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Abstract — This paper addresses problems of dynamics and 

long-term behavior of replicator (nonlinear) systems of partial 

differential equations. The primary focus is on the influence of 
the spatial factor on the behavior of distributed systems 

described by partial differential equations. A general problem 

formulation with Neumann, Dirichlet, and Robin boundary 

conditions is considered, and both spatially homogeneous and 

inhomogeneous stationary equilibrium states are analyzed. The 
stability of these states is investigated using spectral analysis and 

the energy method, including generalizations for various types 

of boundary conditions. The paper demonstrates that for 

sufficiently large diffusion coefficients, solutions tend to a 

stationary regime, with Dirichlet and Robin conditions 
enhancing stability compared to Neumann conditions. 

Examples, such as the Fisher-Kolmogorov equation and a two-

component system, are provided to illustrate the application of 

the proposed methods. The results emphasize the importance of 

accounting for boundary conditions and diffusion in predicting 
the long-term behavior of reaction-diffusion systems. 

 

Keywords — Reaction-diffusion, Nonlinear systems, Partial 
derivatives, Spatial stability, Boundary conditions, Neumann 

conditions, Dirichlet conditions, Robin conditions, Stationary 

equilibrium, Spectral analysis, Energy method, Sobolev space, 

Fisher–Kolmogorov equation, Diffusion flows, Asymptotic 

stability. 

I. INTRODUCTION 

Let us consider the general formulation of such a problem. 

Let a system of differential equations of the form be given in 

a bounded domain  𝛺 ⊂ 𝑅𝑚: 

𝜕𝑢

𝜕𝑡
= ∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝑢

𝜕𝑥𝑗
) + 𝑓(𝑢),x ∈ 𝛺,t>0    (1) 

where  𝑢 = (𝑢1 ,…,u𝑛)
𝑇
,f = (𝑓1 ,…,f𝑛 )

𝑇
,x = (𝑥1,…,x𝑚) 

Here 𝐴(𝑥) = (𝑎ij
(𝑥)) ,i,j=1 ,…,m  is a symmetric matrix 

with real positive eigenvalues. 

At the initial time t=0, the initial conditions are given: 

𝑢(𝑥,0) = 𝑢0(𝑥),x ∈ 𝛺              (2) 

and on the boundary 𝜕𝛺  of the domain 𝛺  зhomogeneous 

boundary conditions of the 2nd kind (Neumann conditions) 

are specified: 
𝜕𝑢

𝜕𝜈
=0,x ∈ 𝜕𝛺,t>0                (3) 

where 𝜕𝜈  is the unit outward normal to the boundary 𝜕𝛺 . 

The system (1)–(3) is closed because the fluxes of the 

reacting components through the domain boundary are zero.  

 

In the literature, such systems are called "reaction-diffusion" 

systems. 
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Here the vector function  𝑓(𝑢)  determines the reaction of 

the components, which is described by the dynamical system: 
du

dt
= 𝑓(𝑢) 

The matrix of coefficients 𝐴(𝑥)  describes the diffusion 

fluxes arising in the domain 𝛺. 

In the classical case, diagonal matrices 𝐴(𝑥)  are 

considered. In this case, the so-called cross-diffusion fluxes 

are not taken into account, where the diffusion flux of one 

component of the system influences the dynamics of another 

component. 

In this work, we will subsequently consider weak solutions  

[2] of problem (1)–(3), which are elements (for each fixed t) 

of the Sobolev space 𝑊1,2(𝛺) with the norm 

‖𝑢‖𝑊1,2(𝛺) = (∫(|𝑢2| + |𝛻𝑢2|) dx)
1 2⁄

 

and for any t⩾0  they represent smooth functions in the 

variable 𝑡. 

The class of such functions satisfying the above 

requirements will henceforth be denoted as 𝑉. 

II. STATIONARY EQUILIBRIUM STATES 

A. Definition 1 

A vector function 𝑢̄(𝑥) ∈ 𝑉 such that: 

∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝑢̄

𝜕𝑥𝑗
) + 𝑓(𝑢̄)=0,x ∈ 𝛺     (4) 

is called a stationary equilibrium position (or steady state) of 

system (1)–(3). 

If the equilibrium position is 𝑢̄(𝑥) ≠ const, then it is called 

spatially inhomogeneous. The problem of finding spatially 

inhomogeneous equilibria is very complex. We will assume 

that 𝑢̄(𝑥)  s a  spatially homogeneous equilibrium position, 

i.e., there exists a solution to the problem: 

𝑓(𝑢̄)=0                         (5) 

The study of such equilibrium positions provides 

information about the limiting state of system (1)–(3) as 𝑡 →
∞. As in the case of dynamical systems, we introduce an 

analogue of the concept of Lyapunov stability for stationary 

equilibrium positions. 

B. Definition 2 

The equilibrium position 𝑢̄(𝑥)  of system (1)–(3) is called 

Lyapunov stable if for ∀𝜀>0 there exists 𝛿>0 такое, что such 

that 𝑢0 ∈ 𝑉 for all solutions  𝑢(t,x) сof system (1)–(3) with  

initial data 𝑢0 satisfying: 

‖𝑢0 − 𝑢̄‖𝑉 < δ,forallt ≥ 0, ‖𝑢(t,.) − 𝑢̄‖𝑉 < 𝜀 
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If, in addition, the following condition holds: 

‖𝑢(t,.) − 𝑢̄‖𝑉 → 0,for𝑡 → ∞  

then the equilibrium position is called asymptotically stable. 

Let be 𝑢̄(𝑥) a  spatially homogeneous equilibrium position 

of system (1)–(3). 

Consider the Jacobian matrix of the vector function 𝑓: 

𝐽 =
𝜕𝑓

𝜕𝑢
(𝑢̄) 

The investigation of the stability of the equilibrium 

position can be carried out using an analogue of the 

Lyapunov–Poincaré theorem on stability with respect to first 

approximation [4]. It then reduces to studying the spectrum 

of the following eigenvalue problem: 

∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝜙

𝜕𝑥𝑗
) + Jϕ = λϕ,x ∈ 𝛺    (6) 

with boundary conditions 
𝜕𝜙

𝜕𝜈
=0,x ∈ 𝜕𝛺  

The corresponding eigenvalues form a non-decreasing 

sequence: 

𝜆1⩽λ2 ⩽ ... 

If the condition holds for all eigenvalues of problem (6) 

Re(𝜆𝑘)<0,k==1,2 ,... , then the equilibrium position is 

asymptotically stable. The precise formulation of this 

theorem can be found in [5]. 

Consider the linear transformation 𝑣 = 𝑃-1𝜙, where 𝑃 — 

is a matrix such that 𝑃𝑇JP== Λ,P
𝑇

 is the transposed matrix. 

Taking this transformation into account, the spectral 

problem (6) takes the form: 

∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝑣

𝜕𝑥𝑗
) + Λv = λv,x ∈ 𝛺   (7) 

where 𝛬 = diag(𝛾1,...,γ𝑛). 

We will seek a solution to problem (7) in the form: 

𝑣(𝑥) = ∑ 𝑐𝑘𝜓𝑘
(𝑥) ,c𝑘 ∈ 𝑅𝑛     (8) 

where 𝜓𝑘 ,quadk=1,2,...  are the eigenfunctions of the 

following boundary eigenvalue problem: 

∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝜓

𝜕𝑥𝑗
)=-μψ,x ∈ 𝛺    (9) 

with boundary conditions 
𝜕𝜓

𝜕𝜈
=0,x ∈ 𝜕𝛺. 

It is known [3,6,7] that problem (9) has a biorthonormal 

system of eigenfunctions  𝜓𝑘 , which form a complete system 

in the space 𝐿2(𝛺), and the following holds: 

(𝜓𝑘 ,ψ
𝑙
)
𝐿2 (𝛺)

= ∫𝜓𝑘 𝜓𝑙dx = 𝛿kl ,k,l=1,2,...  (10) 

where 𝛿kl is the Kronecker delta. 

The corresponding eigenvalues form a non-decreasing 

sequence 0=𝜇1⩽μ
2
⩽ ... 

Taking the representation (8) into account, the original 

problem takes the form: 

∑(−𝜇𝑘𝑐𝑘𝜓𝑘 + Λc𝑘𝜓𝑘
) = 𝜆∑ 𝑐𝑘𝜓𝑘  

If we multiply this equality scalarly in the space 𝐿2(𝛺) by 

the functions 𝜓𝑙 , where 𝑙= 1,2,... , и воспользоваться 

соотношением (10), то получим матричные равенства для 

вектand use relation (10), we obtain matrix equalities for the 

vectors 𝑐𝑘 in the form of eigenvalue problems: 

(𝛬 −𝜇𝑘𝐼)𝑐𝑘 = λc𝑘 ,k=1,2,...              (11) 

Thus, the problem of finding the eigenvalues of the 

continuum system (6) reduces to the algebraic problem of 

finding the eigenvalues of a countable sequence of matrices 

of the form: 

𝜆k,j = 𝛾𝑗 − 𝜇𝑘,k=1,2,...,j=1 ,...,n    (12) 

If for all eigenvalues of problem (11) the condition: 

Re(𝜆k,j)<0,k=1,2,...,j=1,...,n  

holds, then the spatially homogeneous equilibrium position 𝑢̄ 

of system (1)–(3) is stable. 

If, however, this condition fails for at least one value k,j 

then the equilibrium position is unstable. 

III. EXAMPLES 

Let's consider several examples of applying the formulated 

results to specific problems. 

A. Example 1 

Let us write the Fisher–Kolmogorov equation on the 

interval 𝛺 = (0,π)  with homogeneous Neumann boundary 

conditions: 
𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
+ 𝑢(1-𝑢),x ∈ (0,π),t>0   (13) 

𝜕𝑢

𝜕𝑡
(0,t) =

𝜕𝑢

𝜕𝑡
(π,t)=0,t>0     (14) 

This equation has two spatially homogeneous equilibrium  

states, 𝑢=0  and 𝑢=1 . The second equilibrium state is 

determined by the eigenfunctions and eigenvalues of problem 

(9): 

𝜓𝑘
(𝑥) = √

2

𝜋
cos(kx),μ

𝑘
= 𝑘2D,k=0,1,2,... 

Equality (12) takes the form: 

𝜆𝑘=-1-𝑘2D,k=0,1,2,... 
Consequently, the equilibrium state 𝑢=1 is asymptotically 

stable [8,9]. 

In the case 𝑢=0, it follows from equality (12) that  𝜆𝑘=1-

𝑘2𝐷 , 𝑘=0,1,2 ,.... Thus, the equilibrium state is unstable, since 

𝜆0=1>0. 

B. Example 2 

Let us now consider another example of a reaction-

diffusion system. We will investigate the influence of 

diffusion on the behavior of a closed reaction-diffusion 

system of general form for 𝑡 → ∞. We will focus [11] on the 

case 𝑛=2. 

So, let us consider a system of the form: 
𝜕𝑢1

𝜕𝑡
= 𝑑1Δu1+ 𝑓1 (𝑢1,u2),   

𝜕𝑢2

𝜕𝑡
= 

𝑑2Δu2 + 𝑓2 (𝑢1,u2),     𝑥 ∈ 𝛺,t>0  (15) 

where 𝑢 = (𝑢1,u2)
𝑇

, 𝑓 = (𝑓1 ,f2)
𝑇

. Here 𝑑1 and 𝑑2  are the 

diffusion coefficients, and is the Laplace operator. 

The functions 𝑢1  and 𝑢2  satisfy Neumann boundary 

conditions (the case of a closed system): 
𝜕𝑢1

𝜕𝜈
=

𝜕𝑢2

𝜕𝜈
=0 ,    𝑥 ∈ 𝜕𝛺,t>0     (16) 

on the boundary 𝜕𝛺  of the bounded closed domain 𝛺  and 

homogeneous initial conditions: 

𝑢1(𝑥,0) = 𝑢1,0
(𝑥),   𝑢2(𝑥,0) = 𝑢2,0

(𝑥),   𝑥 ∈ 𝛺   (17) 

For definiteness, we will assume that the domain 𝛺 is a  

square:           

𝛺 = [0,π] ⋅ [0,π] 
The vector function 𝑓(𝑢)  determines the reaction of the 

components of the system (15)–(17), which is described by 
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the dynamical system: 
du

dt
= 𝑓(𝑢) 

The matrix 𝐴(𝑥) = diag(𝑑1,d2)  describes the diffusion 

fluxes arising in the domain  𝛺. 

We will consider the solutions of the system (15)–(17) in  

the Sobolev space 𝑊1,2(𝛺). 

To study the behavior of the solutions of the system (15)–

(17) for 𝑡 → ∞, we will use the energy (variational) method 

[1,3,5]. 

To do this, we introduce a (variational) function of time: 

𝐸(𝑡) =
1

2
∫(𝑢1

2 + 𝑢2
2) dx      (18) 

which plays the role of the system's energy. 

Let us compute the derivative of the function (18) taking 

into account (15)–(17). We obtain that: 
dE

dt
=-∫(𝑑1|𝛻𝑢1|

2 + 𝑑2|𝛻𝑢2|
2) dx+ 

 + ∫ (𝑢1𝑓1(𝑢1,u2) + 𝑢2𝑓2 (𝑢1,u2))dx   (19) 

Formula (19) can be represented in the form: 
dE

dt
= 𝐼1+ 𝐼2 

where: 

𝐼1=- ∫(𝑑1|𝛻𝑢1|
2 +𝑑2|𝛻𝑢2|

2)dx      (20) 

𝐼2 = ∫ (𝑢1𝑓1(𝑢1,u2)+ 𝑢2𝑓2 (𝑢1,u2))dx   (21) 

Let us introduce the notation: 

𝛼 = min(𝑑1,d2),    𝛽=sup
𝑢∈𝑅2

|
𝜕𝑓1

𝜕𝑢1
+

𝜕𝑓2

𝜕𝑢2
|   (22) 

C. Theorem 1 

If 𝛼 > 𝛽 , then 
dE

dt
⩽ 0 nd therefore all partial derivatives 

𝜕𝑢1

𝜕𝑥𝑖
, 
𝜕𝑢2

𝜕𝑥𝑖
, 𝑖=1,2, tend to zero as 𝑡 → ∞, and the solution itself  

tends to a constant (a stationary regime). 

To prove the theorem, it is sufficient to consider the 

integral (20). Here, after integration by parts [12], taking into 

account the boundary conditions, we rewrite (20) in the form: 

𝐼1=-∫(𝑑1|𝛻𝑢1|
2 + 𝑑2|𝛻𝑢2|

2) dx 

Then, considering the notation (22) and by virtue of the 

Cauchy–Bunyakovsky inequality, we have: 

𝐼2⩽β ∫(𝑢1
2 + 𝑢2

2) dx      (23) 

Since 𝛼 = min(𝑑1,d2), for the first integral on the righ t  

side of the last inequality, Friedrichs' inequality holds, and 

therefore the following inequalities are valid: 

∫|𝛻𝑢𝑖|
2 dx⩾C𝐹

∫ 𝑢𝑖
2 dx,   𝑖=1,2     (24) 

where 𝐶𝐹 is the Friedrichs constant. 

Using (23) and (24), we obtain the following estimate: 
dE

dt
⩽ −αC𝐹∫(𝑢1

2 + 𝑢2
2)dx + 𝛽∫(𝑢1

2 + 𝑢2
2) dx 

From the last inequality, we conclude that 𝛼 > 𝛽 , then 
dE

dt
⩽ 0. 

Since 𝐸(𝑡) ⩾ 0 , and 𝐸(𝑡) → 𝐸∞ ⩾ 0  then ∫(𝑢1
2+

𝑢2
2) dx → 0 as 𝑡 → ∞ . 

Applying similar reasoning to the second integral (21), we 

obtain the relation ∫|𝛻𝑢𝑖|
2 dx → 0, and consequently 

𝜕𝑢𝑖

𝜕𝑥𝑗
→

0, 𝑖=1,2, 𝑗=1,2. 

Therefore, it is obvious that all partial derivatives 
𝜕𝑢1

𝜕𝑥𝑖
, 
𝜕𝑢2

𝜕𝑥𝑖
, 

𝑖=1,2, tend to zero as 𝑡 → ∞, and the solution itself tends to a 

stationary state. The theorem is proven. 

IV. GENERALIZATION TO BOUNDARY 

CONDITIONS OF THE FIRST AND THIRD KIND 

In this section, we generalize the obtained results to 

boundary conditions of the first kind (Dirichlet conditions) 

and the third kind (Robin conditions), investigating their 

influence on the dynamics and stability of the system (1)–(3). 

A. Dirichlet Boundary Conditions (First Kind) 

Dirichlet boundary conditions are specified as: 

𝑢(x,t) = 𝑔(𝑥) ,x ∈ 𝜕𝛺,t>0     (25) 

where 𝑔(𝑥)  is a  given function on the boundary 𝜕𝛺 . For 

simplicity, we will assume 𝑔(𝑥)=0 , which corresponds to 

homogeneous Dirichlet conditions: 

𝑢(x,t)=0,x ∈ 𝜕𝛺,t>0      (26) 

These conditions model a situation where the values of the 

components 𝑢 are fixed on the boundary. 

To investigate the stability of the spatially homogeneous 

equilibrium 𝑢̄, which satisfies 𝑓(𝑢̄)=0, we consider a spectral 

problem analogous to (6), but with Dirichlet boundary 

conditions: 

∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝜙

𝜕𝑥𝑗
) + Jϕ = λϕ,x ∈ 𝛺     (27) 

𝜙=0,x ∈ 𝜕𝛺        (28) 

where 𝐽 =
𝜕𝑓

𝜕𝑢
(𝑢̄) is the Jacobian matrix. The eigenfunctions 

𝜓𝑘  of the boundary value problem 

∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝜓

𝜕𝑥𝑗
)=-μψ,x ∈ 𝛺,    𝜓=0,x ∈ 𝜕𝛺     (29) 

form a biorthonormal system in 𝐿2(𝛺), and the eigenvalues 

𝜇𝑘  satisfy 0<𝜇1⩽μ
2
⩽ ... , in contrast to the Neumann case 

where  𝜇1=0. The eigenvalues of the system are determined 

by 

𝜆k,j = 𝛾𝑗 − 𝜇𝑘,k=1,2,...,j=1 ,...,n     (30) 

where 𝛾𝑗 are the eigenvalues of the matrix 𝛬 obtained from 𝐽 

via a transformation 𝑃𝑇JP = 𝛬 . The equilibrium is 

asymptotically stable if Re(𝜆k,j)<0 for all k,j . Since 𝜇𝑘>0 , 

Dirichlet conditions can promote greater stability compared 

to Neumann conditions, as −𝜇𝑘 вcontributes a negative term 

to 𝜆k,j. 

To analyze the behavior of solutions as 𝑡 → ∞ we apply 

the energy method, similar to Section 2.2. The system's 

energy is defined as in (18). However, when computing the 

derivative 
dE

dt
  the boundary terms vanish due to 𝑢=0 on 𝜕𝛺 , 

and formula (19) remains valid. The Friedrichs inequality for 

Dirichlet conditions provides a stronger estimate: 

∫|𝛻𝑢𝑖|
2 dx⩾C𝐹

′ ∫ 𝑢𝑖
2 dx,i=1,2      (31) 

where 𝐶𝐹 ′ > 𝐶𝐹  due to the absence of a zero eigenvalue. 

Thus, if 𝛼 > 𝛽 , as defined in (22), then 
dE

dt
⩽ 0 , and the 

solution tends to a stationary regime, with Dirichlet  

conditions enhancing the convergence to a constant. 

B. Robin Boundary Conditions (Third Kind) 

Robin boundary conditions (third kind) are specified as:  
𝜕𝑢

𝜕𝜈
+ σu=0,x ∈ 𝜕𝛺,t>0       (32) 

where σ⩾0 s a  parameter describing the balance between the 

flux and the function value at the boundary. These conditions 
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model partial permeability of the boundary, where 𝜎=0 

corresponds to Neumann conditions, while 𝜎 → ∞ 

approximates Dirichlet conditions. 

In this case, the spectral problem for stability takes the 

form: 

∑ 𝜕

𝜕𝑥𝑖
(𝑎ij

(𝑥)
𝜕𝜙

𝜕𝑥𝑗
) + Jϕ = λϕ,x ∈ 𝛺      (33) 

𝜕𝜙

𝜕𝜈+𝜎
𝜙=0,x ∈ 𝜕𝛺         (34) 

The boundary value problem for the eigenfunctions 

becomes: 

∑
𝜕

𝜕𝑥 𝑖
(𝑎ij

(𝑥)
𝜕𝜓

𝜕𝑥𝑗
)=-μψ,x ∈ 𝛺 

𝜕𝜓

𝜕𝜈
+ σψ=0,x ∈ 𝜕𝛺       (35) 

The eigenvalues 𝜇𝑘  satisfy 0<𝜇1⩽μ
2
⩽ ... , where 𝜇1=0 

only when 𝜎=0 . For 𝜎>0  all 𝜇𝑘>0 , which enhances the 

negative contribution to 𝜆k,j = 𝛾𝑗 − 𝜇𝑘 . Stability is 

determined similarly: the equilibrium is asymptotically stable 

if Re(𝜆k,j)<0 for all k,j. Robin conditions with 𝜎>0 promote 

stability, especially for large 𝜎, making the system's behavior 

approach that of the Dirichlet case. 

When computing 
dE

dt
 for Robin conditions, the boundary 

terms provide an additional contribution: 
dE

dt
=- ∫(𝑑1|𝛻𝑢1|

2+ 𝑑2|𝛻𝑢2|
2)dx−       

−∫𝜎 (𝑢1
2 + 𝑢2

2)dS + ∫(𝑢1𝑓1 + 𝑢2𝑓2 )dx  (36) 

The boundary integral ∫ 𝜎 (𝑢1
2 + 𝑢2

2)dS⩾0  enhances 

energy dissipation since σ⩾0. Using the Friedrichs inequality 

adapted for Robin conditions, we find that if 𝛼 > 𝛽 , then 
dE

dt
⩽ 0, and the solution tends to a stationary regime. For 𝜎>0 

the additional boundary term accelerates convergence, 

making Robin conditions intermediate between Neumann 

and Dirichlet conditions. 

V. CONCLUSION 

The proposed method [3,12] makes it possible to maintain 

stability for sufficiently large diffusion coefficients. This type 

of stability is commonly referred to as spatial-diffusive 

stability, even in the case of a system that would be unstable 

in the absence of diffusion (i.e., when 𝑡 → ∞). 

It is evident that the obtained result extends to the case of 

system (1)–(3). However, this result cannot always be 

directly applied in specific cases [16,17], as the calculation of 

the constant 𝛽 depends on having a priori knowledge about 

the solution of system (15)–(17) (or system (1)–(3)) and its 

derivatives. 

Boundary conditions of the first and third kind 

significantly influence the behavior of reaction-diffusion 

systems [13,14,15,18]. Dirichlet conditions, which fix zero 

values at the boundary, enhance stability and convergence to 

a stationary regime due to positive eigenvalues 𝜇𝑘 . Robin 

conditions, depending on the parameter 𝜎, provide a flexible 

transition between Neumann [19] and Dirichlet [20] 

conditions, and for 𝜎>0   they also promote stability. The 

energy method confirms that for sufficiently large diffusion 

coefficients𝛼 > 𝛽, solutions tend to a spatially homogeneous 

stationary state, with Dirichlet and Robin conditions [21] (for 

𝜎>0 ) accelerating this process compared to Neumann 

conditions. 
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