt u(1-w) x € (0,1),t>0 (13)
a a
0,0 = (@)=0,0 (14)

This equation has two spatially homogeneousequilibrium
states, u=0 and u=1 . The second equilibrium state is
determined by the eigenfunctionsand eigenvalues of problem

©):
2
P, () = ;cos(kx),uk = k?Dk=0,1,2,...

Equality (12) takesthe form:
A=1-k*Dk=0,12,...
Consequently, the equilibrium state u=1 is asymptotically
stable [8,9].
In the case u=0, it follows from equality (12) that 4,=1-
k2D, k=0,1,2,.... Thus, the equilibrium state is unstable, since
Ao=1>0.

B. Example 2

Let us now consider another example of a reaction-
diffusion system. We will investigate the influence of
diffusion on the behavior of a closed reaction-diffusion
system of general form for t —» co. We will focus[11] on the
casen=2.

So, let us consider a system of the form:

Uy Ju,
E =d,;Au, + fl(ul,uz), E =
dyAu, + f(ugu,), x €050  (15)
where u = (ul,uz)T, = ,fz)T. Here d, and d, are the
diffusion coefficients,and is the Laplace operator.

The functions u, and u, satisfy Neumann boundary

conditions (the case of a closed system):

2 _ 22 x €900 (16)
av av

on the boundary 822 of the bounded closed domain 2 and
homogeneousinitial conditions:
u, (x,0) = U (), u(x,0) =u,,(x), xen 17
For definiteness, we will assume that the domain 2 is a
square:

0 =lo0x]-[0,x]
The vector function f(w) determines the reaction of the
components of the system (15)—(17), which is described by
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the dynamical system:
du
m =f(u)

The matrix A(x) = diag(d,,d,) describes the diffusion
fluxes arising in the domain 0.

We will consider the solutions of the system (15)—(17) in
the Sobolev space W'?(12).

To study the behaviorof the solutions of the system (15)—
(17) fort — oo, we will use the energy (variational) method
[1,3,5].

To do this, we introduce a (variational) function of time:

E@®) =2 J@? +ud) dx (18)
which playsthe role of the system’s energy.

Let us compute the derivative of the function (18) taking
into account (15)—(17). We obtain that:

dE
E:.f(dlwulv T d, 7, 12) dx +

+ 1 (urfy(upy) + 1 (upy) )dx - (29)
Formula (19) can be represented in the form:
dE
a =L +1,
where:
L= (d,|Vu, > + d,|Vu,l?) dx (20)
I; = J (u1f1(u1’uz) + uyf, (ul,uz)) dx (21)
Let us introduce the notation:
. dfi af;
a =min(d,.d,), B=sup,,pz a_ull i (22)

C. Theorem 1

If a > B, then % < 0 nd therefore all partial derivatives
%, %, i=1,2, tendto zero as t — oo, and the solution itself

L L
tendsto a constant (a stationary regime).

To prove the theorem, it is sufficient to consider the
integral (20). Here, afterintegration by parts[12], takinginto

accountthe boundary conditions, we rewrite (20) in the form:
1= f (@, 7 12 + d, 172, 12) dx

Then, considering the notation (22) and by virtue of the
Cauchy-Bunyakovsky inequality, we have:

I,<p [(u? + u2) dx (23)
Since a = min(dl,dz), for the first integral on the right
side of the last inequality, Friedrichs' inequality holds, and
therefore the following inequalities are valid:
JI7u,|? dx>Cp [ u? dx, =12

where Cp is the Friedrichs constant.

Using (23) and (24), we obtain the following estimate:

dE
TS —aCFf(uf +u§)dx+ﬁf(u§ + u?) dx

(24)

From the last inequality, we conclude that « > 8, then
<o
Since E(t) >0, and E(t) > E, >0 then [(u?+

uZ)dx -> 0ast — oo,
Applying similar reasoning to the second integral (21), we

obtain the relation [ |7u;|? dx - 0, and consequently% -
J

0,i=12,j=1.2.
Therefore, it is obvious thatall partial derivatives ? Qg

il i
xi 0xj

i=1,2,tend to zero ast — oo, and the solution itself tendstoa
stationary state. The theorem is proven.

IV. GENERALIZATION TO BOUNDARY
CONDITIONS OF THE FIRST AND THIRDKIND
In this section, we generalize the obtained results to
boundary conditions of the first kind (Dirichlet conditions)
and the third kind (Robin conditions), investigating their
influence on the dynamicsand stability of the system (1)—(3).

A. Dirichlet Boundary Conditions (First Kind)
Dirichlet boundary conditions are specified as:
ulx,t) = glx) x € 00,0 (25)
where g(x) is a given function on the boundary a0 . For
simplicity, we will assume g(x)=0, which corresponds to
homogeneous Dirichlet conditions:
u(x,0)=0,x € 902,t>0 (26)
These conditions modela situation where the values of the

componentsu are fixed on the boundary.

To investigate the stability of the spatially homogeneous
equilibrium @, which satisfies £ ()=0, we consider a spectral
problem analogous to (6), but with Dirichlet boundary

conditions:
2 99 —
2 o (aij €9 ax,-> +Jo=x €N (27)
¢=0,x € 00 (28)
where | = :—i(ﬂ) is the Jacobian matrix. The eigenfunctions

Y, of theboundary value problem

a

2 f(aij () %) =pyx €, YP=0x € 0N (29)
j

ax;
form a biorthonormal system in L2(2), and the eigenvalues
t satisfy O<u;<p, < ..., in contrast to the Neumann case
where u,=0. The eigenvalues of the system are determined
by
(30)
where y; are the eigenvalues of the matrix A obtained from J
via a transformation PTJP = A . The equilibrium is
asymptotically stable if Re(4,;)<0 for all k,j. Since 1,>0,
Dirichlet conditions can promote greater stability compared
to Neumann conditions, as —u,, Bcontributes a negative term
to Ay;.
To analyze the behavior of solutions ast — o we apply
the energy method, similar to Section 2.2. The system's
energy is defined as in (18). However, when computing the

A= V) — Hok=12,§=1 n

derivativez—f the boundary terms vanish due to u=0 on 942,
and formula (19) remains valid. The Friedrichs inequality for
Dirichlet conditions provides a stronger estimate:

JIvul? dx>C [ u? dx,i=1,2 (31)
where C' > Cr due to the absence of a zero eigenvalue.
Thus, if « > £, as defined in (22), then z—f < 0, and the
solution tends to a stationary regime, with Dirichlet
conditions enhancingthe convergence to a constant.

B. RobinBoundary Conditions (Third Kind)
Robin boundary conditions (third kind) are specified as:
Z—: + ou=0,x € dN,t>0 (32)
where 60 s a parameterdescribing the balance between the
flux and the function value atthe boundary. These conditions
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model partial permeability of the boundary, where ¢=0
corresponds to Neumann conditions, while
approximates Dirichlet conditions.

In this case, the spectral problem for stability takes the
form:

g >

2 99 —
% ™ (aij ) ax,-> +J¢ = Mx €0 (33)
9
——¢=0x €00 (34)
The boundary value problem for the eigenfunctions

becomes:
G} oY
— | a.(x) —]= €N
Y a7

oy

> T oy=0,x € 012 (35)

The eigenvalues p, satisfy O<u;<p, < .., where p;=0
only when ¢=0. For o>0 all x,>0, which enhances the
negative contribution to A,;=y; —p, . Stability is
determined similarly: the equilibrium is asymptotically stable
if Re(2,;)<0 for all k,j. Robin conditions with >0 promote

stability, especially forlarge o, makingthe system'sbehavior
approach that of the Dirichlet case.

When computing% for Robin conditions, the boundary
terms provide an additional contribution:
Z—f=- S, vuy 12 + d,ylvu,|?) dx —
—Jo @2 +uddS + [(u,f, +upf,)dx  (36)
The boundary integral [ o 2 +u2)dS>0 enhances

energy dissipation since 0. Using the Friedrichs inequality

adapted for Robin conditions, we find that if & > 8, then

i—f < 0, andthe solution tendsto a stationary regime. For >0

the additional boundary term accelerates convergence,
making Robin conditions intermediate between Neumann
and Dirichlet conditions.

V. CONCLUSION

The proposed method [3,12] makes it possible to maintain
stability forsufficiently large diffusion coefficients. This type
of stability is commonly referred to as spatial-diffusive
stability, even in the case of a system thatwould be unstable
in the absence of diffusion (i.e., when t — o).

Itis evident thatthe obtained result extendsto the case of
system (1)-(3). However, this result cannot always be
directly applied in specific cases[16,17], asthe calculation of
the constant 8 depends on having a priori knowledge about
the solution of system (15)—(17) (or system (1)—(3)) and its
derivatives.

Boundary conditions of the first and third kind
significantly influence the behavior of reaction-diffusion
systems [13,14,15,18]. Dirichlet conditions, which fix zero
values atthe boundary, enhance stability and convergence to
a stationary regime due to positive eigenvalues u,. Robin
conditions, depending on the parameter g, provide a flexible

transition between Neumann [19] and Dirichlet [20]
conditions, and for >0 they also promote stability. The
energy method confirms that for sufficiently large diffusion
coefficientsa > (3, solutions tend to a spatially homogeneous
stationary state, with Dirichlet and Robin conditions [21] (for
0>0) accelerating this process compared to Neumann
conditions.
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