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Аннотация—Интерфейсы «мозг-компьютер» (ИМК) на 

основе устойчивых визуально вызванных потенциалов 

предоставляют пользователям альтернативный способ 

управления внешними устройствами, не требующий 

физического взаимодействия. Однако их практическое 

применение за пределами исследовательских лабораторий 
ограничено высокой вариабельностью реакции 

пользователей на фотостимулы, снижающей точность и 

эффективность работы ИМК. Это является одной из 

ключевых проблем в данной области. В настоящей работе 

исследуется, как учет индивидуальной реакции на частоту 
фотостимуляции влияет на эффективность работы 

современных моделей машинного обучения, используемых 

при проектировании ИМК. Для решения данной задачи 

был подготовлен собственный набор данных 

электроэнцефалограммы, зарегистрированной от группы 
из 8 испытуемых. В данном наборе каждая частота 

фотостимуляции была подобрана индивидуально, с 

помощью предложенного в наших предыдущих 

исследованиях коэффициента совместимости частоты. Для 

каждого участника эксперимента были определены 6 
наименее и 6 наиболее совместимых частот 

фотостимуляции. Результаты тестирования трех моделей 

машинного обучения (ATCNet, EEG-TCNet и EEGNet), 

зарекомендовавших себя при проектировании ИМК, 

демонстрируют значительное улучшение метрик 
классификации. В среднем по группе, переход к 

классификации набора совместимых частот повысил 

точность классификации с 61-69% до 95-98% для всех 

моделей, в то время как каппа Коэна возросла с 0,52-0,63 до 

0,94-0,98. Полученные результаты указывают на 
перспективность учета индивидуальных реакций для 

повышения эффективности интерфейсов «мозг-

компьютер» на основе SSVEP-парадигмы. 
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I. ВВЕДЕНИЕ 

Интерфейсы «мозг-компьютер» (ИМК, англ. Brain 

Computer Interface – BCI) представляют собой системы, 

реализующие альтернативные каналы взаимодействия 

между человеческим мозгом и внешними устройствами 
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ввода. Их основное назначение заключается в 

восстановлении или возмещении утраченных навыков у 

людей, перенесших травмы или страдающих от 

неврологических заболеваний [1-4]. Хотя концепция 

ИМК была представлена еще в 1973 году [5], данная 

область продолжает активно развиваться и в настоящее 

время: появляются новые парадигмы проектирования и 

совершенствуются существующие, разрабатываются 

продвинутые алгоритмы обработки и анализа данных, 

призванные повысить качество и эффективность работы 

ИМК [6-10]. 

В качестве управляющего сигнала в интерфейсах 

«мозг-компьютер» зачастую выступает запись 

нейронной активности пользователя. Одним из основных 

методов ее регистрации является 

электроэнцефалография (ЭЭГ). Данный метод 

регистрации предполагает размещение массива 

электродов на поверхности головы человека в 

соответствии со стандартизированными схемами 

(международная система размещения электродов «10-

20%» и ее расширенная версия – «10-10%» [11]) и 

отличается своим неинвазивным характером. Это 

позволяет регистрировать нейронную активность без 

проведения операций, нарушающих целостность черепа 

и кожных покровов. Кроме того, электроэнцефалография 

обладает высокой временной разрешающей 

способностью и относительно низкой стоимостью. 

Результатом регистрации является дискретный 

многоканальный сигнал электроэнцефалограммы (ЭЭГ-

сигнал), который подается на вход ИМК для 

формирования управляющих команд. 

Существует несколько основных парадигм 

проектирования ИМК, различающихся методами 

воздействия на пользователя и принципами 

формирования управляющих команд. Наиболее 

известными являются P300 [2, 11], MI [2] и SSVEP [11, 

12] парадигмы. Отличительной особенностью последней 

является высокая помехоустойчивость и скорость обмена 

информацией [11]. Кроме того, в отличие от MI-

парадигмы, SSVEP требует значительно меньше 

временных затрат на подготовку и предварительное 

обучение пользователя, что делает ее наиболее 
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перспективной [12]. 

В основе SSVEP-парадигмы лежит распознавание 

устойчивых визуально вызванных потенциалов (УВВП, 

англ. Steady-State Visual Evoked Potentials – SSVEP), 

возникающих при концентрации внимания пользователя 

на периодических визуальных стимулах (например, 

источниках света или изображениях на дисплее). Когда 

оператору ИМК демонстрируют серию световых 

вспышек (фотостимулов) с фиксированной частотой, в 

спектре его ЭЭГ-сигнала могут быть обнаружены ярко 

выраженные гармонические колебания на 

соответствующей частоте (а зачастую – и на ее кратных 

гармониках) [11, 12]. Данное явление в наибольшей 

степени выражено в затылочной области коры головного 

мозга, ответственной за обработку зрительной 

информации [13]. 

Несмотря на преимущества SSVEP-парадигмы, ее 

практическому применению препятствует ряд 

нерешенных проблем. Одной из ключевых является 

высокая вариабельность реакции пользователей на 

фотостимулы, из-за чего одна и та же частота 

стимуляции может быть высокоэффективной для одного 

человека и малоэффективной для другого (вплоть до 

полного отсутствия реакции) [14, 15]. Это затрудняет 

использование единого частотного диапазона для группы 

пользователей, в особенности – при проведении онлайн-

классификации. При этом в научном сообществе имеется 

ряд разногласий относительно оптимального диапазона 

частот фотостимуляции, их общего числа и величины 

шага между ними [12, 16, 17]. Большинство 

исследований сосредоточено на поиске единого 

априорно-оптимального диапазона частот для целых 

групп, в то время как проблема их индивидуального 

подбора остается недостаточно изученной [12, 17, 18]. 

Решение этой проблемы может стать важным шагом в 

совершенствовании ИМК данного типа  [14, 17]. 

В одной из наших предыдущих работ был предложен 

алгоритм оценки совместимости частоты 

фотостимуляции с пользователем, который наглядно 

продемонстрировал крайне выраженную вариабельность 

реакций между испытуемыми [18]. Также нами был 

проведен сравнительный анализ индивидуального 

подбора частот фотостимуляции для ИМК на основе 

SSVEP-парадигмы и сверточных нейронных сетей [19]. 

Это позволило выявить ряд архитектур, наиболее 

подходящих для классификации SSVEP-потенциалов. 

Однако главным ограничением исследования было 

использование открытых наборов данных, не 

содержащих образцов фоновой ЭЭГ-активности, что не 

позволяло задействовать наш алгоритм оценки [19]. 

Целью настоящей работы является расширение и 

развитие ранее проведенных исследований с 

использованием собственного набора данных для 

персонализации интерфейсов «мозг-компьютер », 

основанных на SSVEP-парадигме. 

II. МЕТОД ОЦЕНКИ СОВМЕСТИМОСТИ ЧАСТОТЫ 

ФОТОСТИМУЛЯЦИИ 

Для количественной оценки реакции испытуемого на 

фотостимуляцию с заданной частотой в настоящей 

работе используется алгоритм, предложенный нами в 

работе [18]. С его помощью определяется коэффициент 

совместимости частоты фотостимуляции с испытуемым, 

учитывающий данные о фоновой ЭЭГ-активности и 

статистические показатели, вычисленные на основе 

отношения сигнал/шум (ОСШ) [18]. В рамках данной 

работы он впервые используется как способ определения 

пригодности частоты к классификации моделями 

машинного обучения и составления 

персонализированного набора таких частот. 

В основе алгоритма подсчета коэффициента  

совместимости лежит анализ преодоления порогового 

значения, определенного для ОСШ по правилу трех сигм. 

В качестве полезной составляющей сигнала 

рассматривается его мощность на частоте 

фотостимуляции, в то время как оставшаяся часть 

спектра принимается за шум (исключая кратные 

гармоники частоты фотостимуляции). Данный подход к 

определению шума отличается от исходной версии 

алгоритма, где за таковой принимались только 4 

гармоники вблизи полезной компоненты сигнала [18]. 

Процедура подсчета коэффициента совместимости  

начинается с регистрации фрагмента фоновой ЭЭГ-

активности испытуемого и сегментации полученных 

данных на набор пересекающихся окон. В рамках 

данного исследования общая продолжительность 

регистрации фоновой активности составляет 6 секунд 

(1500 отсчетов при частоте дискретизации 250 Гц). 

Количество отсчетов для каждого окна составляет 512, а 

величина шага при сегментации – 64 отсчета. Данные 

значения выбраны для обеспечения необходимого 

спектрального разрешения, достаточного для 

выполнения анализа в частотной области. Затем на 

основе полученного набора окон вычисляется пороговое 

значение ОСШ, согласно выражению (1): 

𝑆𝑁𝑅𝑡(𝑓) = 𝑆𝑁𝑅𝑚(𝑓) + 𝑘 × 𝑆𝑁𝑅𝑠𝑑(𝑓) , (1)  

где f – частота , для которой вычисляется пороговое 

значение; SNRm – среднее значение ОСШ при частоте f  

по всему набору окон фоновой активности; SNRsd – 

стандартное отклонение ОСШ при частоте f во всем 

наборе окон; k=3 – коэффициент для вычисления 

порогового значения по правилу трех сигм. 

На следующем этапе выполняется регистрация 

фрагмента реакции испытуемого на фотостимул, 

совпадающего по своей длительности с фрагментом 

фоновой ЭЭГ-активности. Преодоление порогового 

значения в момент предъявления фотостимула считается 

за наличие выраженной реакции испытуемого. 

Зарегистрированный фрагмент разбивается на набор 

окон с теми же параметрами, что использовались при 

сегментации фоновой ЭЭГ-активности. Затем 

коэффициент совместимости частоты фотостимуляции 

может быть вычислен согласно следующему 

выражению: 

𝐾𝑓𝑎(𝑓) =
𝑁𝑜𝑣𝑒𝑟

(𝑓)

𝑁𝑡𝑜𝑡𝑎𝑙

× (1 −
𝑁𝑓𝑖𝑟𝑠𝑡 (𝑓)

𝑁𝑡𝑜𝑡𝑎𝑙

) × 100%, (2)  

где f – частота, для которой вычисляется коэффициент 

совместимости; Nover – количество окон, в которых ОСШ 

при частоте f превышает пороговое значение SNRt(f); Nfirst 

– номер окна, на котором впервые зафиксировано 
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превышение порогового значения SNRt(f); Ntotal – общее 

количество окон, полученных при сегментации 

фрагмента реакции на фотостимул. 

Показатели данного коэффициента могут принимать 

значения от 0 до 100% и отражают степень 

совместимости испытуемого с заданной частотой 

фотостимуляции. Предложенный коэффициент может 

быть вычислен не только на основной частоте 

фотостимуляции, но также и на ее кратных гармониках. 

Кроме того, в случае регистрации многоканального ЭЭГ-

сигнала (от множества электродов) данный коэффициент 

может быть вычислен для каждого из каналов в 

отдельности. Это позволяет не только точнее 

локализировать область проявления реакции, но также 

выявлять атипичные паттерны (например, когда реакция 

в наибольшей степени выражена на кратной, но не 

основной гармонике) [18]. В рамках проведения 

настоящего исследования выполняется анализ 6-

канального ЭЭГ-сигнала с вычислением коэффициентов 

совместимости на основной, кратной двум и трем 

гармониках в каждом отведении. Окончательным 

значением коэффициента для частоты считался 

максимум, полученный по всем каналам и гармоникам. 

III. ПРОЦЕДУРА ЭКСПЕРИМЕНТА 

A. Участники эксперимента 

В исследовании приняли участие 8 добровольцев: 4 

мужчины и 4 женщины в возрасте от 20 до 30 лет 

(средний возраст – 25,75 года). Все участники на момент 

проведения исследования имели высшее техническое 

образование или обучались на старших курсах 

бакалавриата в Новосибирском государственном 

техническом университете. Двое из них ранее имели 

опыт взаимодействия и управления ИМК на основе 

SSVEP-парадигмы, в то время как оставшаяся часть 

испытуемых принимала участие в подобных 

экспериментах впервые. В настоящей работе участники с 

опытом имеют первый и второй порядковые номера. 

Перед началом эксперимента каждый участник 

прошел устный опрос, исключающий наличие эпилепсии 

и иных неврологических заболеваний. Все участники 

сообщали об удовлетворительном самочувствии и 

достаточном уровне бодрствования. Употребление 

кофеинсодержащих напитков было исключено за сутки 

до проведения исследования. Коррекция зрения 

участников осуществлялась при необходимости, с 

использованием собственных очков и контактных линз. 

Для обеспечения необходимого уровня кожного 

сопротивления все участники вымыли волосы накануне 

проведения эксперимента , без использования 

кондиционеров и средств, ухудшающих проводимость. 

B. Оборудование и программное обеспечение 

Для регистрации нейронной активности использовался 

портативный 24-канальный электроэнцефалограф 

«Mitsar-EEG-SmartBCI» с ЭЭГ-шлемом MCSCap 

«SmartCAPx24» [20, 21]. В его состав входят 24 

чашечковых Ag/AgCl-электрода, расположенных 

согласно международной системе размещения 

электродов «10-20%». Из них для анализа были выбраны 

6 отведений: O1, O2, Oz, P3, Pz и P4. При этом P-

электроды были смещены в позиции PO3, POz и PO4  

согласно расширенной системе размещения электродов 

«10-10%» [11]. Такое расположение обеспечивает 

оптимальный пространственный охват затылочной 

области коры головного мозга, наиболее значимой при 

регистрации SSVEP-потенциалов [13]. В качестве 

референтного и заземляющего электродов 

использовались FCz и AFz соответственно. 

Перед началом записи выполнялось введение 

электропроводящего геля в область контакта электрода с 

поверхностью скальпа . Средний уровень сопротивления 

между кожным покровом и электродами на протяжении 

всего времени регистрации поддерживался в диапазоне 

4-6 кОм. Регистрация электроэнцефалограммы 

выполнялась в программной среде «EEGStudio», 

поставляемой производителем энцефалографа . Для 

подавления артефакта сетевой помехи в области 50 Гц 

использовался режекторный фильтр с диапазоном 

полосы заграждения 45-55 Гц. Средства для 

автоматического обнаружения и удаления артефактов 

были выключены для сохранения исходной формы ЭЭГ-

сигнала. Частота дискретизации составляла 250 Гц. 

Дальнейшая передача данных осуществлялась в 

реальном времени по протоколу «Lab Streaming Layer» 

[22] в собственное программное обеспечение, 

управляющее процессом фотостимуляции и экспортом 

ЭЭГ-сигналов в файлы формата «EDF» [23]. 

В качестве источника визуальных стимулов 

использовался фотостимулятор собственной разработки, 

состоящий из пяти независимых излучающих элементов. 

Каждый элемент представлял собой тонкую пластину 

квадратной формы площадью 6,25 см2. В момент 

фотостимуляции пластина светилась ярким белым 

светом, в то время как в неактивном состоянии 

оставалась матово-белой. Яркость источников 

подбиралась с учетом комфортного восприятия 

испытуемым и отсутствия зрительного дискомфорта. 

C. Протокол эксперимента 

Эксперименты проводились в затененном кабинете с 

мягким верхним освещением. В процессе регистрации 

испытуемый располагался в удобном кресле в 

расслабленном состоянии, с руками, положенными на 

колени. Расстояние от глаз испытуемого до 

фотостимулятора составляло 1 м, а угол наклона прибора 

выбирался с учетом роста испытуемого для обеспечения 

комфортного наблюдения за фотостимулами. Во 

избежание артефактов ЭЭГ-сигнала, связанных с 

движением глаз и активностью лицевых мышц, 

участников инструктировали сохранять неподвижность 

и избегать произвольных движений глаз в процессе 

фотостимуляции. Моргать разрешалось свободно, по 

мере необходимости. 

Каждый эксперимент включал 6 сессий регистрации 

реакций на фотостимулы. Перед началом проведения 

каждой сессии регистрировалось фоновое состояние 

испытуемого при открытых глазах, без зрительной 

фиксации и когнитивной нагрузки. Испытуемому 

разрешалось моргать по необходимости. Внешние 

визуальные и звуковые стимулы были сведены к 
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минимуму. 

Первая сессия регистрации носила поисковый 

характер: испытуемому предъявлялись фотостимулы с 

частотой от 7 до 26 Гц с шагом в 1 Гц (всего 20 частот). 

Каждая частота демонстрировалась один раз на 

протяжении 6 секунд, выбиралась в случайном порядке и 

предъявлялась на случайно выбранном источнике 

фотостимуляции. Перед началом стимуляции активный 

источник подсвечивался зеленым цветом в течение 0,5 с, 

чтобы участник успел перевести взгляд и приготовиться 

к наблюдению фотостимула. Затем источник отключался 

на 1,5 с для выжидания паузы, достаточной для 

исчезновения артефактов, вызванных движением глаз. 

Затем следовал процесс фотостимуляции, 

сопровождающийся регистрацией фрагмента реакции 

испытуемого в управляющем ПО. После завершения 

фотостимуляции следовала пауза в 8 с для отдыха 

испытуемого и предотвращения переутомления 

зрительной системы. 

По завершении процесса регистрации реакции на 

фотостимул управляющим ПО вычислялся коэффициент 

совместимости частоты с испытуемым на основной, 

кратной двум и трем гармоника х согласно выражению 

(2). В качестве окончательного значения коэффициента 

совместимости фиксировалось максимальное значение, 

полученное на всех гармониках и во всех затылочных 

отведениях. После предъявления всех 20 фотостимулов 

выполнялось уточнение промежуточных частот в 

окрестности наиболее и наименее выраженных реакций с 

шагом в 0,5 Гц. В результате для каждого испытуемого 

формировался список из 12 частот фотостимуляции: 6 из 

них подбирались как наиболее совместимые и 

оставшиеся 6 – как наименее совместимые. 

Последующие 5 сессий регистрации выполнялись 

схожим образом, включая повторную регистрацию 

фоновой ЭЭГ-активности и демонстрацию 12 выбранных 

частот фотостимуляции. Перед каждой новой сессией 

испытуемому давалась минутная пауза для отдыха, во 

время которой следовал устный опрос о самочувствии. 

По завершении эксперимента для каждого участника 

был получен набор данных из 78 EDF-файлов, 

включающих 6 фоновых состояний и 12x6 реакций на 

фотостимулы. Каждый файл включал 6-секундный 

фрагмент 6-канальных ЭЭГ-данных, очищенных от 

сетевой помехи. Исходные файлы прошли процедуру 

деперсонализации и были размещены в созданном нами 

открытом репозитории GitHub «SSVEP-Personal-DS », 

доступном по ссылке 

https://github.com/KaizenKoels/SSVEP-Personal-DS. 

IV. ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ДАННЫХ 

Перед использованием в задаче классификации, 

собранные нами данные проходили этап 

предварительной обработки. Данный процесс состоял из 

последовательного выполнения следующих этапов: 

загрузка данных, их фильтрация, сегментация и 

упорядочение на основе коэффициента совместимости. 

На первом этапе выполнялась загрузка полного набора 

данных испытуемого. Данные группировались по 

значению частоты фотостимуляции (классам), включая 

фоновую ЭЭГ-активность, а затем сортировались по 

номеру сессии регистрации. 

Затем осуществлялась фильтрация данных по каждому 

каналу, классу и сессии с использованием цифрового 

полосового фильтра Баттерворта 8-го порядка . Диапазон 

полосы пропускания был установлен в 4-60 Гц: нижняя 

граница позволяет ослабить низкочастотные артефакты, 

такие как дрейф изолинии, а верхняя – устранить 

высокочастотные шумы и помехи. Это также 

способствует концентрации внимания моделей на 

данном частотном диапазоне. Для сохранения временной 

структуры SSVEP-потенциалов фильтрация была 

реализована по схеме «zero-phase forward-backward 

filtering», при которой сигнал сначала фильтруется в 

прямом, а затем повторно в обратном направлении. Это 

позволяет обеспечить нулевой фазовый сдвиг, сохраняя 

преимущества выбранного типа фильтра  – максимально 

гладкую АЧХ в области полосы пропускания. 

Следующим шагом была сегментация данных 

скользящим окном. Каждый 6-секундный фрагмент ЭЭГ-

сигнала нарезается на набор окон длиной в 512 отсчетов 

и величиной шага в 64 отсчета между ними (та же 

конфигурация, что использовалась при вычислении 

коэффициента совместимости). Метки классов 

наследовались от исходного фрагмента. Такой подход не 

только увеличивает объем обучающей выборки, но и 

обеспечивает устойчивость моделей к временному 

сдвигу. 

После сегментации для каждой частоты стимуляции 

вычислялся коэффициент совместимости с испытуемым, 

согласно выражению (2). Расчет коэффициента 

проводился отдельно для каждого отведения ЭЭГ-

сигнала и каждой сессии регистрации. Важно отметить, 

что для вычисления пороговых значений в каждой сессии 

использовалась фоновая ЭЭГ-активность, 

зарегистрированная непосредственно перед началом 

данной сессии. Это позволяет учитывать изменения в 

состоянии и нейронной активности испытуемого по мере 

проведения эксперимента. Коэффициент совместимости 

вычисляется на основной частоте фотостимуляции, а 

также на кратной двум и трем ее гармоника х, для каждой 

из доступных сессий. Отметим, что поскольку ЭЭГ-

сигнал подвергался цифровой фильтрации, при 

вычислении коэффициента совместимости на 

гармониках, входящих в диапазон 45-55 Гц (зона 

действия режекторного фильтра) или превышающих 60 

Гц (верхняя граница полосового фильтра) им 

автоматически присваивался нулевой коэффициент 

совместимости.  

Для получения итогового показателя вычислялись 

средние значения коэффициентов по всем сессиям 

регистрации, отдельно для каждого канала и гармоники. 

Это необходимо, поскольку реакция испытуемого может 

быть непостоянной между сессиями. Окончательным 

коэффициентом совместимости частоты считался 

максимальный из усредненных показателей среди всех 

гармоник и каналов ЭЭГ-сигнала. На основе этих 

значений полный список частот для каждого 

испытуемого был отсортирован в порядке убывания 

коэффициента совместимости. 
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V. МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ И УСЛОВИЯ 

КЛАССИФИКАЦИИ 

A. Используемые модели 

Для классификации ЭЭГ-сигналов в данном 

исследовании были выбраны три сверточные нейронные 

сети – ATCNet, EEG-TCNet и EEGNet, показавшие 

наилучшие результаты в нашей предыдущей работе [19]. 

Главным ее ограничением была невозможность 

совместного применения метода определения 

коэффициента совместимости и моделей машинного 

обучения, поскольку в используемых открытых наборах  

[24, 25] отсутствовали данные о фоновой ЭЭГ-

активности. Сокращение набора моделей позволило 

также сосредоточиться на тонкой настройке 

гиперпараметров в рамках проведения настоящего 

исследования, в то время как ранее они использова лись 

со стандартными значениями, рекомендуемыми 

разработчиками. 

 

Первая модель – ATCNet. Она была представлена в 

работе [7] для классификации воображения движений. Ее 

архитектура  включает три основных блока: блок свертки 

(CV) для пространственно-временного кодирования 

входных данных (имеет архитектуру, схожую c моделью 

EEGNet), блок многоголового самовнимания (AT) для 

выделения наиболее значимой информации во 

временной последовательности и блок временной 

сверточной сети (TC) для извлечения высокоуровневых 

временных признаков. Модель также использует 

скользящее окно для аугментации данных, что повышает 

точность классификации [7]. В наших предыдущих 

экспериментах ATCNet продемонстрировала наилучшие 

результаты: при классификации 4 наиболее совместимых 

с испытуемым частот средняя точность классификации 

составила 95,83%, а каппа Коэна – 0,94. 

 

Вторая модель – EEG-TCNet, представлена в работе 

[26] и сочетает в себе компактную версию EEGNet с 

блоком временной сверточной сети (TCN), аналогичным 

тому, что используется в ATCNet [26]. Архитектура 

модели отличается малым числом параметров, но 

сохраняет при этом достаточно высокие показатели 

точности классификации. В нашей предыдущей работе 

число параметров модели было в 28 раз меньше, чем у 

ATCNet, при этом средняя точность классификации 

составила 94,59% при каппе Коэна – 0,93 [19]. 

 

Третья модель – EEGNet. Она была представлена в 

работе [27] и до сих пор считается «золотым 

стандартом», выступая в роли эталона при тестировании 

новых архитектур [7, 26]. Ее структура включает 

временную свертку для извлечения частотных признаков 

сигнала, глубинную свертку (depthwise) для обучения 

частотно-специфичных пространственных фильтров и 

разделяемую свертку (separable) для объединения 

выделенных признаков и сокращения числа параметров 

[27]. 

 

B. Среда и параметры обучения 

Данное исследование выполнялось с использованием 

графического процессора NVIDIA GeForce RTX 3070 Ti 

с 8 ГБ видеопамяти (версия драйвера – 580.95.05 для 

операционных систем на базе ядра Linux). В качестве 

центрального процессора использовался Intel Core i9-

12900KF. Объем оперативной памяти системы составлял 

32 Гб с тактовой частотой 6000 МГц. Программная 

реализация задачи обучения и тестирования моделей 

была выполнена на языке Python 3.12.3 с использованием 

фреймворка TensorFlow версии 2.17.0. Для обработки 

ЭЭГ-сигналов и работы с массивами данных 

использовались библиотеки MNE 1.10.1, SciPy 1.16.1, 

NumPy 2.3.1 и Scikit-learn 1.7.1. 

Начальная скорость обучения всех моделей была 

установлена в 0,0015, а минимально допустимая скорость 

обучения составляла 0,0001. Количество полных 

проходов по набору данных (эпох обучения) составляло 

800. Размер партии данных, использующейся 

одновременно на итерации обновления весов моделей, 

составлял 64. 

 

Для сохранения наилучших весов моделей в процессе 

обучения использовался коллбек «ModelCheckpoint», 

который отслеживал значение функции потерь на 

валидационной выборке и сохранял веса модели только в 

случае его улучшения. Для адаптивного управления 

скоростью обучения применялся коллбек 

«ReduceLROnPlateau», снижающий скорость обучения 

на 10% при отсутствии улучшения валидационных 

потерь на протяжении 20 эпох. 

При компиляции моделей в роли оптимизатора выбран 

Adam. В качестве функции потерь использовалась кросс-

энтропия между истинными и предсказанными 

вероятностями классов данных. В роли метрики для 

оценки производительности моделей выбрана точность 

классификации. 

C. Индивидуальные пользовательские профили 

Для оценки влияния индивидуального подбора частот 

каждая модель тестировалась в двух условиях: на наборе 

наименее совместимых частот (Профиль №1) и наиболее 

совместимых частот (Профиль №2) для каждого 

испытуемого. Это позволит показать, как выбор такого 

набора сказывается на результатах работы моделей при 

прочих равных условиях (нейронная активность той же 

группы испытуемых, в том же объеме данных и тех же 

условиях проведения эксперимента ). Модели 

тестировались в задачах классификации четырех, пяти и 

шести команд. Для формирования Профиля №1 

выбирались частоты с конца упорядоченного по 

убыванию коэффициента  совместимости списка, для 

Профиля №2 – с его начала. На Рис. 1 и 2 представлены 

усредненные коэффициенты совместимости частот в 

каждом индивидуальном профиле испытуемых. 
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Рис. 1. Усредненные показатели коэффициента совместимости 

для индивидуального Профиля №1 

 
Рис. 2. Усредненные показатели коэффициента совместимости 

для индивидуального Профиля №2 

D. Подготовка данных к обучению моделей 

После формирования индивидуальных профилей 

соответствующие им сегменты данных распределялись в 

обучающую, валидационную и тестовую выборки. Во 

избежание «утечки данных» (data  leake) между 

выборками использовалось разделение по сессиям 

регистрации: сессии с первой по четвертую составили 

обучающую выборку, пятая сессия – валидационную, а 

шестая –тестовую. Это гарантирует независимую оценку 

обобщающей способности моделей, поскольку ни один 

из классифицируемых фрагментов данных не будет 

участвовать в обучении [23], что соответствует условиям 

онлайн-классификации. 

На этапе обучения дополнительно выполнялось 

частотное маскирование данных: было выполнено 

маскирование частотной области вне га рмоник SSVEP-

потенциалов. Для этого в каждой сессии обучающей 

выборки было случайным образом выбрано 35% окон для 

маскирования цифровыми полосовыми фильтрами 

Баттерворта 4-го порядка. С их помощью вычислялись 

отфильтрованные копии исходного окна, в которых 

ослаблялись все частотные компоненты, выходящие за 

диапазон в ±4,75 Гц вокруг частоты фотостимуляции. 

Аналогично были получены копии окон с сохранением 

кратных двум и трем гармоник, если они не входили в 

частотный диапазон 45-55 Гц (область действия 

режекторного фильтра) и не превышали 60 Гц (верхний 

порог полосового фильтра). Затем исходное окно 

заменялось на сумму его отфильтрованных версий. 

Маскирование валидационных и тестовых выборок при 

этом не выполнялось. Данный этап позволит 

сосредоточить внимание моделей к конкретным 

частотным областям на этапе обучения и повысит их 

устойчивость к вариативности частотных компонент 

ЭЭГ-сигнала. После выполнения маскирования сегменты 

данных и соответствующие им метки классов внутри 

каждой выборки были случайным образом перемешаны, 

а затем приведены к форме, совместимой со входом 

модели. 

Завершающим этапом подготовки данных стала их 

стандартизация – приведение всех образцов к нулевому 

среднему значению и единичной дисперсии. Для этого 

был использован объект нормализации «StandardScaler» 

из библиотеки scikit-learn. Для каждого канала ЭЭГ-

сигнала был создан собственный экземпляр 

«StandardScaler», обученный на данных обучающей 

выборки, который затем использовался для 

нормализации данных валидационной и тестовой 

выборок. 

E. Критерии оценки и гиперпараметры моделей 

Для оценки результатов тестирования моделей были 

выбраны три взаимодополняющие метрики: точность 

классификации, коэффициент каппы Коэна и матрица 

путаницы [7]. Для оценки устойчивости моделей 

процедура обучения и тестирования для каждой 

конфигурации повторялась 4 раза. Это позволило 

получить усредненные показатели метрик и 

минимизировать влияние случайной инициализации 

весов на итоговый результат. Для первых двух метрик 

дополнительно вычислялись их усредненные показатели 

по всем попыткам обучения для каждого испытуемого, 

после чего подсчитывались их усредненные, 

минимальные, максимальные показатели и стандартное 

отклонение. Улучшение данных статистических 

показателей использовалось в процессе подбора 

гиперпараметров моделей, окончательные значения 

которых приведены в Таблице 1. 

 

Таблица 1. Гиперпараметры моделей, использующиеся при классификации 

Модель Блок Параметр 

Значение 

Описание 
Число 

классов 

4 5 6 

ATCNet CV 

F1 16 Число фильтров первого сверточного слоя 

D 2 
Множитель глубины, определяющий количество 

пространственных фильтров 
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Kc 112 Длина ядра временной свертки 

P2 7 
Размер усредняющего пулинга, уменьшающего временную 

размерность данных 

pc 0,3 Вероятность исключения нейронов 

TC 

L 1 Количество остаточных блоков (глубина TCN) 

KT 2 5 3 Длина ядра свертки в каждом остаточном блоке 

FT 32 Количество фильтров в каждом остаточном блоке 

pt 0,3 Вероятность исключения нейронов 

AT 

H 2 Количество голов внимания 

dH 8 Размерность каждой головы внимания 

pa 0,5 Вероятность исключения нейронов 

- n 7 Количество скользящих окон для аугментации данных 

EEG-

TCNet 

TCN 

L 2 Количество остаточных блоков (глубина TCN) 

KT 2 Длина ядра свертки в каждом остаточном блоке 

FT 24 24 32 Количество фильтров в каждом остаточном блоке 

pt 0,3 Вероятность исключения нейронов 

EEGNet 

F1 20 Число фильтров первого сверточного слоя 

D 2 
Множитель глубины, определяющий количество 

пространственных фильтров 

KE 125 Длина ядра временной свертки 

pe 0,2 Вероятность исключения нейронов 

EEGNet - 

F1 16 Число фильтров первого сверточного слоя 

D 2 
Множитель глубины, определяющий количество 

пространственных фильтров 

KE 125 Длина ядра временной свертки 

pe 0,25 Вероятность исключения нейронов 

В процессе тонкой настройки была выявлена 

зависимость некоторых гиперпараметров от числа 

распознаваемых команд. Например, для модели ATCNet 

не удалось подобрать единые значения длины ядра 

свертки в остаточном блоке (KT), обеспечивающие 

стабильно высокие результаты для разного числа 

классов. Аналогично, для EEG-TCNet оптимальное 

число фильтров (FT) варьировалось в зависимости от 

задачи. При подборе гиперпараметров в схожей 

конфигурации мы рекомендуем начинать с усредненных 

значений, а затем проводить дополнительные тесты 

вблизи этих параметров. 

Наблюдалось также расхождение с рекомендациями 

разработчиков ATCNet: в оригинальной работе для 

классификации воображения движений предлагалось 

использовать длину ядра, равную четверти частоты 

дискретизации [7]. Однако в нашем случае перебор 

значений от 16 до 128 с шагом 16 показал, что наилучшие 

результаты достигаются при длине ядра 112, что ближе к 

рекомендациям для EEG-TCNet и EEGNet (половина 

частоты дискретизации) [26, 27]. Это может быть связано 

с необходимостью охвата более низкого частотного 

диапазона , что является особенностью работы со SSVEP-

потенциалами. 

Различия в оптимальных гиперпараметрах блоков TC 

у моделей ATCNet и EEG-TCNet, вероятно, обусловлены 

их местоположением в архитектуре и особенностями 

работы последующих слоев. 

VI. РЕЗУЛЬТАТЫ КЛАССИФИКАЦИИ 

После завершения обучения и тестирования моделей 

для каждого испытуемого были вычислены метрики 

точности классификации, коэффициента каппы Коэна, а 

также построены матрицы путаницы для обоих 

индивидуальных профилей.  

 

 
Рис. 3. Усредненные показатели точности классификации в индивидуальных Профилях №1 и №2 
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На Рис. 3 представлены усредненные по всем 

испытуемым и попыткам обучения показатели точности 

классификации, полученные при классификации 4-6 

команд в индивидуальных Профилях №1 и №2. 

Из полученных графиков виден значительный прирост 

усредненных показателей точности классификации для 

всех моделей, при переходе от наименее к наиболее 

совместимым частотам. Абсолютным лидером по 

усредненной точности классификации стала модель 

ATCNet, достигнув показателей на уровне 98%. Модели 

EEG-TCNet и EEGNet демонстрируют не менее 

впечатляющие результаты как по усредненным 

значениям, так и уровню их прироста при классификации 

фотостимулов Профиля №2. В Таблицах 2 и 3 приведена 

расширенная статистика по усредненным показателям 

данной метрики в индивидуальном Профиле №1 и №2 

соответственно. 

 

Таблица 2. Точность классификации фотостимулов Профиля №1 

Модель 

Количество классов 

4 5 6 

сред. 
% 

мин. 
% 

макс. 
% 

ст. откл. 
% 

сред. 
% 

мин. 
% 

макс. 
% 

ст. откл. 
% 

сред. 
% 

мин. 
% 

макс. 
% 

ст. откл. 
% 

ATCNet 72,51 35,94 100,00 20,95 65,27 22,19 95,31 27,01 69,30 26,30 97,40 26,36 

EEG-
TCNet 

64,50 25,00 100,00 25,53 61,56 19,38 96,88 27,20 61,13 29,69 97,92 27,33 

EEGNet 68,21 26,56 100,00 25,58 61,76 21,88 98,13 27,61 65,59 19,79 97,40 29,76 

 

Таблица 3. Точность классификации фотостимулов Профиля №2 

Модель 

Количество классов 

4 5 6 

сред. 
% 

мин. 
% 

макс. 
% 

ст. откл. 
% 

сред. 
% 

мин. 
% 

макс. 
% 

ст. откл. 
% 

сред. 
% 

мин. 
% 

макс. 
% 

ст. откл. 
% 

ATCNet 98,19 89,45 100,00 3,65 97,97 91,56 100,00 2,88 97,88 94,01 100,00 2,19 

EEG-
TCNet 

97,85 94,14 100,00 2,66 96,99 91,56 100,00 3,20 96,61 91,15 100,00 3,49 

EEGNet 95,70 85,55 100,00 5,61 96,45 90,63 100,00 3,55 95,41 86,46 100,00 4,76 

 

Результаты, представленные в Таблицах 2 и 3, 

демонстрируют выраженные различия в точности 

классификации между Профилями №1 и №2. Для всех 

моделей наблюдается значительный прирост метрик при 

переходе от наименее совместимых частот к наиболее 

совместимым. Так, для Профиля №1 средняя точность 

классификации варьировалась от 61,13% до 72,51%, в 

зависимости от модели и количества распознаваемых 

классов, тогда как для Профиля №2 показатели возросли 

до 95,41-98,19%. Таким образом, в среднем прирост 

составил порядка 30‱, что подтверждает существенное 

влияние персонализации частот стимуляции на 

эффективность классификации. Лучшие результаты в 

обоих профилях были достигнуты моделью ATCNet – 

даже при работе с наименее совместимыми частотами, 

тогда как модели EEG-TCNet и EEGNet показали 

результаты на 5-8‱ ниже. При переходе к 

индивидуальному Профилю №2 различия между 

моделями становятся менее выраженными. 

Минимальные показатели точности в Профиле №1 

варьируются в широком диапазоне – от 19,38% до 

35,94%, что свидетельствует о сильной 

межиндивидуальной вариабельности реакций на 

наименее совместимые частоты и нестабильности 

результатов классификации. При этом стандартное 

отклонение для всех моделей достигает 20-29%, что 

указывает на неравномерность распределения 

показателей внутри группы испытуемых. В Профиле №2 

наблюдается обратная ситуация: даже минимальные 

значения точности превышают 85%, а стандартное 

отклонение снижается до уровня 2-5%. Это говорит о 

высокой согласованности результатов между 

участниками эксперимента и устойчивости 

классификации при использовании индивидуально 

подобранных частот. 

Стоит отметить, что при классификации фотостимулов 

индивидуального Профиля №1 и детального анализа 

полученных данных находились испытуемые, 

демонстрировавшие крайне высокую точность 

классификации даже с учетом индивидуального подбора 

наименее совместимых частот. Так, испытуемый №1 

продолжал демонстрировать точность классификации на 

уровне 95-97%, в то время как при классификации 

фотостимулов индивидуального Профиля №2 во всех 

моделях была достигнута точность классификации в 

100%. Среди всех испытуемых он имел наибольший 

опыт взаимодействия с ИМК на SSVEP-парадигме. 

Испытуемый №6 также достиг точности классификации 

на уровне 86-94%, однако данные показатели были ниже, 

чем при классификации фотостимулов индивидуального 

Профиля №2. Единственным исключением среди всех 

испытуемых и моделей стала классификация четырех 

частот фотостимуляции моделью EEGNet для 

испытуемого №6, где переход к индивидуальному 

Профилю №2 на трех из четырех попытках обучения 

привел к снижению точности, что отразилось на среднем 

показателе (средняя точность классификации в 

индивидуальном Профиле №1 для данного испытуемого 
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– 92,19%, а в индивидуальном Профиле №2 – 94,92%, что 

на 2,73‱ меньше). 

На Рис. 4 представлены усредненные значения 

коэффициента каппы Коэна для индивидуальных 

профилей №1 и №2. Динамика изменений данной 

метрики полностью соответствует тенденциям, 

выявленным для точности классификации. 

 

 
Рис. 4. Усредненные показатели коэффициента каппы Коэна в индивидуальных Профилях №1 и №2 

Модель ATCNet вновь демонстрирует наилучшие 

показатели среди протестированных архитектур, однако 

EEG-TCNet и EEGNet также показали высокую степень 

согласованности. В Таблицах 4 и 5 представлена 

расширенная статистика во усредненным показателям 

коэффициента каппы Коэна для индивидуальных 

профилей №1 и №2 соответственно. 

 

Таблица 4. Каппа Коэна при классификации фотостимулов Профиля №1 

Модель 

Количество классов 

4 5 6 

сред. мин. макс. ст. откл. сред. мин. макс. ст. откл. сред. мин. макс. ст. откл. 

ATCNet 0,633 0,146 1,000 0,279 0,566 0,027 0,941 0,338 0,632 0,116 0,969 0,316 

EEG-TCNet 0,527 0,000 1,000 0,340 0,520 -0,008 0,961 0,340 0,534 0,156 0,975 0,328 

EEGNet 0,576 0,021 1,000 0,341 0,522 0,023 0,977 0,345 0,587 0,038 0,969 0,357 

 

Таблица 5. Каппа Коэна при классификации фотостимулов Профиля №2 

Модель 

Количество классов 

4 5 6 

сред. мин. макс. ст. откл. сред. мин. макс. ст. откл. сред. мин. макс. ст. откл. 

ATCNet 0,976 0,859 1,000 0,049 0,975 0,895 1,000 0,036 0,975 0,928 1,000 0,026 

EEG-TCNet 0,971 0,922 1,000 0,035 0,962 0,895 1,000 0,040 0,959 0,894 1,000 0,042 

EEGNet 0,943 0,807 1,000 0,075 0,956 0,883 1,000 0,044 0,945 0,838 1,000 0,057 

 

Результаты, представленные в данных таблицах, 

отражают изменения в показателе каппы Коэна моделей. 

Для всех трех моделей наблюдается значительный рост 

метрики при переходе к Профилю №2: средние значения 

возросли с 0,52-0,63 до 0,94-0,98, что соответствует 

переходу от уровня, близкого к случайному угадыванию, 

к практически идеальной согласованности. Таким 

образом, персонализация частот фотостимуляции 

обеспечила рост коэффициента каппы в среднем на 0 ,35-

0,4, что указывает на улучшение обобщающих 

способностей моделей и снижение вероятности 

случайных совпадений при классификации [7]. 

В Профиле №1 минимальные значения каппы 

достигали нуля и даже отрицательных величин 

(например, -0,008 для EEG-TCNet при пяти классах), а  

стандартное отклонение составляло 0,28-0,36, 

подтверждая высокую вариабельность между 

испытуемыми. В Профиле №2 разброс данных резко 

сократился: стандартное отклонение не превышало 0,05 

для ATCNet и EEG-TCNet, а  минимальные значения 

коэффициента оставались выше 0,85, что указывает на 

стабильную и воспроизводимую работу моделей. Рост 

коэффициента каппы при переходе к Профилю №2 

особенно важен, поскольку эта метрика учитывает не 

только абсолютную точность, но и вероятность 

случайных угадываний. 

В таблицах 6 и 7 приведены показатели главной 

диагонали матриц путаницы, усредненных по всем 

испытуемым при классификации фотостимулов в 

Профиле №1 и №2 соответственно. 
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Таблица 6. Главная диагональ матрицы путаницы при классификации фотостимулов Профиля №1  

Модель 
Количество классов 

4 5 6 

ATCNet 0,73 0,70 0,69 0,77 0,61 0,70 0,66 0,64 0,66 0,59 0,65 0,67 0,67 0,77 0,81 

EEG-TCNet 0,58 0,67 0,72 0,61 0,58 0,62 0,56 0,64 0,68 0,45 0,61 0,60 0,54 0,66 0,81 

EEGNet 0,72 0,68 0,63 0,70 0,64 0,62 0,55 0,59 0,68 0,59 0,61 0,60 0,59 0,73 0,80 

 

Таблица 7. Главная диагональ матрицы путаницы при классификации фотостимулов Профиля №2  

Модель 
Количество классов 

4 5 6 

ATCNet 0,98  0,99  0,98  0,97  0,99  0,96  0,99  0,97  0,99  0,99  0,98 0,99 0,93  1,00  0,98  

EEG-TCNet 0,98  0,98  0,99  0,97  0,98  0,96  0,97  0,96  0,97  0,99  0,97 1,00 0,92  0,97  0,95  

EEGNet 0,96  0,98  0,99  0,90  0,97  0,97  0,99  0,94  0,95  0,98  0,95 0,99 0,89  0,98  0,94  

 

Анализ показателей главной диагонали позволяет 

судить не только о точности классификации модели как 

таковой, но равномерности ее работы по каждой команде 

в отдельности, что позволяет точнее судить о работе 

модели. Так, для Профиля №1 наблюдается широкая 

вариабельность точности классификации по отдельным 

командам и моделям: показатели главной диагонали 

варьируются от 0,45 до 0,81, и при этом у каждой 

архитектуры имеются как сравнительно устойчивые 

классы (около 0,7 и выше), так и явно «слабые» (на 

уровне 0,5 и ниже). Такая неоднородность согласуется с 

уже отмеченным высоким межсубъектным разбросом 

метрик, рассмотренных ранее. При переходе к профилю 

№2 ситуация существенно изменяется: главная 

диагональ всех трех моделей смещается к значениям, 

близким к единице, что означает абсолютную точность 

классификации. Кроме того, точность классификации 

команд становится более равномерной: большинство 

показателей лежит в диапазоне 0,94-0,99 с единичными 

исключениями, а ранее «слабые» классы перестают быть 

источником систематических ошибок. Сравнительный 

анализ данных в таблицах показывает, что модель 

ATCNet продолжает являться лидером по показаниям 

метрик, в то время как модель EEG-TCNet является 

ближайшим ее конкурентом. С учетом особенности 

архитектуры последней модели, заключающейся в 

существенно меньшем количестве параметров [19, 26], 

она может стать лучшим кандидатом в условиях работы 

на ограниченных вычислительных ресурсах, обеспечивая 

достаточно высокие показатели по рассмотренным нами 

метрикам. При этом, хотя EEGNet сохраняет небольшое 

число классов с чуть меньшей точностью распознавания 

(0,9 в профиле из четырех и 0,89 в профиле из шести 

команд), выигрыш от персонализации частот 

фотостимуляции наблюдается для каждой из 

разобранных моделей. 

VII. ЗАКЛЮЧЕНИЕ 

Настоящее исследование было направлено на поиск 

решения одной из ключевых проблем, ограничивающих 

практическое применение интерфейсов «мозг-

компьютер» на основе SSVEP-парадигмы, а именно – 

высокой вариабельности реакции пользователей на 

фотостимулы. Экспериментально подтверждено, что 

учет индивидуальных особенностей пользователя при 

подборе частот фотостимуляции позволяет кардинально 

повысить эффективность работы ИМК, основанных на 

алгоритмах машинного обучения. 

Ключевым результатом работы является демонстрация 

существенного улучшения метрик классификации при 

переходе от набора наименее совместимых частот 

(Профиль №1) к персонализированному набору наиболее 

совместимых частот (Профиль №2). Данные профили 

формировались персонализировано, на основе учета 

фоновой ЭЭГ-активности испытуемых и коэффициента 

совместимости. 

Для всех трех тестируемых моделей (ATCNet, EEG-

TCNet и EEGNet) был зафиксирован существенный 

прирост как точности классификации (Таблицы 2, 3), так 

и коэффициента каппы Коэна  (Таблицы 4, 5). 

Усредненная точность классификации возросла 

приблизительно на 30‱, достигнув показателей в 95-

98%. В то же время, каппа Коэна повысилась с уровней 

0,52-0,63, близких к случайному угадыванию, до 

значений 0,94-0,98, свидетельствующих о практически 

идеальной согласованности. Построение матриц 

путаницы моделей и анализ их главной диагонали 

(Таблицы 6, 7) показывает улучшение точности 

классификации каждой команды в отдельности, что 

также является крайне важным наблюдением. 

Важным выводом является не только абсолютный рост 

метрик, но и существенное повышение стабильности и 

надежности работы моделей. При использовании 

наиболее совместимых с испытуемым частот 

фотостимуляции сократилось стандартное отклонение 

метрик между испытуемыми, а минимальные значения 

точности классификации и каппы Коэна перестали 

опускаться ниже 85% и 0,85 соответственно. 

Сравнительный анализ моделей показал, что ATCNet 

стабильно демонстрирует наилучшие результаты. 

Ближайшим ее конкурентом оказалась EEG-TCNet , 

которая, обладая существенно меньшим числом 

параметров, обеспечивает сопоставимо высокую 
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эффективность после персонализации, что делает ее 

перспективным кандидатом для развертывания в 

условиях ограниченных вычислительных ресурсов. 

Модель EEGNet, будучи «золотым стандартом», также 

подтвердила свою состоятельность, показав высокие 

результаты после адаптации под пользователя. 

Полученные результаты могут позволить перейти от 

создания систем, ориентированных на 

«среднестатистического» пользователя, к 

персонализированным интерфейсам «мозг-компьютер», 

которые могут адаптивно настраиваться под 

нейрофизиологические особенности конкретного 

человека, что является важным шагом для их широкого 

практического внедрения.. 
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Abstract—Steady-State Visually Evoked Potential (SSVEP)-

based Brain-Computer Interfaces (BCIs) provide users with an 

alternative means of controlling external devices without 

physical interaction. However, their practical application 

outside research laboratories remains limited due to the high 

inter-individual variability in user responses to visual stimuli, 
which reduces the accuracy and efficiency of BCIs. This issue 

represents one of the key challenges in the field. In this work, we 

investigate how accounting for individual sensitivity to photic 

stimulation frequency affects the performance of modern 

machine learning models commonly employed in BCI design. To 
address this problem, we collected a custom 

electroencephalography (EEG) dataset recorded from a group 

of eight participants. For each participant, stimulation 

frequencies were selected individually using a frequency 

compatibility coefficient proposed in our previous studies. Six 
most compatible and six least compatible stimulation 

frequencies were determined for each subject. The results of 

testing three state-of-the-art machine learning models (ATCNet, 

EEG-TCNet, and EEGNet) demonstrate a substantial 

improvement in classification performance. On average across 
participants, the transition to classifying compatible frequency 

sets increased classification accuracy from 61-69% to 95-98% 

for all models, while Cohen’s kappa improved from 0.52-0.63 to 

0.94-0.98. These findings highlight the potential of incorporating 

individual response characteristics to enhance the efficiency of 
SSVEP-based Brain–Computer Interfaces. 

 
Keywords — brain–computer interfaces, personalized photic 

stimulation frequency, steady-state visually evoked potentials, 

electroencephalography, machine learning, convolutional 

neural networks. 
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