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Abstract—This article analyzes machine learning methods 

for efficient access and rapid retrieval of objects such as 

images, videos, and documents in large data sets. Various 
hashing methods are considered: deep lifelong cross-modal 

hashing, learned locality-sensitive hashing, graph-collaborated 

auto-encoder hashing for multi-view binary clustering, 

sparsity-induced generative adversarial hashing, contrastive 

language-image pre-training multimodal hashing, locality-
sensitive hashing with query-based dynamic bucketing, deep 

supervised hashing, and cross-modal hashing methods. A 

computational experiment was conducted to comparatively 

analyze and evaluate the accuracy, loss function, and 

performance of the hashing algorithms: deep hashing, deep 
supervised hashing, and deep learning hashing. Python 

programs were developed for calculating the hashing 

algorithms and presenting graphical results. For multimodal 

tasks, where data from various sources must be integrated and 

supplemented with new data, deep lifelong cross-modal 
hashing is the most suitable solution. An analysis of deep 

hashing methods has demonstrated the superiority of deep 

supervised hashing when used with labeled data and distinct 

object classes. 

 
Keywords—Hashing Methods, Deep Hashing, Deep 

Supervised Hashing, Deep Learning Hashing 

I. INTRODUCTION 

Modern search engines widely use various hashing methods 

to handle large volumes of da ta. The use of hashing 

algorithms can significantly improve performance and 

reduce search time for large volumes of data. 

Search engines widely use various hashing methods, each 

with its own advantages and disadvantages. Selecting the 

most effective hashing method can significantly improve 

search engine performance for large data sets. Determining 

the most effective hashing method for improving search 

engine performance is a pressing practical problem. 

There are numerous scientific papers devoted to hashing 

methods. Here is a brief overview of current research. 

 

In a research study [1], deep lifelong cross-modal hashing 

is proposed to solve the problem of continuous data arrival 

and high overtraining cost for updating hash functions in 

cross-modal retrieval. The study proposes a continuous 
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learning method that updates hash functions by directly 

training on incremental data. As a result, the training time is 

reduced. To improve the performance, a lifetime hashing 

loss is introduced to ensure that the original hash codes 

remain invariant when participating in continuous training. 

The proposed method incorporates multi-label semantic 

similarity to control the distribution heterogeneity during 

continuous data arrival. Experiments on benchmark datasets 

showed more than 20% improvement in retrieval accuracy 

and more than 80% reduction in training time when new 

data arrives. The proposed deep lifelong cross-modal 

hashing method has significantly expanded the capabilities 

of hashing for cross-modal retrieval tasks. To improve 

performance on large volumes of data, the method uses deep 

learning and allows for fast execution of search queries due 

to the efficiency of processing nonlinear heterogeneous 

features. 

The paper [2] presents a method called Learned Locality-

Sensitive Hashing (LLSH), based on deep neural networks, 

that efficiently maps high-dimensional data to a lower-

dimensional space. This method takes advantage of GPUs 

and deep neural networks to create an improved form of 

locality-sensitive hashing. LLSH replaces traditional 

Locality-Sensitive Hashing (LSH) families of functions with 

parallel multi-layer neural networks. This reduces both time 

and memory consumption while maintaining query 

accuracy. The paper presents experimental results on 

various datasets, which show that LLSH is highly efficient 

in terms of query accuracy, processing time, and memory 

usage. 

In [3], a  new hashing method called Graph-Collaborated 

Auto-Encoder Hashing for Multi-view Binary Clustering 

(GCAE) is proposed to solve the problems of using 

unsupervised hashing methods for large amounts of data. By 

training on compact binary data, this GCAE method reduces 

the storage and computation costs for binary clustering with 

a large number of views. The algorithm is dynamically 

trained on affinity graphs with low-rank constraints. The 

GCAE method uses joint training between autoencoders and 

affinity graphs to train a unified binary code. In this paper, a  

learning model is presented on affinity graphs with low-rank 

constraints, and the authors develop an encoder-decoder 

paradigm. The GCAE method uses an alternating iterative 

optimization scheme to obtain multi-view clustering results. 

The experimental results show the effectiveness of the 

method and high performance. 

In the research paper [4], a  new unsupervised hashing 

method called Sparsity-Induced Generative Adversarial 

Hashing (SiGAH) is proposed to encode large-scale 

multidimensional features into binary codes. The SiGAH 
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method uses a generative adversarial learning framework to 

ensure that the learned Hamming space ma tches the data 

distribution similar to the target metric space. A ReLU-

based neural network is adopted as the generator and a 

mean-squared error-based autoencoder network is adopted 

as the discriminator. A compressed probing procedure is 

presented to generate synthetic features from hash codes. 

The experimental results show that the SiGAH method has 

high performance. 

In [5], a  new method, Contrastive Language-Image Pre-

training multimodal hashing (CLIPMH), is proposed to 

solve the problem of low search accuracy in modern 

multimodal hashing methods. The CLIPMH method is used 

to extract and combine features of multimedia data and 

significantly improves the search performance using 

multimodal hashing. The experimental results show that the 

CLIPMH method outperforms modern unsupervised and 

supervised multimodal hashing methods. 

The study [6] reviews various deep learning-based 

supervised hashing methods for large image datasets, 

focusing on the growth of big data. The generation of 

complex hash functions for nearest neighbor search is 

presented. The study classifies the methods based on the 

network architecture, training strategy, loss function type, 

and similarity measures used. The authors compare different 

datasets and discuss future directions such as incremental 

hashing and cross-modal hashing. The comparative analysis 

shows that generative adversarial network-based hashing 

models outperform other methods due to the use of larger 

data sets. 

In [7], deep semantic hashing is considered to improve 

search performance by transforming source texts into 

compact hash codes. However, learning these codes is a 

challenging task due to significant information loss, uneven 

distribution of codes, and the presence of noise. In this 

paper, a  general unsupervised semantic hashing (MASH) 

framework is proposed to learn balanced and compact  hash  

codes. The encoder introduces a new relevance constraint 

among informative multidimensional representations to 

guide the learning of a compact hash code. External memory 

optimizes hash learning and improves search efficiency. An 

improved SMASH model is applied in this paper, which 

uses a noise-aware encoder-decoder structure. The 

experimental results demonstrate the high efficiency and 

performance of the MASH and SMASH methods. 

The paper [8] proposes a new method DB-LSH  

(Locality-Sensitive Hashing with Query-based Dynamic 

Bucketing), which organizes projection spaces using 

multidimensional indices instead of fixed hash containers. I t  

also proposes an incremental search technique DBI-LSH, 

which improves query performance by accessing the next 

best point. The paper presents a method DBA-LSH, which 

adaptively adjusts termination conditions without reducing 

the success probability. The paper conducts a theoretical 

analysis, which shows that DB-LSH provides lower query 

costs, and experiments on real data confirm its efficiency 

and accuracy. 

The paper [9] considers the nearest neighbor problem, 

which plays a key role in such fields as computer vision and 

data mining. Here, hashing has become popular due to its 

computational efficiency and saving of disk space. The 

paper considers modern deep hashing algorithms, including 

supervised and unsupervised methods. Supervised methods 

are divided into pairwise ranking-based methods, point 

methods, and quantization. Unsupervised methods are 

divided into similarity reconstruction-based methods, 

pseudo-label methods, and self-supervised learning methods 

without prediction. The paper also considers semi-

supervised deep hashing, domain-adapted deep hashing, and  

multimodal deep hashing. 

In [10], a  new approach to bipartite graph convolutional 

hashing, called the BGCH method, is presented to improve 

the efficiency of Top-N search using a convolutional graph 

network on bipartite graphs. The approa ch includes three 

modules: adaptive graph convolutional hashing, latent 

feature variance, and serialized Fourier gradient estimation. 

These modules preserve structural information despite the 

hashing loss, and the third module develops a frequency-

domain Fourier series expansion for more accurate gradient 

estimation. The experimental results demonstrate the 

effectiveness of a ll the proposed components of the model. 

In [11], hashing-based methods are successfully applied 

in cross-modal similarity search due to their high query 

speed and low storage cost. However, they face problems 

such as sensitivity to noise and outliers, quantization loss, 

and high computational requirements. A novel cross-modal 

search algorithm, RDMH, addresses these problems by 

using robust and discrete hashing with matrix factorization. 

The two-stage strategy improves robustness by directly 

learning hash codes and semantic labels without 

manipulating a large similarity matrix. The automatic 

encoding strategy preserves valuable information and 

improves efficiency. The developed RDMH algorithm has 

demonstrated high performance and efficiency in 

comprehensive experiments. 

In [12], a  weakly supervised deep multiple hashing 

(DMIH) method is proposed for multi-object image 

retrieval. The DMIH method uses a CNN model to establish 

an end-to-end relationship between a raw image and its 

binary hash codes corresponding to its multi-object data. It 

combines object detection with hashing learning by treating 

object detection as a binary multiple hashing problem. A 

two-level inverse index method is also proposed to speed up 

the retrieval of multi-object queries. The DMIH method 

shows high performance for multi-object queries. 

The paper [13] addresses the problem of developing an 

efficient algorithm that balances construction time, search 

time, and representation space. In 1992, Fox, Chen, and 

Heath proposed an algorithm for fast search evaluation , bu t  

it was criticized for its long construction time and high 

memory consumption. The authors presented an im proved 

algorithm that scales well to large data sets, reduces memory 

consumption without affecting search time, and provides 2-4 

times better search time. 

In [14], a  visual pattern mining tool PSEUDo is 

presented, which is designed to address the problem of 

overfitting in deep learning methods for multivariate time 

series. It uses query-aware and locality-aware hashing to 

create a representation of multivariate time series. The 

performance of the tool is demonstrated using quantitative 
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tests. The tool effectively detects patterns in multivariate 

time series, improving the results by using relevance 

feedback. This tool is important for using sensors and data 

warehouses for multivariate time series. 

The paper [15] discusses multimodal hashing-based 

learning systems, which are popular due to their efficiency 

and low storage cost. The paper presents a new two-stage 

approach called the two-stage supervised discrete hashing 

(TSDH) method. The TSDH method generates hidden 

representations for each modality, maps them to a com m on 

Hamming space, and directly supplies hash codes with 

semantic labels. This approach avoids large quantization 

losses and improves the discrimination of hash functions. 

Experiments show the effectiveness of the TSDH method. 

In [16], a  novel architecture, modality-invariant 

asymmetric networks (MIAN), is proposed to overcome the 

semantic and heterogeneous gaps between different 

modalities in cross-media similarity retrieval applications. 

The MIAN architecture captures the intrinsic pairwise 

similarities for each modality using probabilistic asymmetric 

learning. MIAN also constructs a modality alignment 

network to extract visual features without redundancy and 

maximize the information about conditional bottlenecks 

between different modalities. This approach eliminates 

heterogeneity and domain bias, enabling the production of 

discriminant modality-invariant hash codes. The 

experimental results show the high performance of the 

MIAN architecture compared with cross-modal hashing 

methods. 

The paper [17] considers vector databases (VDB) for 

multidimensional data management tasks. The paper 

presents an overview of various algorithms, hashing 

methods, data storage and retrieval. It also compares modern 

VDB solutions, their strengths and weaknesses, limitations 

and typical application scenarios. The paper also discusses 

new possibilities for interfacing VDB with large language 

models. 

In [18], cross-modal hashing is considered for search 

engines and autopilot systems in similarity search problems. 

However, existing methods have limitations such as 

relaxation of discrete constraints, data loss, and conversion 

of real data points to binary codes. In this paper, a  new 

scheme is proposed to project original data points into a 

low-dimensional latent space and find cluster centroid points 

using cluster unsupervised hashing (CUH). The proposed 

scheme jointly trains compact hash codes and linear hash 

functions. The experiments conducted show the 

effectiveness of the model in unsupervised cross-modal 

hashing problems. 

The paper [19] considers the problem of cross-modal 

search when working with new, previously unencountered 

categories (zero-rank cross-modal search, ZSCMR). This 

problem is related to semantic inconsistency and semantic 

gap in heterogeneous data. In this pa per, a  new method is 

proposed to solve this problem - discrete bidirectional 

hashing with matrix factorization for ZSCMR (DMZCR). 

The DMZCR method uses bidirectional matrix factorization 

for discriminative representation, a multi-layer semantic 

transfer scheme, and discrete hashing to reduce quantization  

error. Experiments demonstrate the effectiveness of 

DMZCR for ZSCMR. 

The paper [20] presents an indexing approach (Palm Hash 

Net) designed to speed up palmprint identification by 

transforming the search process into a constant-time 

operation. This is achieved by generating highly 

discriminant vector representations from palmprint images 

using a feature extraction network pre-trained with a 

modified Softmax loss algorithm. The index table is formed 

using locality-sensitive hashing (LSH), where hash values 

are used as indices. Query palmprints are matched with the 

most relevant index cells, thereby narrowing the search 

space to a small list of candidates. The presented method 

provides identification gua rantees in order to speed up the 

search by tens of times. 

The paper [21] presents DUCMH (Deep Uniform Cross-

Modal Hashing), an end-to-end method designed to solve 

cross-modal hashing problems. DUCMH aims to 

simultaneously learn uniform hash codes and uniform hash 

functions by using interleaved learning and data alignment. 

For text data, hash codes are generated using uniform hash 

functions. For image data, DUCMH first performs auxiliary 

matching to align images with texts and then outputs hash 

codes from these matched texts. The method uses 

interleaved learning to update both uniform hash codes and 

functions. Experimental results show that DUCMH is an 

effective cross-modal hashing method. 

In [22], cross-media hashing (CMH) methods are 

considered. Most CMH methods are single-stage, which 

makes optimization difficult. To solve this problem, a new 

two-stage discrete cross-media hashing method called 

WATCH is proposed. The WATCH method adaptively 

manages fields using a label relaxation strategy, which 

reduces quantization errors. The method is a two-stage 

model that uses a discrete smooth matrix factorization 

model to generate the hash code and an efficient hash 

function learning strategy to achieve even more efficient 

hashing. Experiments show that WATCH provides high 

performance. 

In [23], an improved image hashing method called 

Bitwise Complementary Deep Attention Supervised 

Hashing (BADCSH) is proposed. This method trains a 

sequence of improved hash tables, each of which is trained 

by correcting previous errors. It uses features from different 

layers of the network to train different hash tables, revealing 

the image semantic content and structural information. The 

hash layer is used as an embedded layer to generate hash 

codes. In the method, a high-density attention layer is added  

to reduce redundancy and maintain overall similarity. Hash 

tables trained at different feature layers are combined using 

weights calculated based on their respective features. 

Experiments show that the BADCSH method has high 

performance. 

In [24], a  face identification system is proposed that uses 

a product quantization-based hash table to index and retrieve 

secure face templates. These templates are secured using 

fully homomorphic encryption schemes, which provides a 

high degree of security. The proposed method achieves a 

false negative identification rate of 0.0% to 0.2%. The paper 

presents a competitive workload reduction scheme with 

privacy preservation for pattern matching in an encrypted 
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domain. 

The paper [25] addresses cross-modal search for large-

scale multimedia databases, but matrix factorization is often  

used to learn hash codes. In this paper, a  new method called 

average approximate hashing (AAH) is proposed. The AAH 

method integrates locality and remainder preservation into 

the graph embedding structure by projecting data from 

different modalities into different semantic spaces and 

embedding a projection matrix. The AAH method obtains 

the final hash codes using the average approximation 

strategy. 

In [26], a  deep irrelevant discrete hashing (DUDH) 

method is proposed. It is a  novel asymmetric deep hashing 

method designed for large-scale nearest neighbor search. It 

addresses the limitations of state-of-the-art asymmetric deep  

hashing methods that suffer from quantization errors and 

efficiency issues. The DUDH method decouples the query 

from the database by using a small set of images for 

similarity transfer to implicitly preserve the semantic 

structures from the database to the query. This strategy split s 

a large similarity matrix into two smaller ones. The method 

simultaneously trains both the database codes and the 

similarity transfer codes. Importantly, decoupling the query 

from the database means that the cost of training a CNN 

model for the query is independent of the database size. To 

further speed up the training, DUDH optimizes the 

similarity transfer codes, making their training cost 

negligible. Empirical evaluations show that the DUDH 

method significantly reduces the training cost by 30–50 

times. 

However, applying the many presented methods to 

specific practical search problems requires further research, 

identification of limitations, and comparative analysis. 

Let's consider a class of modern deep hashing methods 

for search engines running on large data sets. 

I. DEEP HASHING METHODS 

Deep learning methods are based on training a deep neural 

network to generate binary codes—hashes. These methods 

allow for efficient storage and rapid retrieval of objects, 

such as images, among large volumes of data. 

Deep learning methods map objects (images) into a space 

of binary vectors of minimal length, so that the distance 

between these vectors reflects the semantic similarity 

between the objects. 

The deep learning algorithm employs data preparation. 

This preparation involves labeling the dataset with groups of 

images with a  known degree of similarity. These groups 

help the neural network learn to correctly generate binary 

hashes. 

Deep Hashing uses a network architecture based on 

Convolutional Neural Networks (CNN). 

The basic network architecture consists of: 

1. Feature extractor. A CNN is used to extract high-level 

features from images. 

2. Hashing. A linear transformation layer is applied, 

followed by nonlinear activation to normalize the values 

before binarization. 

3. Final binarization. The output real values are rounded 

to 0 or 1, creating the final binary vector. 

The method employs a learning strategy to minimize the 

difference between distances in the feature space and 

semantic similarity between images. Various types of loss 

functions are used for this purpose. Contrastive loss 

minimizes the distance between pairs of similar images and 

maximizes the distance between dissimilar ones. Triplet loss 

considers three images simultaneously: a reference, a near, 

and a far image. It minimizes the distance to the near image 

and maximizes it to the far image. Cross-entropy loss is used 

in conjunction with classification methods, accounting for 

differences between classes. 

The method utilizes stochastic gradient descent (SGD) or 

an Adam optimizer for optimization to update the neural 

network weights during training. To generate binary codes, 

each element of the normalized neural network output is 

binarized. This results in a short, fixed-size binary code. 

Deep learning has the following advantages. Using binary 

codes ensures fast searches, reducing the cost of comparing 

objects. Binary codes also take up significantly less space, 

ensuring efficient storage. Furthermore, working with binary 

codes is faster and suitable for processing huge volumes of 

data, ensuring scalability. The method preserves some 

semantic information, allowing for efficient detection of 

similar images. 

A drawback of the Deep Hashing method is the need for 

pre-labeling the data to effectively train the model. The 

method also faces difficulties with optimally choosing the 

length of the binary code. Furthermore, errors in preserving 

the precise distribution of features are common. 

The method was further developed by adding an element 

of supervised learning, and the new method was named 

Deep Supervised Hashing (DSH). DSH uses class labeling 

to guide the generation of binary codes based on categories 

or labels. 

The basic components of the DSH method are: 

1. A convolutional neural network (CNN) for extracting 

features from images. Architectures such as AlexNet, VGG, 

or ResNet are commonly used. 

2. A hash function transforms the extracted features into 

binary codes of a fixed length. A linear transformation and 

quantization are performed. 

3. Special losses are applied to minimize the Hamming 

distance between similar objects and maximize the distance 

between dissimilar ones. 

The DSH algorithm includes the following steps: 

1. Data preparation: splitting the dataset into pairs or 

triplets. 

2. CNN training: extracting deep features from images. 

3. Binary code generation: applying a linear 

transformation and quantization to obtain binary 

representations. 

4. Loss optimization: minimizing the distance between 

similar objects and maximizing the distance between 

dissimilar ones. 

5. Quality evaluation: testing the effectiveness of the 

resulting binary codes on a test dataset. 

The DSH method has the following advantages. Compact, 

small binary codes are easily indexed, speeding up search. 

Efficient binary comparison algorithms are used for fast 

search. The DSH method scales well and is applicable to 
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large datasets. The method preserves semantic information 

about the proximity of objects. 

A disadvantage of the DSH method is the need for a la rge 

amount of labeled data for effective model training. There is 

also the problem of choosing the optimal binary code length. 

Another group of methods, Deep Learning Hashing 

(DLH), uses efficient hashing schemes to create short binary 

codes while preserving data semantics to speed up search. 

The main stages of the DLH method include: 

1. Data preprocessing, normalization, scaling, and 

standardization. 

2. Feature extraction using a deep convolutional neural 

network (CNN). The CNN architecture used is AlexNet, 

VGG, GoogleNet, or ResNet. 

3. Generation of binary codes. Additional linear layers are 

added, passing through nonlinear activation functions. 

Continuous features are then converted to binary values. 

4. Loss minimization is performed. Special loss types are 

introduced: Contrastive loss and Triplet loss. 

5. Generation of binary codes a nd storing them for fa st 

lookup in a hash table. 

DLH methods enable efficient search on large volumes o f  

data using binary comparisons and the Hamming distance. 

Furthermore, DLH preserves small binary vectors, requiring 

negligible memory. The DLH method scales well and 

enables automatic feature extraction. 

Another method, Deep Lifelong Cross-Modal Hashing 

(DLCMH), is designed to solve problems with data from 

different sources and supplemented with new data without 

complete retraining. DLCMH is designed to efficiently 

solve cross-modal image and text retrieval by constructing 

compact binary codes that preserve semantic similarity 

between different multimodal data. DLCMH incorporates 

deep neural network models to extract features from ima ges 

and text separately. This allows features from different da ta  

types to be integrated into a single representation space. 

The method jointly trains both data types to ensure 

representation consistency and minimize loss. It adapts to  

new data without losing previously acquired knowledge and 

uses optimized hashing functions to transform features into 

short binary codes. 

Important advantages of DLCMH include high search 

speed, storage efficiency, compact binary codes, search 

accuracy across both modalities, adaptation to new data, and 

high search accuracy. The disadvantages of DLCMH are: 

the need for large amounts of labeled data, high 

computational power, the choice of the optimal binary code 

length, the cost of retraining, and difficulties in scalability. 

II. EXPERIMENTAL COMPUTATIONS FOR HASHING 

METHODS 

 To compare Deep Hashing, Deep Supervised Hashing, 

and Deep Learning Hashing methods, the authors developed  

Python programs using TensorFlow, NumPy, OpenCV, 

Matplotlib, and PyTorch libraries.  

 The experiment used a generated dataset of 8,000 objects 

(320x320 pixel images), and computations were performed 

on an Intel Core i5-12400F, 32 GB RAM, 512 GB SSD, and 

NVIDIA GeForce RTX 3070 (8 GB). A batch size of 32 

was used, which determines how many examples are 

processed in one training step. The number of epochs 

determines the number of complete passes through the entire 

dataset. The output binary codes are 32 bits long. 

The main metrics of the methods are discussed: accuracy, 

loss, and training time. 

Table 1 lists the main metrics of the methods. 

 

 

 
Table 1 Main metrics of the methods. 

METHODS TEST LOSS ACCURACY TRAINING TIME 

(HOURS) 

Deep 

Hashing 

0.44 0.78 5 

Deep 

Supervised 

Hashing 

0.34 0.97 6 

Deep 

Learning 

Hashing 

0.39 0.93 5.5 

 

For the Deep Hashing method, a test loss of 0.44 indicates 

that it performs poorly because it doesn't use class labels for 

training. This method has the lowest test accuracy of 0.78, 

but its training time of 5 hours is relatively short. 

For the Deep Supervised Hashing method, a low test loss 

of 0.34 indicates that it adapted well to the data thanks to the 

use of class labels. This method has the highest test accuracy 

of 0.97, but its training time is slightly longer than 6 hours 

due to the model complexity and the use of labels. 

For the Deep Learning Hashing method, a test loss of 

0.39 is slightly higher than that of Deep Supervised 

Hashing, indicating insufficient optimization. This method 

has a good test accuracy of 0.93, and its training time of 5.5 

hours is comparable to Deep Hashing, making it suitable for 

rapid testing. 

Fig.1 shows a comparison of accuracy for Deep Hashing, 

Deep Supervised Hashing, and Deep Learning Hashing. The 

abscissa shows the initial epoch number, and the ordinate 

shows accuracy.  

 
Figure 1. Comparison of accuracy for methods: Deep 
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Hashing, Deep Supervised Hashing and Deep Learning 

Hashing. 

Among the methods considered, Deep Supervised 

Hashing shows the best results due to the use of class labels 

in the training process. 

 

III. CONCLUSION 

Various hashing methods for efficient access and ra pid 

search of objects in large data sets are considered: deep 

lifelong cross-modal hashing, learned locality-sensitive 

hashing, graph-collaborated auto-encoder hashing for mult i-

view binary clustering, sparsity-induced generative 

adversarial hashing, contrastive language-image pre-training 

multimodal hashing, locality-sensitive hashing with query-

based dynamic bucketing, deep supervised hashing, and 

cross-modal hashing methods. A computational experiment 

was conducted to comparatively analyze and evaluate the 

accuracy, loss function, and performance of hashing 

algorithms: deep hashing, deep supervised hashing, and 

deep learning hashing. Python programs were developed for 

calculating hashing algorithms and presenting graphical 

results. The choice of a deep ha shing method depends on the 

characteristics of the problem being solved and the type a nd  

size of the dataset. An analysis of deep hashing methods has 

demonstrated the superiority of deep supervised hashing 

when used with labeled data and distinct object classes. For 

multimodality problems, where data from various sources 

must be considered and supplemented with new data, deep 

lifelong cross-modal hashing is the most suitable solution.  
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