International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026

Recursion in Actual Java Programming

Alexander Prutzkow

Abstract—Recursion has been used in programming since the
1960s. The purpose of the study is to identify the place of
recursion in actual Java programming for the preparation of a
university course. The materials were 19 books on Java
describing recursion, as well as articles on mental models of
recursion. We have the following results of the study. Recursion
is, first of all, a technique and a tool. Recursion is described in
books together with the concepts of stack overflow, tail
recursion, tail call optimization (TCO), and finite or infinite.
TCO can be converted into iterations by techniques or
integrated development environment (IDE). The book authors
prefer calculation of factorial and Fibonacci numbers, binary
search, MergeSort, QuickSort, Towers of Hanoi as examples of
recursion. Most authors devote a chapter to recursion.
Programmers prefer iteration in many problems. In rare cases
(such as tree traversal), most programmers (over 51%) use
recursion. The most viable mental model is the Copies Model.
There are rules for designing recursive methods. When teaching
recursion, it is necessary to carefully select assignments. We
have not found an exact answer to the question of when to use
recursion. Recursion is used when solving well-defined problems
in recursive fashion. Recursion has a strong place in Java
programming. We will not include recursion in the course of
introductory programming, butwe will include it in the course
of algorithms and data structures. Recursion in actual Java
programming is not necessary, merely useful.

Keywords—recursion, Java, programming, teaching, tail call
optimization.

To iterate is human, to recurse divine.
— Laurence Peter Deutsch (from [1])

In order to understand recursion
one must first understand recursion [2, p. 500]

I. INTRODUCTION

Recursion (in programming) is the active flow of controlto a
new invocation/copy of the subroutine called and the passive
flow of control back from terminated ones ([3] adapted from
[4]). A subroutine is recursive (uses recursion) if it containsa
call toitself (directly or transitively) in its body.

The first high-level programming language Fortran had no
recursive subroutines [5]. In 1958, J. McCarthy programmed
differentiation of algebraic equations in Fortran. He wanted
to use recursion, but it could not be introduced into the
language. For this reason, J. McCarthy created the first
language with recursion — Lisp [6]. The first imperative
programming language with recursion Algol 60 appeared in
1960. The phrase about the possibility of recursion in the
report on the language was introduced by the editor P. Naur

Manuscript received April 18, 2025.
A. Prutzkow is with Ryazan State Radio Engineering University, 390005,
Gagarin str., 59/1, Ryazan, Russia, and with Lipetsk State Pedagogical

at the suggestion of A. vanWijngaarden and E.W. Dijkstra
[7]. The origin of recursion as a mathematical concept is
explored in [8].

Recursion is still relevant. However, the place of recursion
in actualprogrammingrequires a study. In our study we will
focus, first of all, into Java programming.

Il. MOTIVATION

When preparing fora course on introductory programming in
Java, the question arose asto whether it was worthwhile to
include a section onrecursion. The results of searching foran
answer to this question formed the text of this article.

I1l. THE PURPOSE OF THE STUDY

The purpose of the study is to identify the place of recursion
in actualJava programming.
The study involves finding answers to the following
research questions:
RQ1: How is recursion stated in Java books?
RQ2: What mental models of recursion do programmers
have?
RQ3: What aspects related to recursion emphasize in
materials, used to answer to RQ1 and RQ2?
RQ4: When to use recursion in Java?

IV. MATERIALS AND METHODS

The materialsare literature selected according to filters:

+ indexed by books.google.com or scholar.google.com;

» dedicated to recursion;

» written in English;

* published in 2016-2024 because we explore the actual
place of recursion.

Additional filters for materials [9-27] to answer RQ1 are:
» booksand;

» dedicated to the Java programminglanguage.

The book [28] presents recursion in the sameway as [15].

Themap of concepts and text analysis are the methods used
to answer to RQ1. The study using the map of concepts is
inspired by [29-30]. We have used the map to visualize the
relationships between conceptsin [31].

The materials [3, 32—-37] for answering RQ2 were filtered
by the topic of mentalmodels. The method used in answering
RQ2 is a systematic analysis of the text of the materials.

The materials for answers to RQ3 and RQ4 are the
materials for answers to RQ1 and RQ2. The method is a
systematic analysis of the text of the materials.

University, 398020,
mail@prutzkow.com).

Leninstr,, 42, Lipetsk, Russia (e-mail:

92

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026

V. RESULTS

A. RQ1. A more general concept for recursion

In the materials we found the phrase “recursion is”, extracted
from them,and aggregated a more general concept. The most
common conceptis technique (table 1).

TABLE 1. MORE GENERAL CONCEPTS FOR RECURSION
AND THEIR FREQUENCIES

Recursion is | Count Sources (could be duplicated)
technique 9 11,13, 15, 17, 19, 20, 24, 25, 26
tool 5 10, 15, 20, 25, 27

approach 3 14, 16, 25

way 3 13,19, 23

alternative 1 17

capability 1 21

concept 1 19

feature 1 22

fundamental 1 15

method 1 9

B. RQL. Conceptsaccompanying recursion

We have systematically analyzed the text of the materials.
The state of recursion in bookson Java isaccompanied by the
following concepts (fig. 1). We omitted conceptsthat:
« obviously related to recursion (base case, general case,
etc.);
* mentioned in only one book.
The map (fig. 1) is constructed using data that includes the
concept, its frequency, and sources:
« Backtracking (5): [13, 14, 16, 21, 27];
« Finite or infinite (8): [10, 11,12, 13, 14, 21, 26, 27];
* Headrecursion (2): [9, 25];
« Indirect / mutual (4): [13, 20, 21, 27];
« Mathematicalfundamentals (4): [10, 16, 20, 21];
« Mathematicalinduction (3): [14, 15, 17];
* Recursive thinking (5): [13, 14, 16, 19, 26];
« Stack overflow (14): [10, 11, 12, 13,14, 16,17, 19, 21,
22,23, 24,25, 26];

Scala / Kotlin Optimization

» Tail recursion (14): [9, 11, 14,16, 17, 18, 19, 20, 22, 23,
24,25, 26, 27];

» Tail recursion — Tail call optimization (11): [9, 11, 16,
18,19, 22, 23, 24, 25, 26, 27];

» Tail call optimization — Scala / Kotlin optimization (5):
[9, 11,18, 24, 27].

Examples of recursion is depicted on a submap (fig. 2).
Examples are tasks discussed in the book, but are not
assignments forthe reader. Data forthe submap are:

« Binary search (8): [12, 14, 15,16, 17, 19, 20, 26];

« Binary searchtree (6): [14, 15, 16, 19, 20, 27];

« Exponentiation (5): [10, 12, 14, 16, 17];

- Factorial (15): [9, 12, 14, 15, 16, 17,19, 20, 21, 22, 23,
24,25, 26, 27];

« Fibonaccinumbers (8): [10, 12, 13, 14, 16, 21, 22, 26];

« File system operation (2): [13, 26];

e Greatestcommondivisor (GCD) (5): [10, 14,15,17, 26];

« MergeSort (7): [13, 14, 15, 16, 19, 20, 26];

» Palindrome (4): [12, 13,17, 26];

« Permutations(2): [13, 19];

« QuickSort (7): [13, 14,16, 19, 20, 26, 27];

» Recursive graphics (5): [15, 20, 21, 26, 27];

« Towers of Hanoi(7): [13, 14, 15,17, 20, 21, 26].

C. RQL. The part of the book devoted to recursion

We analyzed what part of the materials is devoted to
recursion (table 2). If several non-intersecting parts were
given recursion, the largest one was selected.

TABLE 2. PART OF THE BOOK DEVOTED TO RECURSION

Part Sources
Entire book 27
Chapter 10, 11, 13, 14, 17, 19,
20, 21, 22, 23, 25, 26
Section 12,15
Subsection 16, 18, 24

Non-titled part of subsection | 9

)

Tail call optimization

Examples

Backtracking

Mathematical fundamentals

N\
\
N\

Tail recursion

Head recursion

Recursion

Mathematical induction

Indirect / mutual

Finite / infinite

Recursive thinking

Stack overflow

Fig. 1. Recursion and accompanying concepts. The thickness of the arrows is proportional to the frequency of the concepts.

93

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026

Exponentiation

Factorial

Fibonacci numbers

Binary search

Binary search tree

Recursive graphics

MergeSort

QuickSort

Greatest common divisor

Towers of Hanoi

File system operation

Permutations

Palindrome

Fig. 2. Examples of recursion. The thickness of the arrows is proportional to the frequency of examples

D. RQ2. Mental models

Mental models of recursion are studied mainly in students,

butnot in programmers.

There are mental models of recursion that have students
when learning programming [3]:

* The Copies Model is the viable model that reveals the
active flow of control, and the switch to the passive flow
oncethe base case isreached. The passive flow of control
is made explicit.

* The Loop Model views recursion as a kind of iteration
that halts once the base case is reached. It ignores both
the active and passive flow of control.

« The Active Model reflects only the active flow of control
without a passive flow. Students evaluate the solution at
the base case. The model can be viable in some cases.

+ The Step Model is nonviable, as the students lack
understanding of recursion. Either the recursive
condition, or the recursive condition and the base case is
executed once.

+ The Return Value Model mirrors that values are
generated by each instantiation, which are then stored
and combined to calculate a solution.

e The “Syntactic”, “Magic” Model reveals that students
have no idea of recursion and how it works.
Nevertheless, they can match syntactic elements. The
active flow, the base case, and the passive flow can be
traced.

e The Algebraic Model describes students who treat the
program asalgebraic problem.

« The Odd Model encompasses different
misunderstandings, which lead to the student not being
able to predict the program’s behavior.

In [32], the influence of data structures on the
programmer’s choice of iteration or recursion in the Python
language was revealed. For processing arrays and lists, the
programmers participating in the study preferred iteration.
For processing trees, the programmers preferred recursion.
When solving the problem of calculating odd nodes
programmers used only recursion. When calculating the
factorial,a classic example of the use of recursion (see fig. 2),

only 31.3% of programmersused recursion. Similar results of
calculating factorials, Fibonacci numbers and generating
permutationsin C were published in [33]. Recursion chose
not more than 34% of participants. To find the deepest
common ancestors in trees 19% of students choose to use
iteration, 51% choose recursion, and 16% choose to combine
both iteration and recursion [34]. Students who choose
iteration performed more correct than those who choose
recursion and the combination of both.

In [35], the speed of understanding tail and non-tail
recursion in Python and the number of errors programmers
make were measured. Tail recursion is easier comprehending,
“when it is naturalto use”. An example of such a thing is
reversing a list. In [36], the students’ correctness of
completing assignments in Java was determined, which had
high, average, and low compatibility with recursion. Students
performed better on high-compatibility tasks than on low-
compatibility tasksat both the group level and the individual
level.

In [37], students’ perception of programs with iteration and
recursion was investigated using an eye-tracking device.
Students followed a comparable reading behavior for both
iterative and recursive programs.

Studies that investigate mentalmodels of recursion during
student teaching minutely reviewed in [38].

E. RQ3. Recursion design rules

Designing recursion is drastically different from designing
iterations. We identified two approaches to the design of
recursion.

In [20], questions are proposed to verify that a recursive
method works:

(1) The Base-Case Question: Is there a non-recursive way
out of the algorithm, and does the algorithm work
correctly for this base case?

(2) The Smaller-Caller Question: Does each recursive call to
the algorithm involve a smaller case of the original
problem, leading inescapably to the base case?

(3) The General-Case Question: Assuming the recursive
call(s) to the smaller case(s) works correctly, does the
algorithm work correctly for the general case?

94

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026

The method works, if answers to all of these questions are
yes.

Example (adaptedfrom [20]). Let us apply the questionsto
the factorial method (listing 1).

Listing 1. The recursive factorial method

1 long factorial(intn) {

2 /I Precondition: n>=0

3 if (n==0){

4 return 1;

5 }else {

6 retum (n * factorial(n - 1));
7 }

8 }

R

Answers to the questions and explanationsare:

(1) Yes. The base case occurs when nis 0. The factorial
method returns the value of 1. It’s the correct value of 0!
by definition.

(2) Yes. The parameteris nand the recursive call passesthe
argument n — 1. Therefore each subsequent recursive
call passes a smaller value, until the value passed is
finally 0, which is the base case.

(3) Yes. Assuming that the recursive call factorial(n — 1)
computes the correct value of (n —1)! and returns
computed n x (n—1)!. This is the definition of a
factorial.

Because the answers to all three questions are yes, we can

concludethatthealgorithm works. m

The questions are similar to mathematicalinduction.
In[27], the rules forwriting a working recursive subroutine
are formulated:

(1) Handle the base cases first. The purpose of a base case
isn’t to avoid recursion altogether, but is to make a
recursion finite.

(2) Only recur with a simpler case. The base cases are the
“simplest” cases. A “simple” caseis a clear way to close
to the base cases.

(3) Don’t use external variables. If a recursive method uses
externalvariables, the programmer must understand and
be forced to debug the manipulation of the variable by
each recursive method call. It could be complicated or
impossible.

(4) Don’t look down. You have to trust recursion. If the
recursive method is correct at this level, then you don’t
havetoworry aboutany deeperlevels.

It is pointed out that the rules are notabsolute, and can be
violated for good cause, if care is taken.

F. RQ3. Pedagogical aspect

There are four steps to teach recursion [35]:

(1) Teach the basic idea of a function that calls itself,
fundamental concepts (base and general cases). Enrich it
with the simplest examples possible, which are problems
thatare naturally solved using tail recursion.

(2) Emphasize the importance of the passive flow, and the
return to additional processing after the recursive call.
Use examples of calculating the factorial and the count
appearances problem.

(3) Challenge the students with more complex forms of
recursion, which require a more advanced mental model
than iteration. Use anexampleis reversing a linked list.

(4) Tail recursion is important for functional programming,
so transformations to tail form should also be taught.
Emphasize transformation methods and, first of all, on
the use of accumulatingvariables.

Teachers choose examples that based on their own
knowledge of subject and practice, but less carefully consider
learning perspectives and instructional effectiveness. “With
poor instructional design [of assessment task], the cognitive
outcomes will be unsatisfactory, and, worse, the affective
outcomes, such as confusion and frustration, could result in
irreversible damage to students’ self-efficacy and academic
interest” [36].

G. RQ4. When to use recursionin Java?

We have not found a clear answer to this question. The
authors of the materialsanswer this question subjectively:

+ “Many mathematical solutions are expressed more
clearly using a recursive definition, and many data
structures and algorithms can be written easier using
recursion resulting in a less complicated program” [10].

« “Sometimes there is no obvious iterative solution at
all [...] There is a certain elegance and economy of
thought to recursive solutions that makes them more
appealing” [13].

e “If it is easier to conceptualize an algorithm using
recursion, then you should code it asa recursive method
because the reduction in efficiency does not outweigh the
advantage of readable code that is easy to debug” [14].

* “One advantage of using recursion is that often we can
develop mathematical models that allow us to prove
important facts about the behavior of recursive
programs” [15].

« “If running times are equivalent and a recursive
implementation is easier to understand than the
equivalent iterative implementation, choose recursion
overiteration; otherwise, iteration is generally preferred”
[17].

e “A recursive approach is preferred over an iterative
approach when the recursive approach more naturally
mirrors the problem and results in a program that’s easier
to understand and debug[...] Another reasonto choosea
recursive approach is that an iterative one might not be
apparent”[21].

* “Insome cases, using recursion enablesyou to specify a
clear, simple solution for an inherently recursive problem
that would otherwise be difficult to obtain .. The
decision whether to use recursion or iteration should be
based on the nature of, and your understanding of, the
problem youare trying to solve” [26].

* “Thebestanswer to the question of when to use recursion
is, simply, when you happen to find it useful” [27].

The most concrete answer to RQ4 that we’ve found is “a
recursive definition [of the underlying problem or the data to
be treated] may be a necessary condition for using recursive
processing, butit is nota sufficient condition” [32].

VI. DISCUSSIONS

A. RQ1: How is recursion stated in Java books?

We start a discussion with our answers to the research
questions.

95

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026

Recursion is outlined, first of all, as a technique or a tool.
Recursion is strongly related to the concepts of stack
overflow, tail recursion (and its related concepts), finite or
infinite, and backtracking. Recursion is demonstrated on
examples factorial, Fibonacci numbers, binary search,
MergeSort, QuickSort, Towers of Hanoi, and binary search
tree. Authors mostly devote a chapter to recursion in their
books.

The new breath for recursion was the tail call optimization
(TCO). TCO consists in accumulating the result in the
method parameter. As a result, the execution of the recursive
method is accelerated. Compare the method for calculating
the factorial after TCO (listing 2 [24]) with the original
method (listing 1).

Listing 2. The recursive factorial method after tail call optimization

1 long factorialTCO(longacc, long n){
2 return n ==1? acc: factorial TCO (acc* n, n-1);
3 1

L

Stack overflow when calculating factorial can be
eliminated by introducing a functional interface and usingthe
Biglnteger class [23].

TCO can be converted into iterations [39]. The IntelliJ
IDEA integrated development environment (IDE) has
function such transformations[11].

Indeed, a standard recursive method can be translated into
one that uses tail recursion (and by transitivity, iteration)
through continuation-passingstyle [16].

B. RQ2: What mental models of recursion do programmers
have?

Mental models are formed on the basis of already known
ones. Classified mentalmodels have a well-understood basis.
The mostviable model is the Copies Model.

Programmers and students avoid recursion. They use
recursion more oftenin naturally recursive cases.

C. RQ3: What aspectsrelated to recursion emphasize
in materials, used to answer to RQ1 and RQ2?

We have identified two aspects: recursion design rules and
pedagogical.

It is difficult for a student new to recursion to begin
designing a recursive method. Recursion design rules prevent
the student from making wrong steps and are a sign of the
correctness of the designed recursive method.

The highlighted pedagogical aspectswill facilitate the start
in teaching recursion. The first aspect is an instruction on
teaching recursion. The second aspect focuses the teacher’s
attention on the careful selection of recursion examples.

D. RQ4: When to use recursionin Java?

The lack of a clear answer to this question prevents us from
teaching recursion to students in a simple and clear manner,
and from developing instructions for programmerson how to
use recursion. This is also the reason why programmers and
studentsavoid using recursion.

In contrast to the answer to RQ4 from [32], in [40],
philosophy is stated: “Implementation, maintenance, and
modification generally will be minimized when each piece of
the system corresponds to exactly one small, well-defined
piece of the problem, and each relationship between a
system’s pieces corresponds only to a relationship between

pieces of the problem”. That’s why recursive method must
map a well-defined (in a recursive fashion)problem.

E. Further discussions

In [41], it's proposed tenets of redesign of an university
programming unit. One of them is “'mathematical
programming should be avoided” and, in imperative
applications, the data processing model predominates. In the
books reviewed, recursion is presented using mathematical
examples (factorial, Fibonaccinumbers), which have simpler
iterative implementations. At the same time, naturaly
recursive examples (file system operations, QuickSort, tree
traversal) attract less attention. However, exactly such
examples demonstrate when recursion is worth using. This
position confirms study [42] that demonstrated the
comprehension of recursion can be enhanced by focusing on
recursive data structures and havingthe studentsuse them in
practicalapplications.

F. lterative recursion

Recursion can be replaced by iteration using a stack as data
structure (listing 3, adapted from [11, p.150]). The initial
data for the recursive call is pushed to the stack (lines 2-3).
In the loop (lines 5-11), the data for the call is popped from
the stack (line 6), checked to see if it needs to be processed
(line 7), processed (line 8), and pushed to the stack (line 9).
The raw data forthe call is returned as the result (line 12).

Listing 3. Iterative recursion

1 Deque<T> stack = new ArrayDeque<>()
2 RecursiveCallData callData = getFirstCallData);
3 stack.addFirst(callData);
4
5 while ('stack.isEmpty()) {
6 callData = stack.removeFirst();
7 if(needsToProcess(callData)) {
8 RecursiveCallData processedCallData
= processCallData(callData);
9 stack.addFirst(processedCallData);
10 }
11
12 return callData;
L

This listing can be considered as anindication of the need
to use recursion: if it is simpler (clearer, more productive) to
use recursion, and not this listing, then it is necessary to use
recursion, otherwise it is necessary to use a such or adapted
listing.

VII. CONCLUSION

Recursion has a strong place in Java programming. We will
not include recursion in the course on introductory
programming, but we will include it in the course on
algorithms and data structures.

We explored not only the practical implications of
recursion but also the mental models associated with it.
Including work on mentalmodels of recursion expanded the
material for answering the research questions.

The resulting map of concepts will
programming teachers when developing a
recursion.

We could consider recursion as a command (not data)
structure based on the stack of the Java virtual machine.

A supplement to the books on Java and recursion is [43],

96

be useful to
lecture on

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026

which is mainly devoted to examples of recursion. The book
on recursion [1] is worth noting. Python is used forexamples.
The relationship between mathematics and recursion is
explored in [44]. The QuickSort algorithm is proven in it as
well.

Recursion in actualJava programming“is never absolutely
necessary, merely useful” [27].

REFERENCES

[1] Rubio-Sanchez M. Introduction to Recursive Programming. CRC
Press, 2018.

[2] Evans B.etal. The Well-Grounded Java Developer, 2nd ed. Manning,
2022.

[3] Kiesler N. Mental Models of Recursion: A Secondary Analysis of
Novice Learners’ Steps and Errors in Java Exercises // 33rd Workshop
of PPIG, 2022:226-240.

[4] George C.E. EROSI — Visualising Recursion and Discovering New
Errors // SIGCSE Bulletin, 2000:305-309.

[5] ShashaD., LazereC. Out of Their Minds. The Lives and Discoveries
of 15 Great Computer Scientists. Copernicus, 1995.

[6] Mitchelld. Concepts in Programming Languages. Cambridge
University Press, 2002.

[7] van den Hove G. On the Origin of Recursive Procedures // Computer
Journal, 2015, 58(11):2892-2899. DOI: 10.1093/comjnl/bxu145.

[8] Soare R. Computability and Recursion // Bulletin of Symbolic Logic,
1996, 2(3):284-321.

[9] SachdevaD., Ustukpayeva N. Mastering Java: A Beginner’s Guide.
CRC Press, 2022.

[10] StreibJ., SomaT. Guide to Java. A Concise Introduction to
Programming, 2nd ed. Springer, 2023. DOI: 10.1007/978-3-031-
22842-1.

[11] Valeev T. 100 JavaMistakes and Howto Avoid Them. Manning, 2024.

[12] Downey A., Mayfield C. Think Java. How to Think Like a Computer
Scientist. O’Reilly, 2016.

[13] Horstmann C. BigJava Late Objects, 2nd ed. Wiley, 2017.

[14] Koffman E., WolfgangP. Data Structures. Abstraction and Design
UsingJava, 4th ed. Wiley, 2021.

[15] Sedgewick R., WayneK. Introduction to Progranming in Java, 2nd ed.
Addison-Wesley, 2017.

[16] Crotts J. Learning Java. A Test-Driven Approach. Springer, 2024.
DOI: 10.1007/978-3-031-66638-4.

[17] AndersonJ., Franceschi H. Java Illuminated. An Active Learning
Approach, 5thed. Jones & BartlettLearning, 2019.

[18] Lelek T., SkeetJ. Software Mistakes and Tradeoffs. How to Make
Good Programming Decisions. Manning, 2022.

[19] Mongan J. et al. Programming Interviews Exposed, 4th ed. Wrox,
2018

[20] Dale N. etal. Object-Oriented Data Structures using Java, 4th ed. Jones
& Bartlett Learning, 2018.

[21] Deitel P., Deitel H. Java 9 for Programmers, 4th ed. Pearson, 2018.

[22] SaumontP.-Y. Functional Programming in Java. How Functional
Techniques Improve Your JavaPrograms. Manning, 2017.

[23] Subramaniam V. Functional Programming in Java. Harness the Power
of Streams and Lambda Expressions, 2nd ed. The Pragmatic
Programmers, 2023.

[24] UrmaR.-G. et al. Modern Java in Action. Lambdas, Streams,
Functional and Reactive Programming. Manning, 2019.

[25] WeidigB. A Functional Approach to Java. Augmenting Object-
Oriented Code with Functional Principles. O’Reilly,2023.

[26] LiangY. Introduction to Java Programming and Data Structures.
Comprehensive Version, 12th ed. Pearson,2019.

[27] Matuszek D. Quick Recursion. CRC Press, 2023.

[28] Sedgewick R., Wayne K. Computer Science. An Interdisciplinary
Approach. Addison-Wesley, 2017.

[29] Sanders K. et al. Student Understanding of Object-Oriented
Programming as Expressed in Concept Maps // SIGCSE, 2008:332—
336.

[30] PashukovaA.D. Pedagogicheskaja Tekhnologija v Sovremennom
Obrazovatel'nom Prostranstve Podgotovki Penitentsiamykh
Psikhologov [Pedagogical Technology in the Actual Educational Space
of Teaching Penitentiary Psychologists] / Vectors of Psychological
and Pedagogical Research, 2024, 2(3):74-81. [in Rus].

[31] Prutzkow A. Class Functionality and its Related Concepts: Research
and Practice// International Journal of Open Information
Technologies, 2024, 12(11):63-71.

[32] Baron A., Feitelson D. How a Data Structure’s Linearity Affects
Programming and Code Comprehension: The Case of Recursion vs.
Iteration // 34thWorkshop of PPIG, 2023:44-59.

[33] Sulov V. lteration vs Recursion in Introduction to Programming
Classes // Cybemeticsand Information Technologies, 2016, 16(4):63—
72.DOI: 10.1515/cait-2016-0068.

[34] Esteero R. etal. Recursionor Iteration: Does it Matter What Students
Choose?// SIGCSE, 2018:1011-1016.
DOI: 10.1145/3159450.3159455.

[35] Baron A., FeitelsonD. Why Is Recursion Hard to Comprehend? An
Experiment with Experienced Programmers in Python // I TiCSE, 2024.
DOI: 10.1145/3649217.3653636.

[36] Chao J. et al. Dynamic Mental Model Construction: A Knowledge in
Pieces-Based Explanation for Computing Students’ Erratic
Performance on Recursion, Joumnal of the Learning Sciences, 2018,
27(3):431-473. DOI: 10.1080/10508406.2017.1392309.

[37] Ageel A. Understanding Comprehension of lterative and Recursive
Programs with Remote Eye Tracking // 32nd Workshop of PPIG, 2022.

[38] Mackay S. What Does Literature Tell Us About Recursion? // SIGCSE,
2022, 2:1173. DOI: 10.1145/3478432.3499210.

[39] Abelson H., SussmanG. Structure and Interpretation of Computer
Programs, 2nded. MIT Press, 1996.

[40] YourdonE., ConstantineL. Structured Design. Fundamentals of a
Discipline of Computer Programand Systems Design, 2nd ed. Yourdon
Press, 1978.

[41] Jones M. The Redesign of the Delivery of an Introductory
Programming Unit// Innovation in Teaching and Learning in
Information and Computer Sciences, 2007, 6(4):169-182. DOI:
10.11120/ital.2007.06040169.

[42] Smith D. et al. Dealing with the Challenges of Learning Recursive
Programming — Helpful Functions and Incremental Approaches to
Encourage Recursive Thinking // Issues in Information Systems, 2024,
25(3):357-370. DOI: 10.48009/3 _iis_2024_127.

[43] CampesatoO. Data Structures in Java. Mercury Learning and
Information, 2023.

[44] Liben-Nowell D. Connecting Discrete Mathematics and Computer
Science, 2nd ed. Cambridge University Press, 2022.

97

