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The Search for Systems of Diagonal Latin
Squares Using the SAT@home Project

Oleg Zaikin and Stepan Kochemazov

Abstract—In this paper we consider one approach to
searching for systems of orthogonal diagonal Latin squares. It
is based on the reduction of an original problem to the Boolean
Satisfiability problem. We describe two different propositional
encodings that we use. The first encoding is constructed for
finding pairs of orthogonal diagonal Latin squares of order 10.
Using this encoding we managed to find 17 previously
unknown pairs of such squares using the volunteer computing
project SAT@home. The second encoding is constructed for
finding pseudotriples of orthogonal diagonal Latin squares of
order 10. Using the pairs found with the help of SAT@home
and the second encoding we successfully constructed several
new pseudotriples of diagonal Latin squares of order 10.

Keywords—Latin squares, Boolean satisfiability problem,
volunteer computing, SAT@home.

I. INTRODUCTION

The combinatorial problems related to Latin squares,
which are a form of combinatorial design [1], attract the
attention of mathematicians for the last several centuries. In
recent years a number of new computational approaches to
solving these problems have appeared. For example in [2] it
was shown that there is no finite projective plane of order
10. It was done using special algorithms based on
constructions and results from the theory of error correcting
codes [3]. Corresponding experiment took several years, and
on its final stage employed quite a powerful (at that
moment) computing cluster. More recent example is the
proof of hypothesis about the minimal number of clues in
Sudoku [4] where special algorithms were used to
enumerate and check all possible Sudoku variants. To solve
this problem a modern computing cluster had been working
for almost a year. In [5] to search for some sets of Latin
squares a special program system based on the algorithms of
search for maximal clique in a graph was used.

Also, in application to the problems of search for
combinatorial designs, the SAT approach shows high
effectiveness [6]. It is based on reducing the original
problem to the Boolean satisfiability problem (SAT) [7]. All
known SAT solving algorithms are exponential in the worst
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case since SAT itself is NP-hard. Nevertheless, modern SAT
solvers successfully cope with many classes of instances
from different areas, such as verification, cryptanalysis,
bioinformatics, analysis of collective behavior, etc.

For solving hard SAT instances it is necessary to involve
significant amounts of computational resources. That is why
the improvement of the effectiveness of SAT solving
algorithms, including the development of algorithms that are
able to work in parallel and distributed computing
environments is a very important direction of research. In
2011 for the purpose of solving hard SAT instances there
was launched the volunteer computing project SAT@home
[8]. One of the aims of the project is to find new
combinatorial designs based on the systems of orthogonal
Latin squares.

The paper is organized as follows. In the second section
we discuss relevant problems regarding the search for
systems of orthogonal Latin squares. In the third section we
describe the technique we use to construct the propositional
encodings of the considered problems. The fourth section
discusses the computational experiment on the search for
pairs of orthogonal diagonal Latin squares of order 10 that
was held in SAT@home. Later in the same section we show
the results obtained for the search of pseudotriples of
orthogonal diagonal Latin squares of order 10, using the
computing cluster.

1. SOME RELEVANT PROBLEMS OF SEARCH FOR SYSTEMS OF
LATIN SQUARES

The Latin square [1] of order n is the square table n x n
that is filled with the elements from some set M, |[M| = n in
such a way that in each row and each column every element
from M appears exactly once. Leonard Euler in his works
considered as M the set of Latin letters, and that is how the
Latin squares got their name. Hereinafter, M denotes the set
{0,..,n—1}.

Two Latin squares A and B of the same order n are called
orthogonal if all ordered pairs of the kind (a;;, b;;),i,j €
{0,n — 13}, are different. If there is a set of k different Latin
squares among which each two squares are orthogonal, then
this set is called a system of k mutually orthogonal Latin
squares (MOLS). The question if there exist 3 MOLS of
order 10 is of particular interest since this problem remains
unanswered for many years. From the computational point
of view the problem is very difficult, therefore it is
interesting to search for such triples of Latin squares of
order 10 for which the orthogonality condition is somehow
weakened. For example, we can demand that it should hold
in full only for one (two) pairs of squares out of three and
only partly for the remaining two (one). There can be other
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variants of weakening this condition. In the remainder of the
paper we will refer to such systems of squares as
pseudotriples.

In this paper we consider the following weakened variant
of the orthogonality condition: we fix the number of ordered
pairs of elements for which the orthogonality condition
should hold simultaneously for all three pairs of squares (4
and B, A and C, B and C), comprising the pseudotriple
A, B, C. The corresponding number of pairs of elements we
call the characteristics of the pseudotriple considered.
Currently the record pseudotriple in this notation is the one
published in [9] (see Fig. 1). In this pseudotriple square A is

[0046175823] [08517346927
7194538062 5172080346
16283175900 1720568034
GOT3284015 DG43027158
5367429108 3086415927
'=15112950637| 2= |1308650271
2530896471 T295146803
3289041756 G430892715
9751603284 2964371580
| 180576G2349 ] 8517203469

Fig. 2. First pair of MODLS of order 10 from [10]

fully orthogonal to squares B and C, but squares B and C are
orthogonal only over 91 pairs of elements out of 100. It
means that in our notation the characteristics of this
pseudotriple is 91.

(08075642317 (07801234567 [07T80123456]
9146273805 9061832547 6428951370
TA25138690 7204301865 1953276018
8653021047 8530217694 5176438902
y_ [6218409573) 5 16953074218 3200715684
‘ 1932750168 1176508932 1037682540
5371086924 5428060371 2801349765
3509842716 3617485029 0542860137
1760305482 1842650703 T365004821
(20846173509 [2395T46180] 8614507293

Fig. 1. Record pseudotriple of order 10 from [9]

In this paper we develop the SAT approach for solving
the problem described above. To apply the SAT approach
one has to reduce the original problem to the Boolean
equation in the form “CNF=1" (here CNF stands for
conjunctive normal form). Corresponding transition process
is usually referred to as encoding the original problem to
SAT. First attempts on the application of the SAT approach
to finding systems of orthogonal Latin squares started in the
90-ies years of XX century. A lot of useful information in
this area can be found in [6]. In particular, the author of [6]
have been trying to find three mutually orthogonal Latin
square of order 10 for more than 10 years using a specially
constructed grid system of 40 PCs (however, without any
success).

In our opinion, it is also interesting to search for systems
of orthogonal diagonal Latin squares. The Latin square is
called diagonal if both its primary and secondary diagonals
contain all numbers from 0 to n — 1, where n is the order of
the Latin square. In other words, the constraint on the
uniqueness is extended from rows and columns to two
diagonals. The existence of a pair of mutually orthogonal
diagonal Latin squares (MODLS) of order 10 was proved
only in 1992 — in the paper [10] three such pairs were
presented.

Similar to the problem of search for pseudotriples of Latin
squares we can consider the problem of search for
pseudotriples of diagonal Latin squares of order 10. In
available sources we have not found if the problem in such
formulation have been studied. Implicitly, however, in [10]
one of squares in the first and the second pairs is the same.
Figures 2 and 3 depict the corresponding pairs.

Based on the pairs shown in Fig. 2 and Fig. 3 it is easy to
construct the pseudotriple of diagonal Latin squares of order
10 (see Fig. 4). The characteristics of this pseudotriple is
equal to 60.

In the next section we describe the propositional
encodings that we used in our experiments.

[0419827356] [0851 7346927
3168204507 5172080346
GH524903871 1720568034
1853740062 9643027158
9205478613 3086415927
A=ls6a7150024| P~ |4308650271
10725361908 7205146803
2041685730 6430892715
7306012485 2064371580
5780361249 (85172034609 ]

Fig. 3. Second pair of MODLS of order 10 from [10]

[08517346927 [09461758237 [0419827356]
517208503406 T194535062 3168294507
1729568034 1G28317590 G524903871
G9G43027158 GOT3I284915 18537489062
| — 3086415927 B 5367429108 0205478613
) 1308659271 2412050637 263 50024
T205146803 2530806471 4072536198
6430802715 3280041756 2941685730
2064371580 9751603284 7396012485
(85172034609 1805762349 57803612409 ]
Fig. 4. Pseudotriple of diagonal Latin squares of order 10
from [10]

Fig. 5 presents the corresponding 60 ordered pairs of
elements for the pseudotriple from Fig. 4.

[000102 — — 0506 — 08 — 7
10 11 13 — 1516 — 18
- 2122 -« 2425 - 27T - 29
32 33 3637 — 39
— 41 — — 444546 — 48 49
50 — 5253 — 55 — 57 5850
G606l — — — G566 — — 69
- = T27374T5 =TT =79
— — — B3B485 — BT B8 —
L9091 — 93 94 — 96 97 98 99 |

Fig. 5. The set formed by 60 ordered pairs of elements, over
which all three pairs of diagonal Latin squares from Fig. 4
are orthogonal

I11. ENCODING PROBLEMS OF SEARCH FOR SYSTEMS OF
LATIN SQUARES TO SAT

It is a widely known fact that the system of mutually
orthogonal Latin squares as a combinatorial design is
equivalent to a number of other combinatorial designs. For
example, the pair of MOLS is equivalent to a special set of
transversals, to an orthogonal array with some special
properties, etc. It means that if we want to construct a
system of mutually orthogonal Latin squares, we can do it in
a number of various ways using equivalent objects. That is
why it is possible to construct vastly different propositional
encodings for the same problem. Generally speaking, even
when we use one particular representation of a system of
orthogonal Latin squares, the predicates involved in the
encoding can be transformed to the form “CNF=1" [11] in
different ways, thus producing essentially different
encodings. Actually, we believe that the impact of the
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representation method and techniques used to produce the
SAT encodings of the problem on the effectiveness of SAT
solvers on corresponding instances is very interesting and
we intend to study this question in the nearest future.

In our computational experiments on the search of pairs
of orthogonal diagonal Latin squares we used the
propositional encoding based on the so called “naive”
scheme. It was described, for example, in [12].

Let us briefly describe this encoding. We consider two
matrices A = ||a;;|| and B =||b;|, i,j=T1 - n. The
contents of each matrix cell are encoded via n Boolean
variables. It means that one matrix is encoded using n®
Boolean variables. By x(i, j, k) and y(i, j, k) we denote the
variables corresponding to matrices A and B, respectively.
Here the variable x(i, j, k), i, j, k € {1, ..., n} has the value of
“Truth” if and only if in the corresponding cell in the i-th
row and j-th column of the matrix A there is the number
k — 1. For matrices A and B to represent Latin squares they
should satisfy the following constraints on the
corresponding variables. Without the loss of generality let us
consider these constraints on the example of matrix A.

Each matrix cell contains exactly one number from 0 to
n—1:

N=1N=1Vi=1 (0, ], k);
A?:l/\j=1/\‘lrcl;%/\;l=k+1 (—|X(i,j, k) \% —|X(i,j, T))
Each number from 0 to n — 1 appears in each row exactly
once:
A}lzlA’I;L:lV’il:l x(i,j, k);
A]7'1=1A‘l,cl=1/\?=_11/\;r’l=i+1 (ﬂX(l',j, k) \% —|X(T,j, k))
Each number from 0 to n—1 appears in each column
exactly once:
A?:l/\}}:lv]n:l x(i,j, k);
Ny AR A NN 1y (2x (6, K V =x (@, 7, K)).

In a similar way we write the constraints on the variables
forming the matrix B. After this, we need to write the
orthogonality condition. For example, we can do it in the
following manner:

/\?:1/\]':1/\2:1/\;:1/\:;1:1/\?:1 (_'x(i:j: k)v-y(,jk)v

-x(p,q, )V -y(p,q,1)).

Since in the paper we consider not just Latin squares but
diagonal Latin squares, we need to augment the described
encoding with the constraint, specifying that the primary and
secondary diagonals contain all numbers from 0 to n — 1,
where n is the order of the Latin square.

Ny VEy X0, k)
A}}=1A7il=_11/\}:l=i+1 (ﬁx(i' i' k) \% _|X(j,j, k))!
N Vi x(in—i+1,k);
Nema NS N (Rx(in =i+ 1,k) V =x(f, /, k)

Also we consider the optimization variant of the problem
of search for three MODLS. Since at the present moment it
is unknown if there even exist three MODLS we believe that
it is natural to weaken this problem and to evaluate the
effectiveness of our methods in application to the weakened
variant. Among all the constraints that form the
corresponding encoding it is most natural to weaken the
orthogonality condition. It can be done via different means.
For example, one can demand that the orthogonality
condition holds only for fixed cells, for fixed ordered pairs,
or for the fixed number of cells or for the fixed number of
different pairs. In our experiments we weakened the
orthogonality condition in the following way. We first fix

the parameter K, K < n?, called the characteristics of the
pseudotriple. Then we demand that each two squares in the
pseudotriple are orthogonal over the same set of ordered
pairs of elements (al, ..., bY), ..., (a¥, ..., b¥).

To consider the corresponding problem in the SAT form,
it is necessary to significantly modify the propositional
encoding described above. In particular, we have to replace
the “old” orthogonality condition with the “new” one. For
this purpose we introduce an additional construct: the
special matrix M = {m;;},m;; € {0,1},i,j € {1, ...,n}. We
will refer to this matrix as markings matrix. We assume that
if m;; = 1, then for the corresponding pair (i — 1,j — 1) the
orthogonality condition must hold. In the propositional form
this constraint is written in the following manner:

Nz Nj=1 (=i V V521 V=1 (x(p, g, D) Ay (0,9, ) ).

Additionally, if we search for the pseudotriple with the
value of characteristics not less than K (it corresponds to the
situation when the markings matrix M contains at least K
ones) we need to encode the corresponding constraint. For
example, it can be done via the following natural manner.
First we sort the bits in the Boolean vector
(myq, -, My, -.., Myy) In the descending order, just as we
would if it were simply integer numbers. Assume that as the
result we obtain the Boolean vector (ay, ..., a,2). Then it is
clear that the constraint we need would be satisfied if and
only if ay = 1. To sort the bits in the Boolean vector it is
possible to use various encoding techniques. In our
computational experiments we used the CNFs in which it
was done using the Batcher sorting networks [13].

IV. COMPUTATIONAL EXPERIMENTS

The problems of search for orthogonal Latin squares
using the SAT approach are good candidates for
organization of large-scale computational experiments in
distributed computing environments. In particular, they suit
well for volunteer computing projects [14]. It is explained
by the fact that SAT instances on their own allow one to use
natural large scale parallelization strategies. In 2011 the
authors of the paper in collaboration with colleagues from
IITP RAS developed and launched the volunteer computing
project SAT@home [8]. This project is designed to solve
hard SAT instances from various areas. It is based on the
open BOINC platform [15]. As of October, 7, 2015 the
project involves 2426 active PCs from participants all over
the world. The average performance of SAT@home is about
6 TFLOPs. In subsection 4.1 we describe the experiment
performed in SAT@home on the search for new pairs of
MODLS of order 10. In subsection 4.2 we use the pairs
found on the previous step to search for pseudotriples of
diagonal Latin squares of order 10.

4.1. Finding Pairs of Orthogonal Diagonal Latin Squares
of Order 10

In 2012 we launched the experiment in SAT@home aimed
at finding new pairs of orthogonal diagonal Latin squares of
order 10. In this experiment we used the propositional
encoding described in the previous section. The client
application (the part that works on participants PCs) was
based on the CDCL SAT solver MINISAT 2.2 [16] with
slight modifications, that made it possible to reduce the
amount of RAM consumed.

In the SAT instances to be solved we fixed the first row of
the first Latin square to 0123456789 (by assigning
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values to corresponding Boolean variables). It is possible
because every pair of MODLS can be transformed to such
kind by means of simple manipulations that do not violate
orthogonality = and  diagonality  conditions.  The
decomposition of this SAT instance was performed in the
following manner. By varying the values in the first 8 cells
of the second and the third rows of the first Latin square we
produced about 230 billions of possible variants of
corresponding assignments, that do not violate any
condition. We decided to process in SAT@home only first
20 million subproblems out of 230 billions (i.e. about
0.0087% of the search space). As a result, each subproblem
was formed by assigning values to variables corresponding
to the first 8 cells of the second and the third rows (with the
fixed first row) in the SAT instance considered. The values
of remaining 74 cells of the first Latin square and of all cells
of the second Latin square were unknown, so the SAT
solver had to find it.

To solve each subproblem the SAT solver MINISAT 2.2
had the limit of 2600 restarts that is approximately equal to
5 minutes of work on one core of Intel Core 2 Duo E8400
processor. After reaching the limit the computations were
interrupted. In one job batch downloaded by project
participant there were 20 of such subproblems. This number
was chosen so that one job batch can be processed in about
2 hours on one CPU core (because it suits well for BOINC
projects). To process 20 million subproblems (in the form of
1 million job batches) it took SAT @home about 9 months
(from September 2012 to May 2013). During this
experiment the CluBORun tool [17] was used for increasing
performance of SAT@home by engaging idle resources of a
computing cluster. The computations for the majority of
subproblems were interrupted, but 17 subproblems were
solved and resulted in 17 previously unknown pairs of
MODLS of order 10 (we compared them with the pairs from
[10]). All the pairs found are published on the site of the
SAT@home projectz in the “Found solutions” section. Fig. 6
presents the first pair of MODLS of order 10 found in the
SAT@home project.

(01234567897 [0123456789]
1204379856 7519280463
7350048621 1034675298
3568904172 9847521036
1972681503 GTO0832154
SR46T13200 4651098327
8491237065| [2385164070
67301250948 [5278349601
Q015862437 3462907815
2687590314 [8906713542]
Fig. 6. The first pair of MODLS of order 10 found in the
SAT@home project.

As we noted in the previous section, one can construct
many different propositional encodings for the problem of
search for pairs of orthogonal Latin squares. However, in
this case the question of comparison of the effectiveness of
corresponding encodings becomes highly relevant. The
practice showed that the number of variables, clauses and
literals usually does not make it possible to adequately
evaluate the effectiveness of SAT solvers on corresponding
SAT instances. In the nearest future we plan to use the pairs
found in the SAT@home project to estimate the
effectiveness of different encodings of this particular
problem. For each encoding we can construct the set of

CNFs (where each CNF corresponds to one known pair of
MODLS of order 10) and to make these SAT instances
solvable in reasonable time we can weaken them by
assigning correct values to Boolean variables corresponding
to several rows of the first Latin square of the pair. This
series of experiments will make it possible to choose the
most effective combination SAT solver + SAT encoding for
this particular problem.

4.2. Finding Pseudotriples of Diagonal Latin Squares of
Order 10

We considered the following formulation of the problem:
to find the pseudotriple of diagonal Latin squares of order
10 with the characteristics value larger than that of the
pseudotriple from [10] (see section 2).

On the first stage of the experiment using the encodings
described above we constructed the CNFs, in which there
was encoded the constraint that the value of characteristics
K (see section 3) is greater or equal to the number varied
from 63 to 66 with step 1 (i.e. we considered 4 such CNFs).
In computational experiments we used the parallel SAT
solvers PLINGELING and TREENGELING [18]. Our choice is
motivated by the fact that on the SAT competition 2014
these solvers rated in top 3 in parallel categories “Parallel,
Application  SAT+UNSAT” and  “Parallel, Hard-
combinatorial SAT+UNSAT”. The experiments were
carried out within the computing cluster “Academician V.M.
Matrosov” of Irkutsk supercomputer center of SB RAS.
Each computing node of this cluster has two 16-core AMD
Opteron 6276 processors. Thus, each of the SAT solvers
mentioned was launched in multithreaded mode on one
computing node, i.e. it employed 32 threads. We used time
limit 1 day for per instance. Table 1 shows the results
obtained using these solvers in application to 4 SAT
instances considered with time limit of 1 day per instance.

K 63 64 65 66
PLINGELING | 1h10m | 1h29m | 1h21lm | >1day
TREENGELING | 2h2m 4h8m >1day | >1day
Table 1. The runtime of SAT solvers applied to CNFs
encoding the search for pseudotriples with different
constraints on the value of characteristics (K).

As a result of the experiments of the first stage we found
the pseudotriple with the characteristics value 65 that is
better than that of the pseudotriple from [10] (its
characteristics value is 60). Note that the runtime of all
considered solvers on the CNF encoding the search for a
pseudotriple with characteristics value 66 was greater than 1
day (that is why the computations were interrupted and no
results were obtained), and by this time each of the solvers
consumed all available RAM of the computing node (64 Gb)
and started using swap.

On the second stage of our experiments on the search for
pseudotriples we used the previously found pairs of
MODLS of order 10 (3 pairs from [10] and 17 pairs found in
SAT@home). For a fixed value of characteristics K we
formed 20 CNFs by assigning values to the Boolean
variables corresponding to first two squares (i.e. for each
pair of MODLS and for each value of K we constructed one
such CNF). Thus each of the CNFs encoded the following
problem: for two fixed orthogonal diagonal Latin squares to
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find a diagonal Latin square such that in total they form the
pseudotriple with characteristics value > K.

We considered 6 values of parameter K — from 65 to 70.
It means that in total we constructed 120 SAT instances (20
for each value of K). Each of two considered solvers was
launched on all these CNFs on one computing node of the
cluster with time limit of 1 hour per instance. Table 2 shows
how many SAT instances out of the family of 20 could the
SAT solver solve within the time limit. As a result we
managed to find the pseudotriple with the characteristics
value 70.

K 65 | 66 | 67 | 68 | 69 | 70
PLINGELING | 15 | 11 | 11 | 1 3 0
TREENGELING | 20 | 19 | 15 | 3 |11 | 1
Table 2. The number of SAT instances, encoding the search
for pseudotriples of diagonal Latin squares with two known
squares, that the solver managed to solve within the time

limit of one hour (out of 20 SAT instances)

The experiments of this stage required substantial
computational resources since the amount of SAT instances
was quite large. To search for pseudotriples with
characteristics greater than 70 we chose the solver that
performed best on the second stage. As it is easy to see from
the Table 2 it was TREENGELING. On the third stage we
launched this SAT solver on 80 SAT instances encoding the
search for pseudotriples with two known squares and K
varying from 71 to 74. The time limit was increased to 10
hours. As a result we found pseudotriple with characteristics
73. On all 20 SAT instances with K = 74 the solution was
not found before the time limit. Fig. 7 presents the record
pseudotriple with characteristics value 73.

(012345678097 (01234567897 (134608579027
1204387056 TA8059236 | B624710530
5690734812 4250378106 GETO351420
0875640123 6047013852 5010468273
(_ [3759812640) 5 9618240537 1257893016
‘ T518269304 1306784025 9702534861
2487193065 8935621470 0191672385
8061025437 5702139648 3165207948
6342001578 3871065204 2038046157
4036578291 | (256480701 3] 7583120604

Fig. 7. New pseudotriple of diagonal Latin squares of order
10 with characteristics value 73

Fig. 8 shows the corresponding 73 ordered pairs of
elements over which the orthogonality condition holds for
all pairs of Latin squares from the triple.

[— 010203040506 — 08097

10— 1213141516 — 1819

20 23 24 25 26 27 28

30 — 323334353637 38 —

4041 — 4344 — 46 47 — 49

50 51 — 53 — 55 56 57 58 —

G0 — 62 63 64 65 66 — 68 GO

TO71L — 73 =75 = 777879

— Bl 8283 — — — BT &858
L9091 92 — 9195 — 97 — 99|
Fig. 8. The set formed by 73 ordered pairs of elements, over
which all three pairs of squares from Fig. 7 are orthogonal

Note that this pseudotriple is based on one of the 17 pairs
of MODLS of order 10 found in the SAT@home project (in
the figure the first two squares correspond to the pair found
in SAT@home).

V.RELATED WORK

The predecessor of the SAT@home was the BNB-Grid
system [19], [20]. Apparently, [21] became the first paper
about the use of a desktop grid based on the BOINC
platform for solving SAT. It did not evolve into a publicly
available volunteer computing project (like SAT@home
did). The volunteer computing project with the most similar
to SAT@home problem area is Sudoku@vtaiwan [22]. It
was used to confirm the solution of the problem regarding
the minimal number of clues in Sudoku, previously solved
on a computing cluster [4]. In [6] there was described the
unsuccessful attempt to solve the problem of search for three
MOLS of order 10 using the PsATO SAT solver in a grid
system.

VI. CONCLUSION

In the paper we describe the results obtained by applying
the resources of the volunteer computing project
SAT@home to searching for systems of diagonal Latin
squares of order 10. We reduce the original combinatorial
problem to the Boolean satisfiability problem, then
decompose it and launch solving of corresponding
subproblems in SAT@home. Using this approach we found
17 new pairs of orthogonal diagonal Latin squares of order
10. Based on these pairs, we have found new systems of
three partly orthogonal diagonal Latin squares of order 10.
In the future we plan to develop new SAT encodings for the
considered combinatorial problems and also to find new
orthogonal (or partly orthogonal) systems of Latin squares.
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