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Abstract—In this paper we consider one approach to 

searching for systems of orthogonal diagonal Latin squares. It 
is based on the reduction of an original problem to the Boolean 
Satisfiability problem. We describe two different propositional 
encodings that we use. The first encoding is constructed for 
finding pairs of orthogonal diagonal Latin squares of order 10. 
Using this encoding we managed to find 17 previously 
unknown pairs of such squares using the volunteer computing 
project SAT@home. The second encoding is constructed for 
finding pseudotriples of orthogonal diagonal Latin squares of 
order 10. Using the pairs found with the help of SAT@home 
and the second encoding we successfully constructed several 
new pseudotriples of diagonal Latin squares of order 10. 
 

Keywords—Latin squares, Boolean satisfiability problem, 
volunteer computing, SAT@home. 
 

I. INTRODUCTION 
The combinatorial problems related to Latin squares, 

which are a form of combinatorial design [1], attract the 
attention of mathematicians for the last several centuries. In 
recent years a number of new computational approaches to 
solving these problems have appeared. For example in [2] it 
was shown that there is no finite projective plane of order 
10. It was done using special algorithms based on 
constructions and results from the theory of error correcting 
codes [3]. Corresponding experiment took several years, and 
on its final stage employed quite a powerful (at that 
moment) computing cluster. More recent example is the 
proof of hypothesis about the minimal number of clues in 
Sudoku [4] where special algorithms were used to 
enumerate and check all possible Sudoku variants. To solve 
this problem a modern computing cluster had been working 
for almost a year. In [5] to search for some sets of Latin 
squares a special program system based on the algorithms of 
search for maximal clique in a graph was used. 

Also, in application to the problems of search for 
combinatorial designs, the SAT approach shows high 
effectiveness [6]. It is based on reducing the original 
problem to the Boolean satisfiability problem (SAT) [7]. All 
known SAT solving algorithms are exponential in the worst 
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case since SAT itself is NP-hard. Nevertheless, modern SAT  
solvers successfully cope with many classes of instances 
from different areas, such as verification, cryptanalysis, 
bioinformatics, analysis of collective behavior, etc. 

For solving hard SAT instances it is necessary to involve 
significant amounts of computational resources. That is why 
the improvement of the effectiveness of SAT solving 
algorithms, including the development of algorithms that are 
able to work in parallel and distributed computing 
environments is a very important direction of research. In 
2011 for the purpose of solving hard SAT instances there 
was launched the volunteer computing project SAT@home 
[8]. One of the aims of the project is to find new 
combinatorial designs based on the systems of orthogonal 
Latin squares. 

The paper is organized as follows. In the second section 
we discuss relevant problems regarding the search for 
systems of orthogonal Latin squares. In the third section we 
describe the technique we use to construct the propositional 
encodings of the considered problems. The fourth section 
discusses the computational experiment on the search for 
pairs of orthogonal diagonal Latin squares of order 10 that 
was held in SAT@home. Later in the same section we show 
the results obtained for the search of pseudotriples of 
orthogonal diagonal Latin squares of order 10, using the 
computing cluster. 

II. SOME RELEVANT PROBLEMS OF SEARCH FOR SYSTEMS OF 
LATIN SQUARES 

The Latin square [1] of order 𝑛 is the square table 𝑛 × 𝑛 
that is filled with the elements from some set 𝑀, |𝑀| = 𝑛 in 
such a way that in each row and each column every element 
from 𝑀 appears exactly once. Leonard Euler in his works 
considered as 𝑀 the set of Latin letters, and that is how the 
Latin squares got their name. Hereinafter, 𝑀 denotes the set 
{0, … ,𝑛 − 1}. 

Two Latin squares 𝐴 and 𝐵 of the same order 𝑛 are called 
orthogonal if all ordered pairs of the kind �𝑎𝑖𝑗 , 𝑏𝑖𝑗�, 𝑖, 𝑗 ∈
{0,𝑛 − 1}, are different. If there is a set of 𝑘 different Latin 
squares among which each two squares are orthogonal,  then 
this set is called a system of 𝑘 mutually orthogonal Latin 
squares (MOLS). The question if there exist 3 MOLS of 
order 10 is of particular interest since this problem remains 
unanswered for many years. From the computational point 
of view the problem is very difficult, therefore it is 
interesting to search for such triples of Latin squares of 
order 10 for which the orthogonality condition is somehow 
weakened. For example, we can demand that it should hold 
in full only for one (two) pairs of squares out of three and 
only partly for the remaining two (one). There can be other 
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variants of weakening this condition. In the remainder of the 
paper we will refer to such systems of squares as 
pseudotriples. 

In this paper we consider the following weakened variant 
of the orthogonality condition: we fix the number of ordered 
pairs of elements for which the orthogonality condition 
should hold simultaneously for all three pairs of squares (𝐴 
and 𝐵, 𝐴 and 𝐶, 𝐵 and 𝐶), comprising the pseudotriple 
𝐴,𝐵,𝐶. The corresponding number of pairs of elements we 
call the characteristics of the pseudotriple considered. 
Currently the record pseudotriple in this notation is the one 
published in [9] (see Fig. 1). In this pseudotriple square 𝐴 is 
fully orthogonal to squares 𝐵 and 𝐶, but squares 𝐵 and 𝐶 are 
orthogonal only over 91 pairs of elements out of 100. It 
means that in our notation the characteristics of this 
pseudotriple is 91. 
 

 
Fig. 1. Record pseudotriple of order 10 from [9] 

 
In this paper we develop the SAT approach for solving 

the problem described above. To apply the SAT approach 
one has to reduce the original problem to the Boolean 
equation in the form “CNF=1” (here CNF stands for 
conjunctive normal form). Corresponding transition process 
is usually referred to as encoding the original problem to 
SAT. First attempts on the application of the SAT approach 
to finding systems of orthogonal Latin squares started in the 
90-ies years of XX century. A lot of useful information in 
this area can be found in [6]. In particular, the author of [6] 
have been trying to find three mutually orthogonal Latin 
square of order 10 for more than 10 years using a specially 
constructed grid system of 40 PCs (however, without any 
success). 

In our opinion, it is also interesting to search for systems 
of orthogonal diagonal Latin squares. The Latin square is 
called diagonal if both its primary and secondary diagonals 
contain all numbers from 0 to 𝑛 − 1, where 𝑛 is the order of 
the Latin square. In other words, the constraint on the 
uniqueness is extended from rows and columns to two 
diagonals. The existence of a pair of mutually orthogonal 
diagonal Latin squares (MODLS) of order 10 was proved 
only in 1992 – in the paper [10] three such pairs were 
presented. 

Similar to the problem of search for pseudotriples of Latin 
squares we can consider the problem of search for  
pseudotriples of diagonal Latin squares of order 10. In 
available sources we have not found if the problem in such 
formulation have been studied. Implicitly, however, in [10] 
one of squares in the first and the second pairs is the same. 
Figures 2 and 3 depict the corresponding pairs. 

Based on the pairs shown in Fig. 2 and Fig. 3 it is easy to 
construct the pseudotriple of diagonal Latin squares of order 
10 (see Fig. 4). The characteristics of this pseudotriple is 
equal to 60. 

In the next section we describe the propositional 
encodings that we used in our experiments. 

 
 

 
Fig. 2. First pair of MODLS of order 10 from [10] 

 

 
Fig. 3. Second pair of MODLS of order 10 from [10] 

 

 
Fig. 4. Pseudotriple of diagonal Latin squares of order 10 

from [10] 
 

Fig. 5 presents the corresponding 60 ordered pairs of 
elements for the pseudotriple from Fig. 4. 
 

 
Fig. 5. The set formed by 60 ordered pairs of elements, over 
which all three pairs of diagonal Latin squares from Fig. 4 

are orthogonal 

III. ENCODING PROBLEMS OF SEARCH FOR SYSTEMS OF 
LATIN SQUARES TO SAT 

It is a widely known fact that the system of mutually 
orthogonal Latin squares as a combinatorial design is 
equivalent to a number of other combinatorial designs. For 
example, the pair of MOLS is equivalent to a special set of 
transversals, to an orthogonal array with some special 
properties, etc. It means that if we want to construct a 
system of mutually orthogonal Latin squares, we can do it in 
a number of various ways using equivalent objects. That is 
why it is possible to construct vastly different propositional 
encodings for the same problem. Generally speaking, even 
when we use one particular representation of a system of 
orthogonal Latin squares, the predicates involved in the 
encoding can be transformed to the form “CNF=1” [11] in 
different ways, thus producing essentially different 
encodings. Actually, we believe that the impact of the 
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representation method and techniques used to produce the 
SAT encodings of the problem on the effectiveness of SAT 
solvers on corresponding instances is very interesting and 
we intend to study this question in the nearest future. 

In our computational experiments on the search of pairs 
of orthogonal diagonal Latin squares we used the 
propositional encoding based on the so called “naive” 
scheme. It was described, for example, in [12]. 

Let us briefly describe this encoding. We consider two 
matrices 𝐴 = �𝑎𝑖𝑗� and 𝐵 = �𝑏𝑖𝑗�, 𝑖, 𝑗 = 1, … ,𝑛���������. The 
contents of each matrix cell are encoded via 𝑛 Boolean 
variables. It means that one matrix is encoded using 𝑛3 
Boolean variables. By 𝑥(𝑖, 𝑗, 𝑘) and 𝑦(𝑖, 𝑗, 𝑘) we denote the 
variables corresponding to matrices 𝐴 and 𝐵, respectively. 
Here the variable 𝑥(𝑖, 𝑗, 𝑘), 𝑖, 𝑗, 𝑘 ∈ {1, … ,𝑛} has the value of 
“Truth” if and only if in the corresponding cell in the 𝑖-th 
row and 𝑗-th column of the matrix 𝐴 there is the number 
𝑘 − 1. For matrices 𝐴 and 𝐵 to represent Latin squares they 
should satisfy the following constraints on the 
corresponding variables. Without the loss of generality let us 
consider these constraints on the example of matrix 𝐴. 

Each matrix cell contains exactly one number from 0 to 
𝑛 − 1: 

∧𝑖=1𝑛 ∧𝑗=1𝑛 ∨𝑘=1𝑛 𝑥(𝑖, 𝑗, 𝑘); 
∧𝑖=1𝑛 ∧𝑗=1𝑛 ∧𝑘=1𝑛−1∧𝑟=𝑘+1𝑛 �¬𝑥(𝑖, 𝑗, 𝑘) ∨ ¬𝑥(𝑖, 𝑗, 𝑟)�. 

Each number from 0 to 𝑛 − 1 appears in each row exactly 
once: 

∧𝑗=1𝑛 ∧𝑘=1𝑛 ∨𝑖=1𝑛 𝑥(𝑖, 𝑗, 𝑘); 
∧𝑗=1𝑛 ∧𝑘=1𝑛 ∧𝑖=1𝑛−1∧𝑟=𝑖+1𝑛 �¬𝑥(𝑖, 𝑗, 𝑘) ∨ ¬𝑥(𝑟, 𝑗, 𝑘)�. 

Each number from 0 to 𝑛 − 1 appears in each column 
exactly once: 

∧𝑖=1𝑛 ∧𝑘=1𝑛 ∨𝑗=1𝑛 𝑥(𝑖, 𝑗, 𝑘); 
∧𝑖=1𝑛 ∧𝑘=1𝑛 ∧𝑗=1𝑛−1∧𝑟=𝑗+1𝑛 �¬𝑥(𝑖, 𝑗, 𝑘) ∨ ¬𝑥(𝑖, 𝑟, 𝑘)�. 

In a similar way we write the constraints on the variables 
forming the matrix 𝐵. After this, we need to write the 
orthogonality condition. For example, we can do it in the 
following manner: 
∧𝑖=1𝑛 ∧𝑗=1𝑛 ∧𝑘=1𝑛 ∧𝑝=1𝑛 ∧𝑞=1𝑛 ∧𝑟=1𝑛 �¬𝑥(𝑖, 𝑗, 𝑘) ∨ ¬𝑦(𝑖, 𝑗, 𝑘) ∨

¬𝑥(𝑝, 𝑞, 𝑟) ∨ ¬𝑦(𝑝, 𝑞, 𝑟)�. 
Since in the paper we consider not just Latin squares but 

diagonal Latin squares, we need to augment the described 
encoding with the constraint, specifying that the primary and 
secondary diagonals contain all numbers from 0 to 𝑛 − 1, 
where n is the order of the Latin square. 

∧𝑖=1𝑛 ∨𝑘=1𝑛 𝑥(𝑖, 𝑗, 𝑘); 
∧𝑘=1𝑛 ∧𝑖=1𝑛−1∧𝑗=i+1𝑛 (¬𝑥(𝑖, 𝑖, 𝑘) ∨ ¬𝑥(𝑗, 𝑗, 𝑘)); 

∧𝑖=1𝑛 ∨𝑘=1𝑛 𝑥(𝑖,𝑛 − 𝑖 + 1, 𝑘); 
∧𝑘=1𝑛 ∧𝑖=1𝑛−1∧𝑗=i+1𝑛 (¬𝑥(𝑖,𝑛 − 𝑖 + 1, 𝑘) ∨ ¬𝑥(𝑗, 𝑗, 𝑘)) 

Also we consider the optimization variant of the problem 
of search for three MODLS. Since at the present moment it 
is unknown if there even exist three MODLS we believe that 
it is natural to weaken this problem and to evaluate the 
effectiveness of our methods in application to the weakened 
variant. Among all the constraints that form the 
corresponding encoding it is most natural to weaken the 
orthogonality condition. It can be done via different means. 
For example, one can demand that the orthogonality 
condition holds only for fixed cells, for fixed ordered pairs, 
or for the fixed number of cells or for the fixed number of 
different pairs. In our experiments we weakened the 
orthogonality condition in the following way. We first fix 

the parameter 𝐾,𝐾 ≤ 𝑛2, called the characteristics of the 
pseudotriple. Then we demand that each two squares in the 
pseudotriple are orthogonal over the same set of ordered 
pairs of elements (𝑎1, … , 𝑏1), … , (𝑎𝐾 , … , 𝑏𝐾). 

To consider the corresponding problem in the SAT form, 
it is necessary to significantly modify the propositional 
encoding described above. In particular, we have to replace 
the “old” orthogonality condition with the “new” one. For 
this purpose we introduce an additional construct: the 
special matrix 𝑀 = �𝑚𝑖𝑗�,𝑚𝑖𝑗 ∈ {0,1}, 𝑖, 𝑗 ∈ {1, … ,𝑛}. We 
will refer to this matrix as markings matrix. We assume that 
if 𝑚𝑖𝑗 = 1, then for the corresponding pair (𝑖 − 1, 𝑗 − 1) the 
orthogonality condition must hold. In the propositional form 
this constraint is written in the following manner: 
⋀ ⋀ (¬𝑚𝑖𝑗 ∨ ⋁ ⋁ (𝑥(𝑝, 𝑞, 𝑖) ∧ 𝑦(𝑝, 𝑞, 𝑗))𝑛

𝑞=1
𝑛
𝑝=1  )𝑛

𝑗=1
𝑛
𝑖=1 . 

Additionally, if we search for the pseudotriple with the 
value of characteristics not less than 𝐾 (it corresponds to the 
situation when the markings matrix 𝑀 contains at least 𝐾 
ones) we need to encode the corresponding constraint. For 
example, it can be done via the following natural manner. 
First we sort the bits in the Boolean vector 
(𝑚11, … ,𝑚1𝑛, … ,𝑚𝑛𝑛) in the descending order, just as we 
would if it were simply integer numbers. Assume that as the 
result we obtain the Boolean vector (𝛼1, … ,𝛼𝑛2). Then it is 
clear that the constraint we need would be satisfied if and 
only if 𝛼𝐾 = 1. To sort the bits in the Boolean vector it is 
possible to use various encoding techniques. In our 
computational experiments we used the CNFs in which it 
was done using the Batcher sorting networks [13]. 

IV. COMPUTATIONAL EXPERIMENTS 
The problems of search for orthogonal Latin squares 

using the SAT approach are good candidates for 
organization of large-scale computational experiments in 
distributed computing environments. In particular, they suit 
well for volunteer computing projects [14]. It is explained 
by the fact that SAT instances on their own allow one to use 
natural large scale parallelization strategies. In 2011 the 
authors of the paper in collaboration with colleagues from 
IITP RAS developed and launched the volunteer computing 
project SAT@home [8]. This project is designed to solve 
hard SAT instances from various areas. It is based on the 
open BOINC platform [15]. As of October, 7, 2015 the 
project involves 2426 active PCs from participants all over 
the world. The average performance of SAT@home is about 
6 TFLOPs. In subsection 4.1 we describe the experiment 
performed in SAT@home on the search for new pairs of 
MODLS of order 10. In subsection 4.2 we use the pairs 
found on the previous step to search for pseudotriples of 
diagonal Latin squares of order 10. 

4.1. Finding Pairs of Orthogonal Diagonal Latin Squares 
of Order 10 
In 2012 we launched the experiment in SAT@home aimed 

at finding new pairs of orthogonal diagonal Latin squares of 
order 10. In this experiment we used the propositional 
encoding described in the previous section. The client 
application (the part that works on participants PCs) was 
based on the CDCL SAT solver MINISAT 2.2 [16] with 
slight modifications, that made it possible to reduce the 
amount of RAM consumed. 

In the SAT instances to be solved we fixed the first row of 
the first Latin square to 0 1 2 3 4 5 6 7 8 9 (by assigning 
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values to corresponding Boolean variables). It is possible 
because every pair of MODLS can be transformed to such 
kind by means of simple manipulations that do not violate 
orthogonality and diagonality conditions. The 
decomposition of this SAT instance was performed in the 
following manner. By varying the values in the first 8 cells 
of the second and the third rows of the first Latin square we 
produced about 230 billions of possible variants of 
corresponding assignments, that do not violate any 
condition. We decided to process in SAT@home only first 
20 million subproblems out of 230 billions (i.e. about 
0.0087% of the search space). As a result, each subproblem 
was formed by assigning values to variables corresponding 
to the first 8 cells of the second and the third rows (with the 
fixed first row) in the SAT instance considered. The values 
of remaining 74 cells of the first Latin square and of all cells 
of the second Latin square were unknown, so the SAT 
solver had to find it. 

To solve each subproblem the SAT solver MINISAT 2.2 
had the limit of 2600 restarts that is approximately equal to 
5 minutes of work on one core of Intel Core 2 Duo E8400 
processor. After reaching the limit the computations were 
interrupted. In one job batch downloaded by project 
participant there were 20 of such subproblems. This number 
was chosen so that one job batch can be processed in about 
2 hours on one CPU core (because it suits well for BOINC 
projects). To process 20 million subproblems (in the form of 
1 million job batches) it took SAT@home about 9 months 
(from September 2012 to May 2013). During this 
experiment the CluBORun tool [17] was used for increasing 
performance of SAT@home by engaging idle resources of a 
computing cluster. The computations for the majority of 
subproblems were interrupted, but 17 subproblems were 
solved and resulted in 17 previously unknown pairs of 
MODLS of order 10 (we compared them with the pairs from 
[10]). All the pairs found are published on the site of the 
SAT@home project1 in the “Found solutions” section. Fig. 6 
presents the first pair of MODLS of order 10 found in the 
SAT@home project. 
 

 
Fig. 6. The first pair of MODLS of order 10 found in the 

SAT@home project. 
 

As we noted in the previous section, one can construct 
many different propositional encodings for the problem of 
search for pairs of orthogonal Latin squares. However, in 
this case the question of comparison of the effectiveness of 
corresponding encodings becomes highly relevant. The 
practice showed that the number of variables, clauses and 
literals usually does not make it possible to adequately 
evaluate the effectiveness of SAT solvers on corresponding 
SAT instances. In the nearest future we plan to use the pairs 
found in the SAT@home project to estimate the 
effectiveness of different encodings of this particular 
problem. For each encoding we can construct the set of 

CNFs (where each CNF corresponds to one known pair of 
MODLS of order 10) and to make these SAT instances 
solvable in reasonable time we can weaken them by 
assigning correct values to Boolean variables corresponding 
to several rows of the first Latin square of the pair. This 
series of experiments will make it possible to choose the 
most effective combination SAT solver + SAT encoding for 
this particular problem. 

4.2. Finding Pseudotriples of Diagonal Latin Squares of 
Order 10 
We considered the following formulation of the problem: 

to find the pseudotriple of diagonal Latin squares of order 
10 with the characteristics value larger than that of the 
pseudotriple from [10] (see section 2). 

On the first stage of the experiment using the encodings 
described above we constructed the CNFs, in which there 
was encoded the constraint that the value of characteristics 
K (see section 3) is greater or equal to the number varied 
from 63 to 66 with step 1 (i.e. we considered 4 such CNFs). 
In computational experiments we used the parallel SAT 
solvers PLINGELING and TREENGELING [18]. Our choice is 
motivated by the fact that on the SAT competition 2014 
these solvers rated in top 3 in parallel categories “Parallel, 
Application SAT+UNSAT” and “Parallel, Hard-
combinatorial SAT+UNSAT”. The experiments were 
carried out within the computing cluster “Academician V.M. 
Matrosov” of Irkutsk supercomputer center of SB RAS. 
Each computing node of this cluster has two 16-core AMD 
Opteron 6276 processors. Thus, each of the SAT solvers 
mentioned was launched in multithreaded mode on one 
computing node, i.e. it employed 32 threads.  We used time 
limit 1 day for per instance. Table 1 shows the results 
obtained using these solvers in application to 4 SAT 
instances considered with time limit of 1 day per instance. 
 

K 63 64 65 66 
PLINGELING 1 h 10 m 1 h 29 m 1 h 21 m > 1 day 

TREENGELING 2h 2 m 4h 8 m > 1 day > 1 day 
Table 1. The runtime of SAT solvers applied to CNFs 
encoding the search for pseudotriples with different 

constraints on the value of characteristics (K). 
 

As a result of the experiments of the first stage we found 
the pseudotriple with the characteristics value 65 that is 
better than that of the pseudotriple from [10] (its 
characteristics value is 60). Note that the runtime of all 
considered solvers on the CNF encoding the search for a 
pseudotriple with characteristics value 66 was greater than 1 
day (that is why the computations were interrupted and no 
results were obtained), and by this time each of the solvers 
consumed all available RAM of the computing node (64 Gb) 
and started using swap. 

On the second stage of our experiments on the search for 
pseudotriples we used the previously found pairs of 
MODLS of order 10 (3 pairs from [10] and 17 pairs found in 
SAT@home). For a fixed value of characteristics K we 
formed 20 CNFs by assigning values to the Boolean 
variables corresponding to first two squares (i.e. for each 
pair of MODLS and for each value of 𝐾 we constructed one 
such CNF). Thus each of the CNFs encoded the following 
problem: for two fixed orthogonal diagonal Latin squares to 
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find a diagonal Latin square such that in total they form the 
pseudotriple with characteristics value ≥ 𝐾. 

We considered 6 values of parameter 𝐾 – from 65 to 70. 
It means that in total we constructed 120 SAT instances (20 
for each value of K). Each of two considered solvers was 
launched on all these CNFs on one computing node of the 
cluster with time limit of 1 hour per instance. Table 2 shows 
how many SAT instances out of the family of 20 could the 
SAT solver solve within the time limit. As a result we 
managed to find the pseudotriple with the characteristics 
value 70. 
 

K 65 66 67 68 69 70 
PLINGELING 15 11 11 1 3 0 

TREENGELING 20 19 15 3 11 1 
Table 2. The number of SAT instances, encoding the search 
for pseudotriples of diagonal Latin squares with two known 

squares, that the solver managed to solve within the time 
limit of one hour (out of 20 SAT instances) 

 
The experiments of this stage required substantial 

computational resources since the amount of SAT instances 
was quite large. To search for pseudotriples with 
characteristics greater than 70 we chose the solver that 
performed best on the second stage. As it is easy to see from 
the Table 2 it was TREENGELING. On the third stage we 
launched this SAT solver on 80 SAT instances encoding the 
search for pseudotriples with two known squares and K 
varying from 71 to 74. The time limit was increased to 10 
hours. As a result we found pseudotriple with characteristics 
73. On all 20 SAT instances with  K = 74 the solution was 
not found before the time limit. Fig. 7 presents the record 
pseudotriple with characteristics value 73. 
 

 
Fig. 7. New pseudotriple of diagonal Latin squares of order 

10 with characteristics value 73 
 

Fig. 8 shows the corresponding 73 ordered pairs of 
elements over which the orthogonality condition holds for 
all pairs of Latin squares from the triple. 

 

 
Fig. 8. The set formed by 73 ordered pairs of elements, over 
which all three pairs of squares from Fig. 7 are orthogonal 

 
Note that this pseudotriple is based on one of the 17 pairs 

of MODLS of order 10 found in the SAT@home project (in 
the figure the first two squares correspond to the pair found 
in SAT@home). 

V. RELATED WORK 
The predecessor of the SAT@home was the BNB-Grid 

system [19], [20]. Apparently, [21] became the first paper 
about the use of a desktop grid based on the BOINC 
platform for solving SAT. It did not evolve into a publicly 
available volunteer computing project (like SAT@home 
did). The  volunteer computing project with the most similar 
to SAT@home problem area is Sudoku@vtaiwan [22]. It 
was used to confirm the solution of the problem regarding 
the minimal number of clues in Sudoku, previously solved 
on a computing cluster [4]. In [6] there was described the 
unsuccessful attempt to solve the problem of search for three 
MOLS of order 10 using the PSATO SAT solver in a grid 
system. 

VI. CONCLUSION 
In the paper we describe the results obtained by applying 

the resources of the volunteer computing project 
SAT@home to searching for systems of diagonal Latin 
squares of order 10. We reduce the original combinatorial 
problem to the Boolean satisfiability problem, then 
decompose it and launch solving of corresponding 
subproblems in SAT@home. Using this approach we found 
17 new pairs of orthogonal diagonal Latin squares of order 
10. Based on these pairs, we have found new systems of 
three partly orthogonal diagonal Latin squares of order 10. 
In the future we plan to develop new SAT encodings for the 
considered combinatorial problems and also to find new 
orthogonal (or partly orthogonal) systems of Latin squares. 
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