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Аннотация — В работе рассматривается задача 

прогнозирования предельного прочностного 

состояния многослойных композиционных 

материалов на основе их структурного описания. 

Композит представляется как упорядоченная 

последовательность слоев с известной ориентацией 

армирующих волокон и набором физико-

механических параметров. Для решения задачи 

предсказания возможного разрушения многослойных 

композитных материалов предлагается итеративная 

двунаправленная рекуррентная архитектура, в 

которой скрытые состояния каждого слоя 

обновляются с учетом соседних слоев сверху и снизу 

на нескольких итерациях. Такой механизм реализует 

многократное согласование межслойных состояний, 

аналогичное перераспределению напряжений в 

композите, и превосходит классические и 

двунаправленные LSTM, где передача информации 

выполняется однократно. Итоговое представление 

слоев агрегируется и используется для предсказания 

интегрального индекса разрушения. Проведено 

сравнение с LSTM, показывающее, что предложенная 

архитектура обеспечивает более точное 

воспроизведение нелинейного взаимодействия слоев 

и повышение точности предсказаний. 

 

Ключевые слова — полимерные композитные 

материалы, прочность композитных материалов, 

нейронные сети. 

I.ВВЕДЕНИЕ 

Многослойные композиционные материалы 

широко применяются в авиастроении, энергетике и 

машиностроении благодаря высокой прочности при 

малом весе [1]. Их механическое поведение определяется 

сложным взаимодействием слоев с различной 

ориентацией армирующих волокон и физико-

механическими свойствами матрицы и армирующих 

элементов [2,3]. Предсказание предельного состояния 

композита  при растяжении является критически важной 

задачей для обеспечения надежности и безопасности 

конструкций [4]. 
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Традиционные методы моделирования, 

основанные на конечно-элементных расчетах, позволяют 

получать точные результаты, однако они требуют 

значительных вычислительных ресурсов и времени, 

особенно для многослойных структур. В связи с этим 

растет интерес к аппроксимирующим моделям на основе 

машинного обучения, способным быстро предсказывать 

интегральные характеристики композита  по его 

структурному описанию. 

 

Рекуррентные нейронные сети (RNN), включая 

LSTM и GRU, естественно применяются к задачам 

последовательной обработки данных, так как учитывают 

влияние предыдущих элементов последовательности на 

текущее состояние. В контексте многослойных 

композитов это соответствует учету влияния 

нижележащих слоев на верхние. Двунаправленные RNN 

позволяют частично устранить ограничение 

одностороннего потока информации, объединяя прямой 

и обратный контекст. Однако классическая постановка 

двунаправленных моделей объединяет информацию 

однократно, не моделируя многократное взаимное 

влияние слоев, которое характерно для реального 

перераспределения напряжений в композите. 

 

В настоящей работе предлагается итеративная 

двунаправленная рекуррентная архитектура, в которой 

скрытые состояния каждого слоя обновляются с учетом 

соседних слоев сверху и снизу на нескольких итерациях. 

Такой механизм реализует итеративное согласование 

межслойных состояний, аналогичное физическому  

перераспределению напряжений, и формирует 

устойчивое представление всей структуры для 

предсказания интегрального индекса  разрушения.  

II.ФОРМИРОВАНИЕ ПРИЗНАКОВОГО ОПИСАНИЯ 

Для построения модели предсказания разрушения 

многослойного композита требуется представление 

каждого образца в виде  последовательности признаков, 

учитывающих как индивидуальные свойства слоев, так и  

усредненные характеристики всего материала.  

 

Каждый слой 𝑖 композита характеризуется углом 

ориентации армирующих волокон. Чтобы корректно 
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учесть циклическую природу угла, он кодируется через 

синус и косинус: 

𝑓
𝑎𝑛𝑔𝑙𝑒

(𝜃𝑖) = [𝑐𝑜𝑠(𝜃𝑖), 𝑠𝑖𝑛 𝜃𝑖] ∈ℝ
2

 

Такое представление позволяет модели воспринимать 

близость углов 0° и 360° и избегает разрывов в 

пространстве признаков. Кроме того, каждый композит  

имеет набор гомогенизированных физико-механических 

характеристик 𝑥𝑖 = [𝑡ℎ,𝑝,𝐸1, 𝐸2, 𝜈1, 𝐺], где th – 

толщина слоя; p – плотность;  𝐸1, 𝐸2 – модули упругости 

по направлениям 1 и 2 соответственно; 𝜈1– 

коэффициент Пуассона; G – модуль сдвига. Для 

обеспечения сопоставимости признаков разных типов 

эти параметры стандартизируются, что приводит их к 

нулевому среднему и единичной дисперсии: 

𝑥𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑥𝑖−𝜇

𝜎
 

Финальный вектор признаков для слоя формируется 

конкатенацией кодировки угла и масштабированных 

параметров композита: 

𝑥𝑖
𝑙𝑎𝑦𝑒𝑟 = [𝑓𝑎𝑛𝑔𝑙𝑒(𝜃𝑖), 𝑥𝑖

𝑠𝑐𝑎𝑙𝑒𝑑] ∈ ℝ𝑑, 𝑑 = 8 

Для композита  с 𝐿 формируется последовательность: 

𝑋 = [𝑥1
𝑙𝑎𝑦𝑒𝑟

,𝑥2
𝑙𝑎𝑦𝑒𝑟

,… , 𝑥𝐿
𝑙𝑎𝑦𝑒𝑟] ∈ ℝ𝐿×𝑑 

Такой подход позволяет сохранить информацию о 

порядке слоев и их индивидуальных свойствах, а  также 

учесть глобальные характеристики всего материала. Для 

работы с последовательностями различной длины при 

обучении модели применяется padding до длины 

максимального образца в наборе прецедентов (батче), 

что обеспечивает корректное формирование тензоров и 

предотвращает искажение данных. Для корректной 

обработки таких последовательностей в рекуррентной 

сети используется упаковка последовательностей 

(packed sequences), что исключает влияние добавленных 

нулевых элементов на вычисление скрытых состояний. 

Таким образом, признаковое описание обеспечивает как 

структурное, так и физико-механическое представление 

каждого композита, подготавливая данные к обучению 

последовательной модели. 

III.МОДЕЛЬ ПРЕДСКАЗАНИЯ РАЗРУШЕНИЯ НА БАЗЕ LSTM 

 

Для прогнозирования интегрального индекса 

разрушения многослойного композита используется 

модель на основе рекуррентной нейронной сети (RNN) с 

архитектурой LSTM (Long Short-Term Memory). Выбор 

LSTM обусловлен способностью этих сетей 

обрабатывать последовательности переменной длины и 

учитывать порядок элементов, что критично для 

многослойных композитов, где порядок слоев 

существенно влияет на механические характеристики. 

 

Пусть входной объект представляет собой 

последовательность векторов признаков: 

𝑋 = [𝑥1, 𝑥2, … ,𝑥𝐿] ∈ 𝑅𝐿×𝑑
 

где L - число слоев композита, 𝑥2 ∈ 𝑅𝑑
 - вектор 

признаков слоя (угол + физико-механические  

параметры). Цель модели - аппроксимировать функцию 

𝐹, связывающую последовательность слоев с 

интегральным индексом разрушения 𝑦 ∈ 𝑅: 

𝑦 = 𝐹(𝑋). 

Каждый вектор слоя 𝑥𝑡  подается на вход LSTM с 𝐻 

скрытыми нейронами и N слоями рекуррентной 

обработки. LSTM вычисляет скрытое состояние ℎ𝑡 ∈ 𝑅𝐻
 

для каждого слоя с учетом предыдущих состояний: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀𝑐𝑒𝑙𝑙(𝑥𝑡, ℎ𝑡−1, 𝑐𝑡−1), 
где 𝑐𝑡 - вектор ячейки памяти, сохраняющий 

долгосрочные зависимости. LSTM вычисляет скрытое 

состояние ℎ𝑡и состояние памяти 𝑐𝑡 по формулам [5]: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), 𝑓𝑡
= 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 +𝑏𝑓), 𝑜𝑡
= 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1+ 𝑏𝑜), 

𝑐𝑡
~
= 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡+𝑈𝑐ℎ𝑡−1+ 𝑏𝑐), 𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑐𝑡

~
, 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ ⁡(𝑐𝑡) 

В работе используется совокупность из двух LSTM-

слоев с размерностью скрытого состояния 64. В 

архитектуре используется один линейный слой: 

𝐹𝐶(ℎ𝐿) = 𝑊ℎ𝐿 +𝑏, 
где 𝑊 ∈ 𝑅1×𝐻 , 𝑏 ∈ 𝑅 - обучаемые параметры. Такой 

подход минимизирует риск переобучения, обеспечивая 

интерпретируемое соответствие между скрытым 

состоянием LSTM и выходным показателем. 

Архитектура  нейросети представлена  на рисунке 1. 

 

Рисунок 1 Архитектура нейросети на базе LSTM 

Архитектура  LSTM позволяет учитывать порядок 

слоёв и зависимость их состояний, а также гибко  

обрабатывать переменное число слоёв через паддинг и 

пакетирование, интегрируя при этом глобальные физико-

механические параметры материала  вместе с 

локальными характеристиками каждого слоя. 

Финальный линейный слой обеспечивает простую и 

интерпретируемую регрессию интегрального индекса 

разрушения. Однако такая постановка  ограничена 

однократным агрегированием информации по слоям и не 

моделирует многократное взаимное влияние слоёв, что 

критично для правильного воспроизведения 

перераспределения напряжений в композите. Для 

преодоления этих ограничений предлагается 

итеративная двунаправленная архитектура (BIRN), 

которая многократно обновляет состояния слоёв, 

реализуя итеративное согласование межслойных 

взаимодействий и более точно отражая физическое 

поведение материала. 

IV.ИТЕРАТИВНАЯ ДВУНАПРАВЛЕННАЯ РЕКУРРЕНТНАЯ СЕТЬ 

ДЛЯ ПРЕДСКАЗАНИЯ РАЗРУШЕНИЯ МНОГОСЛОЙНЫХ 

КОМПОЗИТОВ 

В качестве улучшенной архитектуры предлагается 

итеративная двунаправленная рекуррентная архитектура 

(BIRN), в которой каждый слой композита  представлен 
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скрытым состоянием, обновляемым с учетом состояний 

соседних слоев как в прямом, так и в обратном 

направлениях. В отличие от стандартных 

двунаправленных моделей, процесс обновления 

повторяется на протяжении нескольких итераций, что 

приводит к многократному обмену информацией между 

слоями. 

Такой механизм может быть интерпретирован как 

согласование межслойных состояний. С физической 

точки зрения данный процесс аналогичен релаксации 

напряжений в композите, при которой локальные 

взаимодействия приводят к установлению 

согласованного глобального состояния. 

Такая модель выходит за рамки однопроходных 

двунаправленных RNN, явно моделирует многократное 

взаимное влияние слоев, формирует устойчивое 

представление структуры через итеративную 

стабилизацию скрытых состояний. Итоговое 

интегральное представление набора слоев агрегируется с 

помощью механизма attention pooling и используется для 

предсказания интегрального индекса разрушения 

композита  при растяжении. 

 

В отличие от LSTM, предлагается итеративно обновлять 

скрытые состояния, с учетом локального взаимодействия 

между соседними слоями. 

 

Для каждой итерации 𝑘 = 1, . . . , К и слоя t: 

ℎ𝑡
(𝑘)

= 𝐺𝑅𝑈([𝑥𝑡 ;ℎ𝑡−1
(𝑘−1)

;ℎ𝑡+1
(𝑘−1)],ℎ𝑡

(𝑘−1)) 
где 𝐺𝑅𝑈  - стандартная gated recurrent unit [6], 

Таким образом, состояние каждого слоя обновляется на 

основе его собственных свойств 𝑥𝑡, латентных состояний 

соседних слоев ℎ𝑡−1
(𝑘−1)

;ℎ𝑡+1
(𝑘−1)

, собственного предыдущего 

состояния ℎ𝑡
(𝑘−1)

. 

Итерационная схема задает нелинейную операторную 

систему вида 

ℎ(𝑘) = ℱ(ℎ
(𝑘−1) , 𝑋), 

где   

ℎ
(𝑘) = (ℎ1

(𝑘)
,… , ℎ𝑇

(𝑘) ). 
При фиксированном числе итераций К модель 

аппроксимирует процесс локального перераспределения 

и согласования состояний слоев, аналогичный 

релаксации в физически связанной системе. 

После завершения итераций получаем финальные 

состояния ℎ𝑡 = ℎ𝑡
(𝐾)

. 
Для получения глобального представления композита  

используется механизм внимания [7]: 

 

𝛼𝑡 =
𝑒𝑥𝑝 ⁡(𝑤𝑇ℎ𝑡)

∑ 𝑒𝑥𝑝⁡(𝑤𝑇ℎ𝑡)
𝑇
𝑗 =1

, 𝑡 = 1, … , 𝑇, 

где 𝑤 ∈ ℝ𝐻 − обучаемыйвектор. 
Глобальное представление:  

ℎ𝑔𝑙𝑜𝑏𝑎𝑙 = ∑𝛼𝑡

𝑇

𝑡=1

ℎ𝑡 . 

Механизм внимания позволяет учитывать неодинаковый 

вклад в итоговую прочность композита. Предсказание 

целевой величины осуществляется линейным 

отображением: 

𝑦
^
= 𝑊ℎ𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑏, 

где 𝑊 ∈ ℝ1×𝐻 , 𝑏 ∈ ℝ. 

V.РЕЗУЛЬТАТЫ ОБУЧЕНИЯ И ВАЛИДАЦИЯ МОДЕЛИ 

Для сравнения рассматриваются классическая LSTM и 

предложенная итеративная двунаправленная 

архитектура  BIRN.  

Модели обучались с использованием функции потерь 

MSE (Mean Squared Error) [8]: 

𝐿 =
1

𝐵
∑(𝑦

^

𝑖 −𝑦𝑖)
2,

𝐵

𝑖=1

 

где 𝐵 - размер батча. Для оптимизации используется 

алгоритм Adam с адаптивным шагом обучения, 

обеспечивающий стабильную сходимость при 

нелинейной зависимости индекса разрушения от 

характеристик слоев и порядка их следования.    

Модели были обучены и проверены с 

использованием 5-кратной кросс-валидации для оценки 

обобщающей способности на разных разбиениях данных 

в соотношении 80/20. Обучение выполнялось на 100 

эпохах, а  в качестве метрик использовались 

среднеквадратичная ошибка (MSE) и коэффициент  

детерминации R² на тренировочном и валидационном 

наборах. 

Результаты обучения представлены в таблице 1. 

На сотой эпохе BIRN демонстрирует лучшие показатели 

по сравнению с LSTM: train_MSE = 0.0034, val_MSE = 

0.0057, R² = 0.984, тогда как у LSTM соответствующие 

значения составляют train_MSE = 0.0046, val_MSE = 

0.0089, R² = 0.975. При этом BIRN достигает уровня R² = 

0.96 уже на 20-й эпохе, что указывает на более быструю 

сходимость и устойчивость обучения. На рисунках 2 и 3 

отображена  динамика функции на обучении и 

валидации. 

 

Рисунок 2 Динамика функции потерь на обучающей 

выборке по эпохам  
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Рисунок 3 Динамика функции потерь на обучающей 

выборке по эпохам  

Дополнительно для количественной оценки 

эффективности обучения была использована  

интегральная площадь под кривой функции потерь 

(AULC), вычисленная методом трапеций. Для BIRN она 

составила  1.18, в то время как для LSTM — 3.50, что 

дополнительно подтверждает более быстрое и 

стабильное снижение ошибки при обучении. 

Таблица I Метрики обучения и валидации для 

LSTM и BIRN на 100-й эпохе 

Модель train 

MSE 

val MSE R² (val) AULC 

LSTM 0.0046 0.0089 0.975 3.50 

BIRN 0.0034 0.0057 0.984 1.18 

 

Таким образом, итеративная двунаправленная 

архитектура  BIRN не только обеспечивает более 

высокую точность предсказаний, но и демонстрирует 

ускоренное и стабильное обучение по сравнению с 

классической LSTM, что особенно важно для задач 

прогнозирования прочностного поведения 

многослойных композитов. 

VI.ЗАКЛЮЧЕНИЕ 

В работе предложена  итеративная двунаправленная 

рекуррентная архитектура для моделирования 

прочностного поведения многослойных 

композиционных материалов. В отличие от классических 

двунаправленных LSTM, модель многократно обновляет 

скрытые состояния слоев, что позволяет учитывать 

взаимное влияние слоев и формировать устойчивое 

представление структуры. Такой механизм можно 

интерпретировать как итеративное согласование 

межслойных состояний, аналогичное 

перераспределению напряжений в композите. 

Проведенные эксперименты показывают, что 

предложенная архитектура  обеспечивает более точное 

предсказание интегрального индекса  разрушения по 

сравнению с LSTM. Данный подход открывает 

возможности для быстрого и точного прогнозирования 

механических характеристик сложных многослойных 

структур. 
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Abstract — This work addresses the problem of 

predicting the ultimate strength state of multilayer 

composite materials based on their structural description. 

The composite is represented as an ordered sequence of 

layers with known fiber orientations and a set of physico-

mechanical parameters. To solve this problem, an 

iterative bidirectional recurrent architecture is proposed, 

in which the hidden states of each layer are updated 

considering neighboring layers above and below over 

multiple iterations. This mechanism enables repeated 

interlayer state alignment, analogous to stress 

redistribution in the composite, and outperforms classical 

and bidirectional LSTM models, where information is 

propagated only once. The resulting layer representations 

are aggregated and used to predict an integrated failure 

index. A comparison with LSTM demonstrates that the 

proposed architecture more accurately captures 

nonlinear interlayer interactions and improves prediction 

accuracy. 

 

Key words — polymer composite materials, strength of 

composite materials, neural networks tools. 
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