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Аннотация—В статье предложена новая модель  

бинарной классификации временных рядов BTSC-ISD-
Transformer (Binary Time-Series Classification with Inertial 

Sensor Data Transformer), предназначенная для детекции 

спуфинг-атак на основе данных инерциальных датчиков 

(акселерометра и гироскопа). Модель адаптирует 

архитектуру трансформера для анализа временных рядов, 
используя механизм самовнимания для параллельного 

выявления сложных и протяженных во времени аномалий, 

в отличие от последовательной обработки в традиционных 

рекуррентных сетях. Проведенные эксперименты 

демонстрируют превосходство предложенного подхода по 
сравнению с моделью-аналогом на основе LSTM-RNN. 

Показатель точности (Accuracy) достиг 97,45%, что на 12% 

выше результата LSTM-RNN. Метрики F1-мера, Precision и 

Recall составили 96,41%, 97,03% и 95,79% соответственно, 

что свидетельствует о высокой сбалансированности 
модели, ее способности минимизировать как ложные 

срабатывания, так и пропуски атак. Результаты 

подтверждают перспективность использования 

трансформерных моделей в системах реального времени для 

обеспечения кибербезопасности БПЛА. 
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I. ВВЕДЕНИЕ 

Защита беспилотных летательных аппаратов (БПЛА) 

от спуфинг-атак становится критически важной ввиду 

широкого распространения дронов в промышленности, 

обороне и сельском хозяйстве. Спуфинг представляет 

собой кибератаку, при которой передаются ложные 

навигационные сигналы, имитирующие сигналы 

глобальных навигационных спутниковых систем (GPS, 

ГЛОНАСС), что ведёт к искажению положения аппарата, 

нарушению его траектории полета и потере управления. 

В условиях растущей зависимости БПЛА от спутниковой 

навигации разработка своевременных и надёжных 

методов обнаружения таких атак является 

первоочередной задачей обеспечения безопасности. 
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Современные средства защиты базируются на 

многоуровневых системах сбора и анализа данных, 

включая обработку временных рядов с использованием 

передовых моделей машинного обучения. 

Трансформерные модели, изначально разработанные для 

обработки естественного языка, доказали высокую 

эффективность в анализе последовательных данных 

благодаря своей способности выявлять зависимости 

различной дальности и контекста. Их применение в 

кибербезопасности беспилотников существенно 

повышает качество детекции, учитывая сложные и 

динамичные изменения в сенсорных данных. 

В настоящем исследовании представлена 

трансформерная модель бинарной классификации 

временных рядов, сформированных на основе данных 

инерциальных датчиков БПЛА. Такой подход позволяет 

обнаруживать признаки начала спуфинг-атаки в 

реальном времени на основе внутренней физической 

информации о движении аппарата, снижая зависимость 

от внешних источников. Предложенная модель 

основывается на современных методах глубокого 

обучения и демонстрирует потенциал для работы в 

различных условиях. 

Отличительной чертой разработки является 

адаптация архитектуры трансформера к специфике 

данных инерциальных измерительных устройств, что 

обеспечивает эффективное выделение характерных 

паттернов спуфинг-атак. Особое внимание уделено 

минимизации числа ложных срабатываний, что имеет 

критическое значение для обеспечения безопасности и 

устойчивости эксплуатации БПЛА. 

II. АНАЛИЗ ЛИТЕРАТУРЫ 

Критический анализ существующей литературы 

выявляет разнообразие подходов к проблемам 

детектирования спуфинг-атак беспилотных 

авиационных систем (БПЛА). Публикации [1, 2] 

представляют собой ключевые работы, определяющие 

базовые концепции проблемы. Первая работа посвящена 

исследованию уязвимости оборудования глобальных 

навигационных спутниковых систем (ГНСС), тогда как 

вторая публикация фокусируется на систематизации 

типов спуфинг-атак. Однако обе работы сосредоточены 
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исключительно на формировании теоретического 

фундамента и не затрагивают практические методы 

выявления угроз. 

В настоящей работе рассмотрен ряд исследований, 

непосредственно посвящённых обработке сенсорных 

данных. В частности, в исследовании [3] описан 

алгоритм детекции спуфинга, базирующийся на 

объединении данных с различных сенсоров с 

применением архитектуры TimesNet. Работа [4] 

предлагает альтернативный метод прогнозного 

выявления аномалий в траекториях движения БПЛА. 

Кроме того, публикации [5, 6] охватывают широкий 

спектр методов машинного обучения, используемых для 

повышения безопасности беспилотных летательных 

аппаратов и выявления отклонений от нормальных 

режимов работы. 

Ряд публикаций [7-11] рассматривают 

вспомогательные аспекты безопасности. В частности, 

исследования [7, 10] концентрируются на физических  

способах идентификации дронов, в статье [8] 

классифицируются сетевые атаки, тогда как в статье [9] 

демонстрируются возможности графа нейронных сетей 

для обнаружения аномалий. Статья [11] рассматривает 

проблему построения оптимальных маршрутов полетов в 

условиях наличия угрозы. 

Статьи [12, 13] посвящены методам компьютерного 

зрения и обработки изображений, соответственно, 

глубоким свёрточным нейронным сетям (CNN) и 

сегментации изображений с использованием ансамблей 

нейронных сетей. Они решают важные задачи 

распознавания и классификации визуальной 

информации, что полезно для мониторинга воздушного 

пространства и предотвращения столкновений.  

Особое внимание привлекают наиболее значимые 

работы [14-20], изучающие современные методики 

обработки данных. Среди них выделяются исследования, 

использующие преобразователи (transformer-based 

models) для выявления аномалий [14]. Другие работы 

[15] исследуют особенности навигации при отсутствии 

сигнала GPS. Наиболее близкие к заявленной тематике 

статьи [16-20] демонстрируют применение различных 

архитектур искусственных нейронных сетей, включая 

интерпретируемый искусственный интеллект (ИИ) [16], 

гибридные сети типа CNN+Transformer [18] и 

рекуррентные нейронные сети [20]. В работе [20] 

рассматривается задача бинарной классификации 

вторжений в сети БПЛА с использованием архитектуры 

LSTM-RNN, что служит эталоном для сравнения. 

Данный подход интересен представленными 

показателями качества и возможностью улучшения 

результатов посредством замены LSTM на более 

современную трансформерную архитектуру.  

Цель настоящего исследования − разработка 

трансформерной модели бинарной классификации 

временных рядов инерциальных данных, способной 

повысить точность на 3-5% и F1-меру на 4-6% по 

сравнению с LSTM-моделями, одновременно сокращая 

время инференса на 10–15%. 

 

III. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ ДЕТЕКЦИИ 

СПУФИНГ-АТАК В БПЛА 

Задача детекции спуфинг-атак в БПЛА 

формулируется как задача бинарной классификации 

временных рядов, полученных с инерциальных сенсоров 

аппарата, с целью определения факта наличия либо 

отсутствия атаки, воздействующей на навигационную 

систему. 

Для математической постановки задачи детекции 

спуфинг-атак в БПЛА вводятся следующие обозначения 

и переменные: 

𝑋 = {𝑥𝑡}𝑡=1
𝑇  − временной ряд, где 𝑥𝑡 ∈ ℝ𝑑 − вектор 

данных инерциальных датчиков (а кселерометров, 

гироскопов, магнитометров и др.) в момент времени 𝑡, 

ℝ𝑑  − 𝑑-мерное пространство действительных чисел, 𝑇 − 

длина наблюдаемой последовательности; 

𝕏 = {𝑋} − пространство всех возможных временных 

рядов таких данных; 

𝑦 ∈ {0,1} − бинарная метка класса, где «0» означает 

нормальный, неатакующий режим работы БПЛА, а «1» − 

наличие спуфинг-атаки; 

𝑓: 𝕏 → {0,1} − функция классификации (детектор), 

которую необходимо построить. 

𝜃 − параметры модели, подлежащие обучению на 

тренировочной выборке; 

{(𝑋𝑖 , 𝑦𝑖 )} 𝑖=1
𝑁  − тренировочная выборка из 𝑁 примеров 

временных рядов с соответствующими метками; 

𝐿(𝑓𝜃 (𝑋𝑖 ), 𝑦𝑖 ) − функция потерь, например бинарная 

кросс-энтропия, измеряющая расхождение предсказаний 

и истинных меток. 

Функция обучения сводится к минимизации средней 

функции потерь: 

min
𝜃

1

𝑁
∑ 𝐿𝑁

𝑖=1 (𝑓𝜃 (𝑋𝑖 ), 𝑦𝑖 ).     (1) 

Задача сводится к построению модели 𝑓𝜃 , способной 

с максимальной точностью классифицировать 

временные ряды инерциальных данных на нормальные и 

подвергшиеся воздействию спуфинг-атак. 

Для оценки качества модели используют метрики: 

1) общая точность детектора или доля правильных 

решений  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 +𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,    (2) 

где 𝑇𝑃 − количество истинно-положительных 

срабатываний детектора , 𝑇𝑁 − количество истинно-

отрицательных срабатываний детектора , 𝐹𝑃 − 

количество ложноположительных срабатываний 

детектора, 𝐹𝑁 − количество ложноотрицательных 

срабатываний детектора ; 

2) точность обнаружения атаки, характеризующая 

насколько из всех срабатываний детектора именно атаки 

были распознаны верно 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
;      (3) 

3) вероятность обнаружения атаки, отражающая 

способность модели находить все случаи атак, то есть 

долю правильно обнаруженных атак относительно их 

общего количества  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
;        (4) 

4) гармоническое среднее точности и полноты (F1-

мера) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
.     (5) 
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Временные ряды могут содержать шумы, искажения 

и динамические колебания, обусловленные 

эксплуатационными условиями. Поэтому задача требует 

применения предобработки и устойчивых алгоритмов 

выделения признаков, благодаря чему модель адекватно 

реагирует на характерные изменения, вызванные 

спуфинг-атаками. 

IV. ОПИСАНИЕ АНАЛОГОВ 

Модель обнаружения сетевых вторжений в БПЛА 

[20], выбранная в настоящем исследовании аналогом, 

представляет собой комбинацию рекуррентной 

нейронной сети (Recurrent Neural Network, RNN) с 

элементами долговременной кратковременной памяти 

(Long Short-Term Memory, LSTM).  
Архитектура модели LSTM-RNN представляет собой 

последовательную обработку временных рядов данных с 

использованием рекуррентных слоев с долгосрочной 

кратковременной памятью. Модель принимает на вход 

последовательность векторов признаков сетевого 

трафика или данных инерциальных датчиков. Обработка 

осуществляется через несколько каскадно соединенных 

LSTM-слоев, где каждый слой состоит из множества 

LSTM-ячеек.  

Ключевыми компонентами архитектуры являются:  

− входной слой для приема временных 

последовательностей; 

− стек LSTM-слоев с механизмами управления 

памятью (input, forget и output gates); 

− полносвязный выходной слой с сигмовидной 

функцией активации. 

Семантическая интерпретация input gate, forget gate и 

output gate: 

− input gate выполняет функцию «рецептора» − 

решает, какая новая информация заслуживает 

сохранения; 

− forget gate реализует «архивацию» − определяет, 

какие исторические данные остаются релевантными; 

− output gate работает как «публицист» − управляет 

экспортом информации для последующих вычислений. 

Математическая формализация модели LSTM-RNN 

описывается следующим образом. Пусть задана 

последовательность векторов признаков сетевого 

трафика 𝑋 = {𝑥𝑡}𝑡=1
𝑇 , где 𝑥𝑡 ∈ ℝ𝑑  представляет собой d-

мерный вектор в момент времени 𝑡, а  𝑇 — длина 

временного горизонта. Пространство всех таких 

последовательностей обозначается как 𝕏. Для каждой 

последовательности определена бинарная метка 𝑦 ∈
{0,1}, где 𝑦 = 1 соответствует наличию сетевой атаки. 

Модель LSTM-RNN реализует отображение 𝑓: 𝕏 →
{0,1}, параметризованное вектором параметров 𝜃. 

Архитектура сети основана на LSTM-ячейках, которые 

для каждого момента времени 𝑡 вычисляют: 
𝑖𝑡 = 𝜎(𝑊𝑥𝑖 𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡 −1 + 𝑏𝑖),

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡 −1 + 𝑏𝑓 ),

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 𝑥𝑡 + 𝑊ℎ𝑜 ℎ𝑡−1 + 𝑏𝑜),

𝐶𝑡 = tanh(𝑊𝑥𝑐 𝑥𝑡 + 𝑊ℎ𝑐 ℎ𝑡 −1 + 𝑏𝑐 ),

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡 ,

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡),

  (6) 

где 𝑖𝑡 ,𝑓𝑡 , 𝑜𝑡  − векторы состояний input gate, forget gate и 

output gate соответственно; 𝐶𝑡 − вектор-кандидат 

состояния ячейки; 𝐶𝑡 − обновленное состояние ячейки; ℎ𝑡  

− скрытое состояние; 𝑊𝑥𝑖 , 𝑊ℎ𝑖 , 𝑏𝑖 и аналогично для 

других gate − обучаемые параметры; 𝜎 − сигмовидная 

функция активации; ⊙ − поэлементное умножение. 

Векторы состояний input gate, forget gate и output gate 

в LSTM-архитектуре являются ключевыми 

управляющими механизмами, регулирующими поток 

информации через ячейку памяти. Их математическая 

сущность и функциональное назначение раскрываются 

следующим образом. 

Вектор состояния input gate 𝑖𝑡 ∈ [0,1]ℎ определяет 

степень усвоения новой информации из входного 

сигнала 𝑥𝑡. Вычисляется по формуле: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 𝑥𝑡 + 𝑊ℎ𝑖 ℎ𝑡 −1 + 𝑏𝑖),    (7) 

где 𝜎 − сигмовидная функция, отображающая значения в 

диапазон [0,1]. Компоненты вектора 𝑖𝑡 

интерпретируются как коэффициенты значимости 

соответствующих компонент вектора -кандидата 𝐶𝑡. 

Значение, близкое к 1, указывает на полное усвоение 

элемента, близкое к 0 − на игнорирование. 

Вектор состояния forget gate 𝑓𝑡 ∈ [0,1]ℎ управляет 

сохранением или «забыванием» информации из 

предыдущего состояния ячейки 𝐶𝑡−1: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡 −1 + 𝑏𝑓 ).  (8) 

Каждый элемент 𝑓𝑡  выступает в роли коэффициента 

сохранения для соответствующей ячейки памяти. 

Значение 1 сохраняет информацию, 0 − обнуляет её. Этот 

механизм обеспечивает контролируемое «забывание» 

устаревших данных. 

Вектор состояния output gate 𝑜𝑡 ∈ [0,1]ℎ  регулирует 

влияние обновленного состояния ячейки 𝐶𝑡 на 

формирование выходного скрытого состояния ℎ𝑡: 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 𝑥𝑡 + 𝑊ℎ𝑜 ℎ𝑡 −1 + 𝑏𝑜).  (9) 

Компоненты 𝑜𝑡  определяют степень экспорта 

информации из ячейки памяти во внешнее скрытое 

состояние. Фильтрация происходит через поэлементное 

умножение: 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡).     (10) 

Размерность ℎ этих векторов соответствует 

количеству нейронов в скрытом слое LSTM. Совместная 

работа трёх gate позволяет модели адаптивно управлять 

памятью, сохраняя долгосрочные зависимости и 

фильтруя шумовые компоненты временных рядов, что 

критически важно для задач анализа сетевого трафика 

БПЛА. 

Для многослойной архитектуры скрытые состояния 

каждого слоя 𝑙 вычисляются как: 

ℎ𝑡
(𝑙)

= LSTM
(𝑙) (ℎ𝑡

(𝑙−1)
, ℎ𝑡−1

(𝑙)
),   (11) 

где ℎ𝑡
(0)

= 𝑥𝑡 , а  𝑙 = 1, … , 𝐿. 

Выход LSTM-сети формируется с помощью 

полносвязного слоя с сигмовидная функцией активации: 

𝑦 = 𝜎(𝑊𝑦 ℎ𝑇
(𝐿)

+ 𝑏𝑦 ),      (12) 

где 𝑦 ∈ [0,1] интерпретируется как вероятность 

принадлежности к классу атак. 

Обучение модели заключается в минимизации 

функции бинарной кросс-энтропии на обучающей 

выборке {(𝑋𝑖 , 𝑦𝑖 )}𝑖=1
𝑁 : 

min
𝜃

1

𝑁
∑ [𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 )log(1 − 𝑦𝑖)]𝑁

𝑖=1 .  (13) 

Качество модели оценивается с помощью метрик, 

определенных в постановке задачи: Accuracy (2), 

Precision (3), Recall (4) и F1-мера (5).  
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V. ПРЕДЛАГАЕМАЯ ТРАНСФОРМЕРНАЯ МОДЕЛЬ БИНАРНОЙ 

КЛАССИФИКАЦИИ ВРЕМЕННЫХ РЯДОВ НА ДАННЫХ 

ИНЕРЦИАЛЬНЫХ ДАТЧИКОВ ДЛЯ ДЕТЕКЦИИ СПУФИНГ-АТАК 

В БПЛА 

Для решения задачи бинарной классификации 

временных рядов, формализованной в разделе III, 

предлагается модель на основе архитектуры 

трансформер с названием «BTSC-ISD-Transformer» 

Binary Time-Series Classification with Inertial Sensor Data 

Transformer). В отличие от последовательной обработки 

данных в модели LSTM-RNN, предлагаемая модель 

BTSC-ISD-Transformer обеспечивает параллельный 

анализ всей временной последовательности за счет 

механизма самовнимания. 

Пусть задана последовательность векторов признаков 

инерциальных датчиков 𝑋 = {𝑥𝑡}𝑡=1
𝑇 , где 𝑥𝑡 ∈ ℝ𝑑 , 𝑑 = 6 

(три оси акселерометра и три оси гироскопа). Как и в 

постановке задачи, требуется построить функцию 

классификации 𝑓: 𝕏 → {0,1}, где 𝑦 = 1 соответствует 

наличию спуфинг-атаки. 

Архитектура предложенной модели включает 

следующие компоненты: 

1. Входное проектирование. В отличие от модели 

LSTM-RNN, где входные данные подаются 

последовательно (6), модель BTSC-ISD-Transformer 

одновременно проецирует все элементы 

последовательности: 

𝑧𝑡 = 𝑥𝑡𝑊𝑒 + 𝑏𝑒 ,  𝑊𝑒 ∈ ℝ𝑑×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑏𝑒 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 . (14) 

2. Позиционное кодирование. Для учета временного 

порядка, который в LSTM моделируется рекуррентными 

связями (7)-(10), в трансформерной модели добавляется 

позиционное кодирование: 

ℎ𝑡
(0)

= 𝑧𝑡 + 𝑝𝑡 ,      (15) 

где 𝑝𝑡  вычисляется по синусоидальным функциям. 

3. Механизм самовнимания. В отличие от gate-

механизмов модели LSTM-RNN (7)-(9), модель BTSC-

ISD-Transformer использует многокомпонентный 

механизм внимание: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉, (16) 

где 𝑄, 𝐾, 𝑉 − матрицы запроса, ключа и значения, 

получаемые линейными преобразованиями входных 

данных. 

4. Нормализация и позиционно-ориентированная 

полносвязная Feed-Forward сеть. Каждый слой модели 

BTSC-ISD-Transformer содержит два ключевых блока, 

следующих за механизмом внимания: 

1) слой нормализации, который стабилизирует 

активации для каждого примера последовательности, 

обеспечивая лучшую устойчивость при обработке 

временных рядов по сравнению с пакетной 

нормализацией; 

2) позиционно-ориентированную полносвязную сеть, 

которая выполняет независимое нелинейное 

преобразование признаков для каждой позиции 

последовательности через два линейных слоя с 

активацией ReLU. 

5. Классификатор. Аналогично модели LSTM-RNN 

(12), используется сигмовидная функция активации: 

𝑦 = 𝜎(ℎ
[𝐶𝐿𝑆 ]

(𝐿 )
𝑊𝑐 + 𝑏𝑐 ),    (17) 

где ℎ
[𝐶𝐿𝑆 ]

(𝐿)
 − выходное представление специального 

токена классификации. 

Обучение модели проводится минимизацией 

функции бинарной кросс-энтропии (формула (13)) на 

обучающей выборке {(𝑋𝑖 , 𝑦𝑖 )}𝑖=1
𝑁 . Для оценки качества 

модели используются метрики, определенные в разделе 

III (формулы (2)-(5)). 

Ключевые преимущества предложенной архитектуры 

по сравнению с LSTM-RNN (раздел IV): 

1) параллельная обработка временных 

последовательностей; 

2) способность моделировать зависимости любой 

длины напрямую; 

3) более эффективное выделение значимых 

временных паттернов; 

4) устойчивость к проблеме исчезающих градиентов. 

VI. РЕАЛИЗАЦИЯ И ЭКСПЕРИМЕНТ 

Для обучения и оценки модели использовались 

данные с инерциальных датчиков БПЛА − гироскопа и 

акселерометра, по трём осям каждого из них (6 

признаков). Входной датасет [21] содержит два файла: 

нормальные полёты (norm.csv) и записи спуфинг-атак 

GPS (spo.csv). Для ускорения обучения использована 

случайная выборка 10% от исходных данных. 

На рисунках 1 и 2 представлены временные ряды 

акселерометра и гироскопа для нормального полёта и 

спуфинг-сигналов. Отмечается наличие событий 

клиппинга в данных спуфинга, что свидетельствует о 

перегрузках сенсоров и ключевых паттернах для 

классификатора. 

 

 
Рис. 1. Временной ряд данных акселерометра для 

нормального и спуфинг-сигнала 

 

 
Рис. 2. Временной ряд данных гироскопа для 

нормального и спуфинг-сигнала 
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Данные приведены к единому масштабу с 

использованием стандартного метода предобработки 

данных (нормализации) в машинном обучении 

StandardScaler, которая выполняет преобразование по 

формуле 

𝐱 𝑡 =
𝐱 𝑡 − 𝜇

𝜎
, 

где 𝐱 𝑡 − исходное значение признака, 𝜇 − среднее 

значение признака по обучающей выборке, 𝜎 − 

стандартное отклонение признака. Такая стандартизация 

обеспечивает центральное выравнивание данных со 

средним 0 и единичной дисперсией. 

Для формирования обучающих примеров исходные 

временные ряды данных инерциальных датчиков 

преобразовывались с помощью метода скользящего 

окна. Каждое окно длиной в 10 отсчетов (временных 

шагов) формирует один обучающий пример (sample), где 

первые 9 отсчетов служат признаками (фичами), а 

последний (10-й) отсчет содержит метку класса 

(нормальный режим / спуфинг-атака). Этот подход 

соответствует формуле (1) из раздела IV и позволяет 

учитывать локальные временные зависимости. 

Полученный набор примеров разбит на обучающую 

(60%), валидационную (20%) и тестовую (20%) выборки 

с сохранением баланса классов.» 

Архитектура трансформерной модели BTSC-ISD-

Transformer построена на 3 слоях с размерностью 

скрытого пространства 𝑑𝑚𝑜𝑑𝑒𝑙 = 128, восьмью 

компонентами механизма  самовнимания и размером 

внутреннего полносвязного слоя 512, что соответствует 

формулам (14)-(17). Код модели доступен в репозитории 

[22]. Для повышения устойчивости использованы 

пакетная нормализация, регуляризация методом 

отключения нейронов (dropout) и градиентное отсечение 

с порогом 0,5. Входная последовательность дополнена 

специальным токеном классификации [CLS], а для учёта 

порядка элементов применяется позиционное 

кодирование. Для предотвращения переобучения 

применён механизм ранней остановки с параметром 

patience=20 и адаптивным снижением скорости 

обучения. 

Для сравнительного анализа реализована модель 

LSTM-RNN с двумя слоями по 128 нейронов в скрытом 

состоянии. Код реализации доступен в [22]. 

Классификация производилась по последнему 

временному шагу последовательности. Обучение модели 

проводилось методом минимизации функции бинарной 

кросс-энтропии (13) с использованием алгоритма 

оптимизации Adam [23] и скоростью обучения 1 × 10−4. 

Дополнительные методы регуляризации не применялись.  

Рисунки 3, 4 демонстрирует динамику функции 

потерь и динамику точности на обучающей и 

валидационной выборках при обучении моделей LSTM-

RNN и BTSC-ISD-Transformer.  

В процесс обучения модели LSTM-RNN (рис. 2) 

выявлена менее стабильная сходимость и признаки 

начала переобучения. Процесс обучения модели BTSC-

ISD-Transformer (рис. 3) наблюдается более быстрая 

сходимость и стабильность на протяжении всего 

процесса обучения. В таблице 1 представлены 

рассчитанные ключевые метрики качества моделей 

LSTM-RNN и BTSC-ISD-Transformer, рассчитанные по 

формулам (2)-(5). 

 

 
Рис. 3. Процесс обучения модели LSTM-RNN [22] 

 

 
Рис. 4. Процесс обучения модели BTSC-ISD-Transformer 

[22] 

 

Таблица 1 – Ключевые метрики качества моделей LSTM-

RNN и BTSC-ISD-Transformer 

Модели 
Accuracy, 

% 

Precision, 

% 

Recall, % F1-мера, 

% 

LSTM-RNN 85,35 87,10 69,23 77,14 

BTSC-ISD-

Transformer 

97,45 97,03 95,79 96,41 

 

 
Рис. 5. Сравнение ключевых метрик качества моделей 

LSTM-RNN и BTSC-ISD-Transformer 

 

Значения ключевых метрик из таблицы 1 и рисунка 5 

свидетельствуют о высокой эффективности модели 

BTSC-ISD-Transformer по сравнению с классической 

LSTM-сетью.  
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Показатель точности (Accuracy) трансформера 

достигает 97,45%, что на 12% выше результата LSTM-

RNN (85,35%). Это указывает на улучшение общего 

уровня правильной классификации. 

Точность распознавания положительного класса 

(Precision) у модели BTSC-ISD-Transformer составляет 

97,03%, превышая аналогичный показатель LSTM-RNN 

(87,10%), что демонстрирует уменьшение числа ложных 

срабатываний.  

Чувствительность (Recall), критически важная для 

задач обнаружения спуфинг-атак, у модели BTSC-ISD-

Transformer равна 95,79%, что значительно выше 69,23%, 

чем у модели LSTM-RNN. Это свидетельствует о 

существенном снижении количества пропущенных атак. 

Гармоническое среднее Precision и Recall (F1-мера) у 

модели BTSC-ISD-Transformer достигает 96,41%, в то 

время как у модели LSTM-RNN этот показатель 

составляет 77,14%, что отражает лучшую 

сбалансированность и надёжность модели. 

На рисунке 6 представлена динамика значений 

функции потерь на обучающей выборке для моделей 

LSTM-RNN и BTSC-ISD-Transformer. Функция потерь 

вычисляется по формуле бинарной кросс-энтропии (13). 

 

 
Рис. 6. Распределение значений функции потерь на 

обучающей выборке (train loss) для моделей LSTM-RNN 

и BTSC-ISD-Transformer 

 

Из рисунка 6 видно, что модель BTSC-ISD-

Transformer обеспечивает более быстрое снижение 

значения функции потерь и лучшую стабильность в 

процессе обучения по сравнению с моделью LSTM-RNN. 

Это свидетельствует о более эффективной оптимизации 

параметров модели и лучшей способности к обобщению. 

Более низкое значение функции потерь указывает на 

более точное приближение модели к правильным 

ответам и, как следствие, на улучшение 

классификационных показателей. 

VII. ЗАКЛЮЧЕНИЕ 

В статье предложена трансформерная модель 

бинарной классификации временных рядов, получаемых 

с инерциальных датчиков БПЛА, для детекции спуфинг -

атак. Ключевым преимуществом предложенной модели 

BTSC-ISD-Transformer является её способность к 

параллельному анализу всей временной 

последовательности благодаря механизму 

самовнимания, который позволяет эффективно выявлять 

взаимосвязи между элементами последовательности, 

независимо от их расстояния во времени. 

В отличие от модели-аналога LSTM-RNN, которая 

обрабатывает данные последовательно и может 

«забывать» критически важные ранние паттерны из-за 

проблем с долгосрочными зависимостями, 

предложенная модель BTSC-ISD-Transformer напрямую 

моделирует взаимосвязи между любыми точками 

временного ряда. Это позволило более эффективно  

выделять сложные и протяженные во времени аномалии, 

характерные для спуфинг-атак, такие как события 

клиппинга, отмеченные на рисунке 4. 

Результаты экспериментов подтвердили высокую 

эффективность предложенного подхода в выявлении 

атак с минимальным числом ложных срабатываний и 

пропусков, что особенно важно в системах обеспечения 

безопасности беспилотных платформ. Использование 

небольшого набора инерциальных сенсоров позволяет 

оптимизировать вычислительные ресурсы при 

сохранении качества детекции. 

Полученные результаты имеют ряд ограничений. 

Модель тестировалась на данных с одного датасета и для 

одного типа спуфинг-атаки. Ее обобщающая 

способность на другие типы БПЛА и сценарии атак 

требует дальнейшего исследования. Кроме того, 

вычислительная сложность трансформерной 

архитектуры может стать ограничением для 

развертывания на бортовых системах с жесткими 

требованиями к задержкам, что также является 

предметом будущих работ 

В качестве направлений для будущих исследований 

можно выделить тестирование модели на более 

обширных и разнообразных наборах данных, 

включающих различные типы БПЛА и сценарии атак, а 

также оптимизацию вычислительной сложности модели 

для ее развертывания на бортовом оборудовании с 

ограниченными ресурсами. 
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Abstract—This paper proposes a novel binary time-series  

classification model, BTSC-ISD-Transformer (Binary Time-

Series Classification with Inertial Sensor Data Transformer), 

designed for spoofing attack detection based on inertial sensor 

data (accelerometer and gyroscope). The model adapts the 
transformer architecture for time-series analysis, leveraging the 

self-attention mechanism to enable parallel detection of complex 

and long-term anomalies, in contrast to the sequential 

processing employed by traditional recurrent neural networks. 

Experimental results demonstrate the superiority of the 
proposed approach compared to an LSTM-RNN-based baseline 

model. The classification accuracy reached 97.45%, which is 

12% higher than that of the LSTM-RNN model. The F1-score, 

Precision, and Recall achieved 96.41%, 97.03%, and 95.79%, 

respectively, indicating a high level of model balance and its 
ability to minimize both false positives and missed attacks. The 

results confirm the strong potential of transformer-based 

models for real-time cybersecurity systems in UAV applications. 

 

Keywords—unmanned aerial vehicles (UAVs), spoofing 

attacks, cybersecurity, inertial sensors, time series, binary 
classification, transformer, deep learning model, self-attention, 

LSTM. 
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