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Efficient Hashing Methods for Finding Objects
In Large Volumes of Data

Lubov lvanova, Sergei lvanov

Abstract—This article analyzes machine learning methods
for efficient access and rapid retrieval of objects such as
images, videos, and documents in large data sets. Various
hashing methods are considered: deep lifelong cross-modal
hashing, learned locality-sensitive hashing, graph-collaborated
auto-encoder hashing for multi-view binary clustering,
sparsity-induced generative adversarial hashing, contrastive
language-image pre-training multimodal hashing, locality-
sensitive hashing with query-based dynamic bucketing, deep
supervised hashing, and cross-modal hashing methods. A
computational experiment was conducted to comparatively
analyze and evaluate the accuracy, loss function, and
performance of the hashing algorithms: deep hashing, deep
supervised hashing, and deep learning hashing. Python
programs were developed for calculating the hashing
algorithms and presenting graphical results. For multimodal
tasks, where data from various sources must be integrated and
supplemented with new data, deep lifelong cross-modal
hashing is the most suitable solution. An analysis of deep
hashing methods has demonstrated the superiority of deep
supervised hashing when used with labeled data and distinct
object classes.
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I. INTRODUCTION

Modern search engines widely use various hashing methods
to handle large volumes of data. The use of hashing
algorithms can significantly improve performance and
reduce searchtime for large volumes of data.

Search engines widely use various hashing methods, each
with its own advantages and disadvantages. Selecting the
most effective hashing method can significantly improve
search engine performance for large data sets. Determining
the most effective hashing method for improving search
engine performance is a pressing practicalproblem.

There are numerous scientific papers devoted to hashing
methods. Here is a brief overview of current research.

In a research study [1], deep lifelong cross-modal hashing
is proposed to solve the problem of continuous data arrival
and high overtraining cost for updating hash functions in
cross-modal retrieval. The study proposes a continuous
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learning method that updates hash functions by directly
training on incremental data. As a result, the training time is
reduced. To improve the performance, a lifetime hashing
loss is introduced to ensure that the original hash codes
remain invariant when participating in continuous training.
The proposed method incorporates multi-label semantic
similarity to control the distribution heterogeneity during
continuousdata arrival. Experiments on benchmark datasets
showed more than 20% improvement in retrieval accuracy
and more than 80% reduction in training time when new
data arrives. The proposed deep lifelong cross-modal
hashing method has significantly expanded the capabilities
of hashing for cross-modal retrieval tasks. To improve
performance on large volumes of data, the method uses deep
learning and allows for fast execution of search queries due
to the efficiency of processing nonlinear heterogeneous
features.

The paper [2] presents a method called Learned Locality -
Sensitive Hashing (LLSH), based on deep neural networks,
that efficiently maps high-dimensional data to a lower-
dimensional space. This method takes advantage of GPUs
and deep neural networks to create an improved form of
locality-sensitive  hashing. LLSH replaces traditional
Locality-Sensitive Hashing (LSH) families of functions with
parallel multi-layer neural networks. This reduces both time
and memory consumption while maintaining query
accuracy. The paper presents experimental results on
various datasets, which show that LLSH is highly efficient
in terms of query accuracy, processing time, and memory
usage.

In [3], a new hashing method called Graph-Collaborated
Auto-Encoder Hashing for Multi-view Binary Clustering
(GCAE) is proposed to solve the problems of using
unsupervised hashing methodsforlarge amounts of data. By
training on compact binary data, this GCAE method reduces
the storage and computation costs for binary clustering with
a large number of views. The algorithm is dynamically
trained on affinity graphs with low-rank constraints. The
GCAE method usesjoint training between autoencodersand
affinity graphsto train a unified binary code. Inthis paper, a
learning model is presented on affinity graphs with low-rank
constraints, and the authors develop an encoder-decoder
paradigm. The GCAE method uses an alternating iterative
optimization scheme to obtain multi-view clustering results.
The experimental results show the effectiveness of the
method and high performance.

In the research paper [4], a new unsupervised hashing
method called Sparsity-Induced Generative Adversarial
Hashing (SiGAH) is proposed to encode large-scale
multidimensional features into binary codes. The SiGAH
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method uses a generative adversarial learning framework to
ensure that the learned Hamming space matches the data
distribution similar to the target metric space. A RelLU-
based neural network is adopted as the generator and a
mean-squared error-based autoencoder network is adopted
as the discriminator. A compressed probing procedure is
presented to generate synthetic features from hash codes.
The experimental results show that the SIGAH method has
high performance.

In [5], a new method, Contrastive Language-Image Pre-
training multimodal hashing (CLIPMH), is proposed to
solve the problem of low search accuracy in modemn
multimodal hashing methods. The CLIPMH method is used
to extract and combine features of multimedia data and
significantly improves the search performance using
multimodal hashing. The experimental results show that the
CLIPMH method outperforms modern unsupervised and
supervised multimodalhashing methods.

The study [6] reviews various deep learning-based
supervised hashing methods for large image datasets,
focusing on the growth of big data. The generation of
complex hash functions for nearest neighbor search is
presented. The study classifies the methods based on the
network architecture, training strategy, loss function type,
and similarity measuresused. The authorscompare different
datasets and discuss future directions such as incremental
hashing and cross-modalhashing. The comparative analysis
shows that generative adversarial network-based hashing
models outperform other methods due to the use of larger
data sets.

In [7], deep semantic hashing is considered to improve
search performance by transforming source texts into
compact hash codes. However, learning these codes is a
challenging task due to significant information loss, uneven
distribution of codes, and the presence of noise. In this
paper, a general unsupervised semantic hashing (MASH)
framework is proposed to learn balanced and compact hash
codes. The encoder introduces a new relevance constraint
among informative multidimensional representations to
guide the learning of a compact hash code. Externalmemory
optimizes hash learning and improves search efficiency. An
improved SMASH model is applied in this paper, which
uses a noise-aware encoder-decoder structure. The
experimental results demonstrate the high efficiency and
performance of the MASH and SMASH methods.

The paper [8] proposes a new method DB-LSH
(Locality-Sensitive Hashing with Query-based Dynamic
Bucketing), which organizes projection spaces using
multidimensional indices instead of fixed hash containers. It
also proposes an incremental search technique DBI-LSH,
which improves query performance by accessing the next
best point. The paper presents a method DBA-LSH, which
adaptively adjusts termination conditions without reducing
the success probability. The paper conducts a theoretical
analysis, which shows that DB-LSH provides lower query
costs, and experiments on real data confirm its efficiency
andaccuracy.

The paper [9] considers the nearest neighbor problem,
which plays a key role in such fields as computer vision and
data mining. Here, hashing has become popular due to its

computational efficiency and saving of disk space. The
paper considers modern deep hashing algorithms, including
supervised and unsupervised methods. Supervised methods
are divided into pairwise ranking-based methods, point
methods, and quantization. Unsupervised methods are
divided into similarity reconstruction-based methods,
pseudo-labelmethods, and self-supervised learning methods
without prediction. The paper also considers semi-
supervised deep hashing, domain-adapted deep hashing,and
multimodaldeep hashing.

In [10], a new approach to bipartite graph convolutional
hashing, called the BGCH method, is presented to improve
the efficiency of Top-N search using a convolutional graph
network on bipartite graphs. The approach includes three
modules: adaptive graph convolutional hashing, latent
feature variance, and serialized Fourier gradient estimation.
These modules preserve structural information despite the
hashing loss, and the third module develops a frequency-
domain Fourier series expansion for more accurate gradient
estimation. The experimental results demonstrate the
effectivenessof all the proposed components of the model.

In [11], hashing-based methods are successfully applied
in cross-modal similarity search due to their high query
speed and low storage cost. However, they face problems
such as sensitivity to noise and outliers, quantization loss,
and high computational requirements. A novel cross-modal
search algorithm, RDMH, addresses these problems by
using robust and discrete hashing with matrix factorization.
The two-stage strategy improves robustness by directly
learning hash codes and semantic labels without
manipulating a large similarity matrix. The automatic
encoding strategy preserves valuable information and
improves efficiency. The developed RDMH algorithm has
demonstrated high performance and efficiency in
comprehensive experiments.

In [12], a weakly supervised deep multiple hashing
(DMIH) method is proposed for multi-object image
retrieval. The DMIH method uses a CNN model to establish
an end-to-end relationship between a raw image and its
binary hash codes corresponding to its multi-object data. It
combines object detection with hashing learning by treating
object detection as a binary multiple hashing problem. A
two-level inverse index method is also proposed to speed up
the retrieval of multi-object queries. The DMIH method
shows high performance formulti-object queries.

The paper [13] addresses the problem of developing an
efficient algorithm that balances construction time, search
time, and representation space. In 1992, Fox, Chen, and
Heath proposed an algorithm for fastsearch evaluation, but
it was criticized for its long construction time and high
memory consumption. The authors presented an improved
algorithm that scales well to large data sets, reduces memory
consumption without affectingsearch time, and provides 2-4
times better search time.

In [14], a visual pattern mining tool PSEUDo is
presented, which is designed to address the problem of
overfitting in deep learning methods for multivariate time
series. It uses query-aware and locality-aware hashing to
create a representation of multivariate time series. The
performance of the tool is demonstrated using quantitative
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tests. The tool effectively detects patterns in multivariate
time series, improving the results by using relevance
feedback. This tool is important for using sensors and data
warehouses for multivariate time series.

The paper [15] discusses multimodal hashing-based
learning systems, which are popular due to their efficiency
and low storage cost. The paper presents a new two-stage
approach called the two-stage supervised discrete hashing
(TSDH) method. The TSDH method generates hidden
representations for each modality, mapsthem toa common
Hamming space, and directly supplies hash codes with
semantic labels. This approach avoids large quantization
losses and improves the discrimination of hash functions.
Experiments show the effectiveness of the TSDH method.

In [16], a novel architecture, modality-invariant
asymmetric networks (MIAN), is proposed to overcome the
semantic and heterogeneous gaps between different
modalities in cross-media similarity retrieval applications.
The MIAN architecture captures the intrinsic pairwise
similarities for each modality using probabilistic asymmetric
learning. MIAN also constructs a modality alignment
network to extract visual features without redundancy and
maximize the information about conditional bottlenecks
between different modalities. This approach eliminates
heterogeneity and domain bias, enabling the production of
discriminant  modality-invariant  hash  codes. The
experimental results show the high performance of the
MIAN architecture compared with cross-modal hashing
methods.

The paper [17] considers vector databases (VDB) for
multidimensional data management tasks. The paper
presents an overview of various algorithms, hashing
methods, data storage and retrieval. Italso comparesmodem
VDB solutions, their strengths and weaknesses, limitations
and typical application scenarios. The paper also discusses
new possibilities for interfacing VDB with large language
models.

In [18], cross-modal hashing is considered for search
engines and autopilot systems in similarity search problems.
However, existing methods have limitations such as
relaxation of discrete constraints, data loss, and conversion
of real data points to binary codes. In this paper, a new
scheme is proposed to project original data points into a
low-dimensional latent space and find cluster centroid points
using cluster unsupervised hashing (CUH). The proposed
scheme jointly trains compact hash codes and linear hash
functions. The experiments conducted show the
effectiveness of the model in unsupervised cross-modal
hashing problems.

The paper [19] considers the problem of cross-modal
search when working with new, previously unencountered
categories (zero-rank cross-modal search, ZSCMR). This
problem is related to semantic inconsistency and semantic
gap in heterogeneous data. In this paper, a new method is
proposed to solve this problem - discrete bidirectional
hashing with matrix factorization for ZSCMR (DMZCR).
The DMZCR method uses bidirectional matrix factorization
for discriminative representation, a multi-layer semantic
transferscheme, and discrete hashing to reduce quantization
error. Experiments demonstrate the effectiveness of

DMZCR for ZSCMR.

The paper[20] presents an indexing approach (Palm Hash
Net) designed to speed up palmprint identification by
transforming the search process into a constant-time
operation. This is achieved by generating highly
discriminant vector representations from palmprint images
using a feature extraction network pre-trained with a
modified Softmax loss algorithm. The index table is formed
using locality-sensitive hashing (LSH), where hash values
are used as indices. Query palmprints are matched with the
most relevant index cells, thereby narrowing the search
space to a small list of candidates. The presented method
provides identification guarantees in order to speed up the
search by tens of times.

The paper [21] presents DUCMH (Deep Uniform Cross-
Modal Hashing), an end-to-end method designed to solve
cross-modal hashing problems. DUCMH aims to
simultaneously learn uniform hash codes and uniform hash
functions by using interleaved learning and data alignment.
For text data, hash codes are generated using uniform hash
functions. For image data, DUCMH first performs auxiliary
matching to align images with texts and then outputs hash
codes from these matched texts. The method uses
interleaved learning to update both uniform hash codes and
functions. Experimental results show that DUCMH is an
effective cross-modal hashingmethod.

In [22], cross-media hashing (CMH) methods are
considered. Most CMH methods are single-stage, which
makes optimization difficult. To solve this problem, a new
two-stage discrete cross-media hashing method called
WATCH is proposed. The WATCH method adaptively
manages fields using a label relaxation strategy, which
reduces quantization errors. The method is a two-stage
model that uses a discrete smooth matrix factorization
model to generate the hash code and an efficient hash
function learning strategy to achieve even more efficient
hashing. Experiments show that WATCH provides high
performance.

In [23], an improved image hashing method called
Bitwise Complementary Deep Attention Supervised
Hashing (BADCSH) is proposed. This method trains a
sequence of improved hash tables, each of which is trained
by correcting previous errors. It uses features from different
layers of the network to train different hash tables, revealing
the image semantic content and structural information. The
hash layer is used as an embedded layer to generate hash
codes. Inthe method, a high-density attention layeris added
to reduce redundancy and maintain overall similarity. Hash
tables trained at different feature layers are combined using
weights calculated based on their respective features.
Experiments show that the BADCSH method has high
performance.

In [24], a face identification system is proposed that uses
a product quantization-based hash table to index and retrieve
secure face templates. These templates are secured using
fully homomorphic encryption schemes, which provides a
high degree of security. The proposed method achieves a
false negative identification rate of 0.0% to 0.2%. The paper
presents a competitive workload reduction scheme with
privacy preservation for pattern matching in an encrypted

15



InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 12, 2025

domain.

The paper [25] addresses cross-modal search for large-
scale multimedia databases, but matrix factorization isoften
used to learn hash codes. In this paper, a new method called
average approximate hashing (AAH) is proposed. The AAH
method integrates locality and remainder preservation into
the graph embedding structure by projecting data from
different modalities into different semantic spaces and
embedding a projection matrix. The AAH method obtains
the final hash codes using the average approximation
strategy.

In [26], a deep irrelevant discrete hashing (DUDH)
method is proposed. It is a novel asymmetric deep hashing
method designed for large-scale nearest neighbor search. It
addressesthe limitations of state-of-the-art asymmetric deep
hashing methods that suffer from quantization errors and
efficiency issues. The DUDH method decouples the query
from the database by using a small set of images for
similarity transfer to implicitly preserve the semantic
structures from the database to the query. This strategy splits
a large similarity matrix into two smaller ones. The method
simultaneously trains both the database codes and the
similarity transfer codes. Importantly, decoupling the query
from the database means that the cost of traininga CNN
model for the query is independent of the database size. To
further speed up the training, DUDH optimizes the
similarity transfer codes, making their training cost
negligible. Empirical evaluations show that the DUDH
method significantly reduces the training cost by 30-50
times.

However, applying the many presented methods to
specific practical search problems requires further research,
identification of limitations, and comparative analysis.

Let's consider a class of modern deep hashing methods
for search engines running on large data sets.

|.DEEP HASHING METHODS

Deep learning methods are based on training a deep neural
network to generate binary codes—hashes. These methods
allow for efficient storage and rapid retrieval of objects,
such asimages, among large volumes of data.

Deep learning methods map objects (images) into a space
of binary vectors of minimal length, so that the distance
between these vectors reflects the semantic similarity
between the objects.

The deep learning algorithm employs data preparation.
This preparation involves labeling the dataset with groups of
images with a known degree of similarity. These groups
help the neural network learn to correctly generate binary
hashes.

Deep Hashing uses a network architecture based on
Convolutional Neural Networks (CNN).

The basic network architecture consists of:

1. Feature extractor. A CNN is used to extract high-level
features from images.

2. Hashing. A linear transformation layer is applied,
followed by nonlinear activation to normalize the values
before binarization.

3. Final binarization. The output real values are rounded
to 0 or 1, creating the final binary vector.

The method employs a learning strategy to minimize the
difference between distances in the feature space and
semantic similarity between images. Various types of loss
functions are used for this purpose. Contrastive loss
minimizes the distance between pairs of similar images and
maximizes the distance between dissimilar ones. Triplet loss
considers three images simultaneously: a reference, a near,
and a farimage. It minimizes the distance to the nearimage
and maximizesit to the farimage. Cross-entropy loss is used
in conjunction with classification methods, accounting for
differences between classes.

The method utilizes stochastic gradient descent (SGD) or
an Adam optimizer for optimization to update the neural
network weights during training. To generate binary codes,
each element of the normalized neural network output is
binarized. This results in a short, fixed-size binary code.

Deep learning has the following advantages. Using binary
codes ensures fast searches, reducing the cost of comparing
objects. Binary codes also take up significantly less space,
ensuring efficient storage. Furthermore, working with binary
codes is faster and suitable for processing huge volumes of
data, ensuring scalability. The method preserves some
semantic information, allowing for efficient detection of
similar images.

A drawback of the Deep Hashing method is the need for
pre-labeling the data to effectively train the model. The
method also faces difficulties with optimally choosing the
length of the binary code. Furthermore, errors in preserving
the precise distribution of featuresare common.

The method was further developed by adding an element
of supervised learning, and the new method was named
Deep Supervised Hashing (DSH). DSH uses class labeling
to guide the generation of binary codes based on categories
or labels.

The basic components of the DSH method are:

1. A convolutional neural network (CNN) for extracting
features from images. Architectures such as AlexNet, VGG,
or ResNet are commonly used.

2. A hash function transforms the extracted features into
binary codes of a fixed length. A linear transformation and
quantization are performed.

3. Special losses are applied to minimize the Hamming
distance between similar objects and maximize the distance
between dissimilar ones.

The DSH algorithm includes the following steps:

1. Data preparation: splitting the dataset into pairs or
triplets.

2. CNN training: extracting deep features from images.

3. Binary code generation: applying a linear
transformation and quantization to obtain binary
representations.

4. Loss optimization: minimizing the distance between
similar objects and maximizing the distance between
dissimilar ones.

5. Quality evaluation: testing the effectiveness of the
resulting binary codes on a test dataset.

The DSH method hasthe following advantages. Compact,
small binary codes are easily indexed, speeding up search.
Efficient binary comparison algorithms are used for fast
search. The DSH method scales well and is applicable to
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large datasets. The method preserves semantic information
about the proximity of objects.

A disadvantage of the DSH method is the need fora large
amountof labeled data foreffective modeltraining. There is
also the problem of choosing the optimalbinary code length.

Another group of methods, Deep Learning Hashing
(DLH), uses efficient hashing schemes to create short binary
codes while preserving data semanticsto speed up search.

The main stages of the DLH method include:

1. Data preprocessing, normalization,
standardization.

2. Feature extraction using a deep convolutional neural
network (CNN). The CNN architecture used is AlexNet,
VGG, GoogleNet, or ResNet.

3. Generation of binary codes. Additional linear layers are
added, passing through nonlinear activation functions.
Continuous features are then converted to binary values.

4. Loss minimization is performed. Special loss types are
introduced: Contrastive loss and Triplet loss.

5. Generation of binary codes and storing them for fast
lookup in a hashtable.

DLH methodsenable efficient search on large volumes of
data using binary comparisons and the Hamming distance.
Furthermore, DLH preserves small binary vectors, requiring
negligible memory. The DLH method scales well and
enablesautomatic feature extraction.

Another method, Deep Lifelong Cross-Modal Hashing
(DLCMH), is designed to solve problems with data from
different sources and supplemented with new data without
complete retraining. DLCMH is designed to efficiently
solve cross-modal image and text retrieval by constructing
compact binary codes that preserve semantic similarity
between different multimodal data. DLCMH incorporates
deep neuralnetwork models to extract featuresfrom images
and text separately. This allows features from differentdata
typesto be integrated into a single representation space.

The method jointly trains both data types to ensure
representation consistency and minimize loss. It adapts to
new data without losing previously acquired knowledge and
uses optimized hashing functions to transform features into
short binary codes.

Important advantages of DLCMH include high search
speed, storage efficiency, compact binary codes, search
accuracy across both modalities, adaptation to new data, and
high search accuracy. The disadvantages of DLCMH are:
the need for large amounts of labeled data, high
computational power, the choice of the optimal binary code
length, the cost of retraining, and difficulties in scalability.

scaling, and

II.LEXPERIMENTAL COMPUTATIONS FOR HASHING
METHODS

To compare Deep Hashing, Deep Supervised Hashing,
and Deep Learning Hashingmethods, the authors developed
Python programs using TensorFlow, NumPy, OpenCV,
Matplotlib, and Py Torch libraries.

The experimentused a generated dataset of 8,000 objects
(320x320 pixel images), and computations were performed
on an Intel Core i5-12400F, 32 GB RAM, 512 GB SSD, and
NVIDIA GeForce RTX 3070 (8 GB). A batch size of 32
was used, which determines how many examples are

processed in one training step. The number of epochs
determines the number of complete passes through the entire
dataset. The output binary codesare 32 bits long.

The main metrics of the methods are discussed: accuracy,
loss, and training time.

Table 1 lists the main metrics of the methods.

Table 1 Main metrics ofthe methods.

METHODS TESTLOSS ACCURACY TRAINING TIME
(HOURS)

Deep 0.44 0.78 5
Hashing
Deep 0.34 0.97 6
Supervised
Hashing
Deep 0.39 0.93 55
Learning
Hashing

For the Deep Hashing method, a test loss of 0.44 indicates
that it performs poorly because it doesn't use class labels for
training. This method has the lowest test accuracy of 0.78,
butits training time of 5 hours is relatively short.

For the Deep Supervised Hashing method, a low test loss
of 0.34 indicates that it adapted well to the data thanksto the
use of class labels. This method hasthe highest testaccuracy
of 0.97, but its training time is slightly longer than 6 hours
due to the model complexity and the use of labels.

For the Deep Learning Hashing method, a test loss of
0.39 is slightly higher than that of Deep Supervised
Hashing, indicating insufficient optimization. This method
has a good test accuracy of 0.93, and its training time of 5.5
hours is comparable to Deep Hashing, making it suitable for
rapid testing.

Fig.1 shows a comparison of accuracy for Deep Hashing,
Deep Supervised Hashing, and Deep Learning Hashing. The
abscissa shows the initial epoch number, and the ordinate
shows accuracy.
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Figure 1. Comparison of accuracy for methods: Deep
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Hashing, Deep Supervised Hashing and Deep Learning
Hashing.

Among the methods considered, Deep Supervised
Hashing shows the best results due to the use of class labels
in the training process.

I11. CONCLUSION

Various hashing methods for efficient access and rapid
search of objects in large data sets are considered: deep
lifelong cross-modal hashing, learned locality-sensitive
hashing, graph-collaborated auto-encoder hashing for multi-
view binary clustering, sparsity-induced generative
adversarial hashing, contrastive language-image pre-training
multimodal hashing, locality-sensitive hashing with query-
based dynamic bucketing, deep supervised hashing, and
cross-modal hashing methods. A computational experiment
was conducted to comparatively analyze and evaluate the
accuracy, loss function, and performance of hashing
algorithms: deep hashing, deep supervised hashing, and
deep learning hashing. Python programs were developed for
calculating hashing algorithms and presenting graphical
results. The choice of a deep hashing method dependson the
characteristics of the problem being solved and the typeand
size of the dataset. An analysis of deep hashing methodshas
demonstrated the superiority of deep supervised hashing
when used with labeled data and distinct object classes. For
multimodality problems, where data from various sources
must be considered and supplemented with new data, deep
lifelong cross-modalhashing is the most suitable solution.
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