
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026 

 

 

92 

 

  

Abstract—Recursion has been used in programming since the 

1960s. The purpose of the study is to identify the place of 

recursion in actual Java programming for the preparation of a 

university course. The materials were 19 books on Java 
describing recursion, as well as articles on mental models of 

recursion. We have the following results of the study. Recursion 

is, first of all, a technique and a tool. Recursion is described in 

books together with the concepts of stack overflow, tail 

recursion, tail call optimization (TCO), and finite or infinite. 
TCO can be converted into iterations by techniques or 

integrated development environment (IDE). The book authors 

prefer calculation of factorial and Fibonacci numbers, binary 

search, MergeSort, QuickSort, Towers of Hanoi as examples of 

recursion. Most authors devote a chapter to recursion. 
Programmers prefer iteration in many problems. In rare cases 

(such as tree traversal), most programmers (over 51%) use 

recursion. The most viable mental model is the Copies Model. 

There are rules for designing recursive methods. When teaching 

recursion, it is necessary to carefully select assignments. We 
have not found an exact answer to the question of when to use 

recursion. Recursion is used when solving well-defined problems 

in recursive fashion. Recursion has a strong place in Java 

programming. We will not include recursion in the course of 

introductory programming, but we will include it in the course 
of algorithms and data structures. Recursion in actual Java 

programming is not necessary, merely useful. 

 
Keywords—recursion, Java, programming, teaching, tail call 

optimization. 

 

To iterate is human, to recurse divine. 

— Laurence Peter Deutsch (from [1]) 

 

In order to understand recursion 

one must first understand recursion [2, p. 500] 

 

I. INTRODUCTION 

Recursion (in programming) is the active flow of control to a 

new invocation/copy of the subroutine called and the passive 

flow of control back from terminated ones ([3] adapted from 

[4]). A subroutine is recursive (uses recursion) if it contains a 

call to itself (directly or transitively) in its body. 

The first high-level programming language Fortran had no 

recursive subroutines [5]. In 1958, J. McCarthy programmed 

differentiation of algebraic equations in Fortran. He wanted 

to use recursion, but it could not be introduced into the 

language. For this reason, J. McCarthy created the first 

language with recursion – Lisp [6]. The first imperative 

programming language with recursion Algol 60 appeared in 

1960. The phrase about the possibility of recursion in the 

report on the language was introduced by the editor P. Naur 

 
Manuscript received April 18, 2025. 
A. Prutzkow is with Ryazan State Radio Engineering University, 390005, 

Gagarin str., 59/1, Ryazan, Russia, and with Lipetsk State Pedagogical 

at the suggestion of A. van Wijngaarden and E.W. Dijkstra 

[7]. The origin of recursion as a mathematical concept is 

explored in [8]. 

Recursion is still relevant. However, the place of recursion  

in actual programming requires a study. In our study we will 

focus, first of all, into Java programming. 

II. MOTIVATION 

When preparing for a course on introductory programming in 

Java, the question a rose as to whether it was worthwhile to 

include a section on recursion. The results of searching for an 

answer to this question formed the text of this article. 

III. THE PURPOSE OF THE STUDY 

The purpose of the study is to identify the place of recursion  

in actual Java programming. 

The study involves finding answers to the following 

research questions: 

RQ1: How is recursion stated in Java books? 

RQ2: What mental models of recursion do programmers 

have? 

RQ3: What aspects related to recursion emphasize in 

materials, used to answer to RQ1 and RQ2? 

RQ4: When to use recursion in Java? 

IV. MATERIALS AND METHODS 

The materials are literature selected according to filters: 

• indexed by books.google.com or scholar.google.com; 

• dedicated to recursion; 

• written in English; 

• published in 2016–2024 because we explore the actual 

place of recursion. 

Additional filters for materials [9–27] to answer RQ1 are: 

• books and; 

• dedicated to the Java programming language. 

The book [28] presents recursion in the same way as [15]. 

The map of concepts and text analysis are the methods used 

to answer to RQ1. The study using the map of concepts is 

inspired by [29–30]. We have used the map to visualize the 

relationships between concepts in [31]. 

The materials [3, 32–37] for answering RQ2 were filtered  

by the topic of mental models. The method used in answering 

RQ2 is a systematic analysis of the text of the materials. 

The materials for answers to RQ3 and RQ4 are the 

materials for answers to RQ1 and RQ2. The method is a 

systematic analysis of the text of the materials. 

University, 398020, Lenin str., 42, Lipetsk, Russia (e-mail: 
mail@prutzkow.com). 

Recursion in Actual Java Programming 

Alexander Prutzkow 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026 

 

 

93 

 

V. RESULTS 

A. RQ1. A more general concept for recursion 

In the materials we found the phrase “recursion is”, extracted 

from them, and aggregated a more general concept. The most 

common concept is technique (table 1). 

TABLE 1. MORE GENERAL CONCEPTS FOR RECURSION 

AND THEIR FREQUENCIES 

Recursion is Count Sources (could be duplicated) 

technique 9 11, 13, 15, 17, 19, 20, 24, 25, 26 

tool 5 10, 15, 20, 25, 27 

approach 3 14, 16, 25 

way 3 13, 19, 23 

alternative 1 17 

capability 1 21 

concept 1 19 

feature 1 22 

fundamental 1 15 

method 1 9 

B. RQ1. Concepts accompanying recursion 

We have systematically analyzed the text of the materials. 

The state of recursion in books on Java is a ccompanied by the 

following concepts (fig. 1). We omitted concepts that: 

• obviously related to recursion (base case, general case, 

etc.); 

• mentioned in only one book. 

The map (fig. 1) is constructed using data that includes the 

concept, its frequency, and sources: 

• Backtracking (5): [13, 14, 16, 21, 27]; 

• Finite or infinite (8): [10, 11, 12, 13, 14, 21, 26, 27]; 

• Head recursion (2): [9, 25]; 

• Indirect / mutual (4): [13, 20, 21, 27]; 

• Mathematical fundamentals (4): [10, 16, 20, 21]; 

• Mathematical induction (3): [14, 15, 17]; 

• Recursive thinking (5): [13, 14, 16, 19, 26]; 

• Stack overflow (14): [10, 11, 12, 13, 14, 16, 17, 19, 21,

22, 23, 24, 25, 26]; 

• Tail recursion (14): [9, 11, 14, 16, 17, 18, 19, 20, 22, 23, 

24, 25, 26, 27]; 

• Tail recursion – Tail call optimization (11): [9, 11, 16, 

18, 19, 22, 23, 24, 25, 26, 27]; 

• Tail call optimization – Scala  / Kotlin optimization (5): 

[9, 11, 18, 24, 27]. 

Examples of recursion is depicted on a submap (fig. 2). 

Examples are tasks discussed in the book, but are not 

assignments for the reader. Data for the submap are: 

• Binary search (8): [12, 14, 15, 16, 17, 19, 20, 26]; 

• Binary search tree (6): [14, 15, 16, 19, 20, 27]; 

• Exponentiation (5): [10, 12, 14, 16, 17]; 

• Factorial (15): [9, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 

24, 25, 26, 27]; 

• Fibonacci numbers (8): [10, 12, 13, 14, 16, 21, 22, 26]; 

• File system operation (2): [13, 26]; 

• Greatest common divisor (GCD) (5): [10, 14, 15, 17, 26]; 

• MergeSort (7): [13, 14, 15, 16, 19, 20, 26]; 

• Palindrome (4): [12, 13, 17, 26]; 

• Permutations (2): [13, 19]; 

• QuickSort (7): [13, 14, 16, 19, 20, 26, 27]; 

• Recursive graphics (5): [15, 20, 21, 26, 27]; 

• Towers of Hanoi (7): [13, 14, 15, 17, 20, 21, 26]. 

C. RQ1. The part of the book devoted to recursion 

We analyzed what part of the materials is devoted to 

recursion (table 2). If several non-intersecting parts were 

given recursion, the largest one was selected. 

TABLE 2. PART OF THE BOOK DEVOTED TO RECURSION 

Part Sources 

Entire book 27 

Chapter 10, 11, 13, 14, 17, 19, 

20, 21, 22, 23, 25, 26 

Section 12, 15 

Subsection 16, 18, 24 

Non-titled part of subsection 9 

 

Tail recursion

Examples

Head recursion

Mathematical fundamentals

Stack overflowFinite / infinite

Indirect / mutual

Mathematical induction

Backtracking

Recursive thinking

Recursion

Scala / Kotlin Optimization

Tail call optimization

 
Fig. 1. Recursion and accompanying concepts. The thickness of the arrows is proportional to the frequency of the concepts. 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026 

 

 

94 

 

Factorial Fibonacci numbers

Binary search 

Binary search tree 

Permutations

Greatest common divisorRecursive graphics

Exponentiation

MergeSort

QuickSort

File system operation Towers of Hanoi 

Palindrome

Examples

 
Fig. 2. Examples of recursion. The thickness of the arrows is proportional to the frequency of examples 

D. RQ2. Mental models 

Mental models of recursion are studied mainly in students, 

but not in programmers. 

There are mental models of recursion that have students 

when learning programming [3]: 

• The Copies Model is the viable model that reveals the 

active flow of control, and the switch to the passive flow 

once the base case is reached. The passive flow of control 

is made explicit. 

• The Loop Model views recursion as a kind of iteration 

that halts once the base case is reached. It ignores both 

the active and passive flow of control. 

• The Active Model reflects only the active flow of control 

without a passive flow. Students evaluate the solution at 

the base case. The model can be viable in some cases. 

• The Step Model is nonviable, as the students lack 

understanding of recursion. Either the recursive 

condition, or the recursive condition and the base case is 

executed once. 

• The Return Value Model mirrors that values are 

generated by each instantiation, which are then stored 

and combined to calculate a solution. 

• The “Syntactic”, “Magic” Model reveals that students 

have no idea of recursion and how it works. 

Nevertheless, they can match syntactic elements. The 

active flow, the base case, and the passive flow can be 

traced. 

• The Algebraic Model describes students who treat the 

program as algebraic problem. 

• The Odd Model encompasses different 

misunderstandings, which lead to the student not being 

able to predict the program’s behavior. 

In [32], the influence of data structures on the 

programmer’s choice of iteration or recursion in the Python 

language was revealed. For processing arrays and lists, the 

programmers participating in the study preferred iteration. 

For processing trees, the programmers preferred recursion. 

When solving the problem of calculating odd nodes 

programmers used only recursion. When calculating the 

factorial, a  classic example of the use of recursion (see fig. 2), 

only 31.3% of programmers used recursion. Similar results of 

calculating factorials, Fibonacci numbers and generating 

permutations in C were published in [33]. Recursion chose 

not more than 34% of participants. To find the deepest 

common ancestors in trees 19% of students choose to use 

iteration, 51% choose recursion, and 16% choose to combine 

both iteration and recursion [34]. Students who choose 

iteration performed more correct than those who choose 

recursion and the combination of both. 

In [35], the speed of understanding tail and non-tail 

recursion in Python and the number of errors programmers 

make were measured. Tail recursion is easier comprehending, 

“when it is natural to use”. An example of such a thing is 

reversing a list. In [36], the students’ correctness of 

completing assignments in Java was determined, which had 

high, average, and low compatibility with recursion. Students 

performed better on high-compatibility tasks than on low-

compatibility tasks at both the group level and the individual 

level. 

In [37], students’ perception of programs with iteration and 

recursion was investigated using an eye-tracking device. 

Students followed a comparable reading behavior for both 

iterative and recursive programs. 

Studies that investigate mental models of recursion during 

student teaching minutely reviewed in [38]. 

E. RQ3. Recursion design rules 

Designing recursion is drastically different from designing 

iterations. We identified two approaches to the design of 

recursion. 

In [20], questions are proposed to verify that a  recursive  

method works: 

(1) The Base-Case Question: Is there a non-recursive way 

out of the algorithm, and does the algorithm work 

correctly for this base case? 

(2) The Smaller-Caller Question: Does each recursive call to 

the algorithm involve a smaller case of the original 

problem, leading inescapably to the base case? 

(3) The General-Case Question: Assuming the recursive 

call(s) to the smaller case(s) works correctly, does the 

algorithm work correctly for the general case? 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026 

 

 

95 

 

The method works, if answers to all of these questions are 

yes. 

Example (adapted from [20]). Let us apply the questions to 

the factorial method (listing 1). 

Listing 1. The recursive factorial method 
1 long factorial(int n) { 
2  // Precondition: n >= 0 
3  if (n == 0) { 
4   return 1; 
5  } else { 
6   return (n * factorial(n - 1)); 
7  } 
8 } 

↳ 
Answers to the questions and explanations are: 

(1) Yes. The base case occurs when nis 0. The factorial 

method returns the value of 1. It’s the correct value of 0! 

by definition. 

(2) Yes. The parameter is nand the recursive call passes the 

argument 𝑛 − 1. Therefore each subsequent recursive 

call passes a smaller value, until the value passed is 

finally 0, which is the base case. 

(3) Yes. Assuming that the recursive call factorial(𝑛 − 1) 

computes the correct value of (𝑛 − 1)! and returns 

computed 𝑛 × (𝑛 − 1)!. This is the definition of a 

factorial. 

Because the answers to all three questions are yes, we can 

conclude that the algorithm works. ■ 

The questions are similar to mathematical induction. 

In [27], the rules for writing a working recursive subroutine 

are formulated: 

(1) Handle the base cases first. The purpose of a base case 

isn’t to avoid recursion altogether, but is to make a 

recursion finite. 

(2) Only recur with a simpler case. The base cases are the 

“simplest” cases. A “simple” case is a clear way to close 

to the base cases. 

(3) Don’t use external variables. If a  recursive method uses 

external variables, the programmer must understand and 

be forced to debug the manipulation of the variable by 

each recursive method call. It could be complicated or 

impossible. 

(4) Don’t look down. You have to trust recursion. If the 

recursive method is correct at this level, then you don’t 

have to worry about any deeper levels. 

It is pointed out that the rules are not absolute, and can be 

violated for good cause, if care is taken. 

F. RQ3. Pedagogical aspect 

There are four steps to teach recursion [35]: 

(1) Teach the basic idea of a function that calls itself, 

fundamental concepts (base and general cases). Enrich it 

with the simplest examples possible, which are problems 

that are naturally solved using tail recursion. 

(2) Emphasize the importance of the passive flow, and the 

return to additional processing after the recursive call. 

Use examples of calculating the factorial and the count 

appearances problem. 

(3) Challenge the students with more complex forms of 

recursion, which require a more advanced mental m odel 

than iteration. Use an example is reversing a linked list. 

(4) Tail recursion is important for functional programming, 

so transformations to tail form should also be taught. 

Emphasize transformation methods and, first of all, on 

the use of accumulating variables. 

Teachers choose examples that based on their own 

knowledge of subject and practice, but less carefully consider 

learning perspectives and instructional effectiveness. “With  

poor instructional design [of assessment task], the cognitive 

outcomes will be unsatisfactory, and, worse, the affective 

outcomes, such as confusion and frustration, could result in 

irreversible damage to students’ self-efficacy and academic 

interest” [36]. 

G. RQ4. When to use recursion in Java? 

We have not found a clear answer to this question. The 

authors of the materials answer this question subjectively:  

• “Many mathematical solutions are expressed more 

clearly using a recursive definition, and many data 

structures and algorithms can be written easier using 

recursion resulting in a less complicated program” [10]. 

• “Sometimes there is no obvious iterative solution at 

all [...] There is a certain elegance and economy of 

thought to recursive solutions that makes them more 

appealing” [13]. 

• “If it is easier to conceptualize an algorithm using 

recursion, then you should code it as a recursive method 

because the reduction in efficiency does not outweigh the 

advantage of readable code that is easy to debug” [14]. 

• “One advantage of using recursion is that often we can 

develop mathematical models that allow us to prove 

important facts about the behavior of recursive 

programs” [15]. 

• “If running times are equivalent and a recursive 

implementation is easier to understand than the 

equivalent iterative implementation, choose recursion 

over iteration; otherwise, iteration is generally preferred” 

[17]. 

• “A recursive approach is preferred over an iterative 

approach when the recursive approach more naturally 

mirrors the problem and results in a  program that’s easier 

to understand and debug [...] Another reason to choose a 

recursive approach is that an iterative one might not be 

apparent” [21]. 

• “In some cases, using recursion enables you to specify a 

clear, simple solution for an inherently recursive problem 

that would otherwise be difficult to obtain ... The 

decision whether to use recursion or iteration should be 

based on the nature of, and your understanding of, the 

problem you are trying to solve” [26]. 

• “The best answer to the question of when to use recursion 

is, simply, when you happen to find it useful” [27]. 

The most concrete answer to RQ4 that we’ve found is “a 

recursive definition [of the underlying problem or the data to 

be treated] may be a necessary condition for using recursive 

processing, but it is not a sufficient condition” [32]. 

VI. DISCUSSIONS 

A. RQ1: How is recursion stated in Java books? 

We start a  discussion with our answers to the research 

questions. 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026 

 

 

96 

 

Recursion is outlined, first of all, as a technique or a tool. 

Recursion is strongly related to the concepts of stack 

overflow, tail recursion (and its related concepts), finite or 

infinite, and backtracking. Recursion is demonstrated on 

examples factorial, Fibonacci numbers, binary search, 

MergeSort, QuickSort, Towers of Hanoi, and binary search 

tree. Authors mostly devote a chapter to recursion in their 

books. 

The new breath for recursion was the tail call optimization 

(TCO). TCO consists in accumulating the result in the 

method parameter. As a result, the execution of the recursive 

method is accelerated. Compare the method for calculating 

the factorial after TCO (listing 2 [24]) with the original 

method (listing 1). 

Listing 2. The recursive factorial method after tail call optimization 
1 long factorialTCO(long acc, long n) { 
2  return n == 1 ? acc : factorial TCO (acc * n, n-1); 
3 } 

↳ 
Stack overflow when calculating factorial can be 

eliminated by introducing a functional interface and using the 

BigInteger class [23]. 

TCO can be converted into iterations [39]. The IntelliJ 

IDEA integrated development environment (IDE) has 

function such transformations [11]. 

Indeed, a standard recursive method can be translated into 

one that uses tail recursion (and by transitivity, iteration) 

through continuation-passing style [16]. 

B. RQ2: What mental models of recursion do programmers 

have? 

Mental models are formed on the basis of already known 

ones. Classified mental models have a well-understood basis. 

The most viable model is the Copies Model. 

Programmers and students avoid recursion. They use 

recursion more often in naturally recursive cases. 

C. RQ3: What aspects related to recursion emphasize 

in materials, used to answer to RQ1 and RQ2? 

We have identified two aspects: recursion design rules and 

pedagogical. 

It is difficult for a student new to recursion to begin 

designing a recursive method. Recursion design rules prevent 

the student from making wrong steps and are a sign of the 

correctness of the designed recursive method. 

The highlighted pedagogical aspects will facilitate the start 

in teaching recursion. The first aspect is an instruction on 

teaching recursion. The second aspect focuses the teacher’s 

attention on the careful selection of recursion examples. 

D. RQ4: When to use recursion in Java? 

The lack of a clear answer to this question prevents us from 

teaching recursion to students in a simple and clear manner, 

and from developing instructions for programmers on how to 

use recursion. This is also the reason why programmers and 

students avoid using recursion. 

In contrast to the answer to RQ4 from [32], in [40], 

philosophy is stated: “Implementation, maintenance, and 

modification generally will be minimized when each piece of 

the system corresponds to exactly one small, well-defined  

piece of the problem, and each relationship between a 

system’s pieces corresponds only to a relationship between 

pieces of the problem”. That’s why recursive method must 

map a well-defined (in a recursive fashion) problem. 

E. Further discussions 

In [41], it's proposed tenets of redesign of an university 

programming unit. One of them is ‟'mathematical' 

programming should be avoided” and, in imperative 

applications, the data processing model predominates. In the 

books reviewed, recursion is presented using mathematical 

examples (factorial, Fibonacci numbers), which have simpler 

iterative implementations. At the same time, naturally 

recursive examples (file system operations, QuickSort, tree 

traversal) attract less attention. However, exactly such 

examples demonstrate when recursion is worth using. This 

position confirms study [42] that demonstrated the 

comprehension of recursion can be enhanced by focusing on 

recursive data structures and having the students use them in 

practical applications. 

F. Iterative recursion 

Recursion can be replaced by iteration using a stack as data 

structure (listing 3, adapted from [11, p. 150]). The initial 

data for the recursive call is pushed to the stack (lines 2–3). 

In the loop (lines 5–11), the data for the call is popped from 

the stack (line 6), checked to see if it needs to be processed 

(line 7), processed (line 8), and pushed to the stack (line 9). 

The raw data for the call is returned as the result (line 12). 

Listing 3. Iterative recursion 
1 Deque<T> stack = new ArrayDeque<>() 
2 RecursiveCallData callData = getFirstCallData(); 
3 stack.addFirst(callData); 
4  
5 while (!stack.isEmpty()) { 
6  callData = stack.removeFirst(); 
7  if(needsToProcess(callData)) { 
8   RecursiveCallData processedCallData 

= processCallData(callData); 
9   stack.addFirst(processedCallData); 
10  } 
11 } 
12 return callData; 

↳ 
This listing can be considered as a n indication of the need 

to use recursion: if it is simpler (clearer, more productive) to 

use recursion, and not this listing, then it is necessary to use 

recursion, otherwise it is necessary to use a such or adapted 

listing. 

VII. CONCLUSION 

Recursion has a strong place in Java programming. We will 

not include recursion in the course on introductory 

programming, but we will include it in the course on 

algorithms and data structures. 

We explored not only the practical implications of 

recursion but also the mental models associated with it. 

Including work on mental models of recursion expanded the 

material for answering the research questions. 

The resulting map of concepts will be useful to 

programming teachers when developing a lecture on 

recursion. 

We could consider recursion as a command (not data) 

structure based on the stack of the Java virtual machine. 

A supplement to the books on Java and recursion is [43], 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 2, 2026 

 

 

97 

 

which is mainly devoted to examples of recursion. The book 

on recursion [1] is worth noting. Python is used for examples. 

The relationship between mathematics and recursion is 

explored in [44]. The QuickSort algorithm is proven in it as 

well. 

Recursion in actual Java programming “is never absolutely 

necessary, merely useful” [27]. 

REFERENCES 

[1] Rubio-Sánchez M. Introduction to Recursive Programming. CRC 
Press, 2018. 

[2] Evans B. et al. The Well-Grounded Java Developer, 2nd ed. Manning, 
2022. 

[3] Kiesler N. Mental Models of Recursion: A Secondary Analysis of 
Novice Learners’ Steps and Errors in Java Exercises // 33rd Workshop 

of PPIG, 2022:226–240. 
[4] George C.E. EROSI – Visualising Recursion and Discovering New 

Errors // SIGCSE Bulletin, 2000:305–309. 
[5] Shasha D., Lazere C. Out of Their Minds. The Lives and Discoveries 

of 15 Great Computer Scientists. Copernicus, 1995. 
[6] Mitchell J. Concepts in Programming Languages. Cambridge 

University Press, 2002. 

[7] van den Hove G. On the Origin of Recursive Procedures // Computer 
Journal, 2015, 58(11):2892-2899. DOI: 10.1093/comjnl/bxu145. 

[8] Soare R. Computability and Recursion // Bulletin of Symbolic Logic, 
1996, 2(3):284-321. 

[9] Sachdeva D., Ustukpayeva N. Mastering Java: A Beginner’s Guide. 
CRC Press, 2022. 

[10] Streib J., Soma T. Guide to Java. A Concise Introduction to 
Programming, 2nd ed. Springer, 2023. DOI: 10.1007/978-3-031-

22842-1. 
[11] Valeev T. 100 Java Mistakes and How to Avoid Them. Manning, 2024. 
[12] Downey A., Mayfield C. Think Java. How to Think Like a Computer 

Scientist. O’Reilly, 2016. 

[13] Horstmann C. Big Java Late Objects, 2nd ed. Wiley, 2017. 
[14] Koffman E., Wolfgang P. Data Structures. Abstraction and Design 

Using Java, 4th ed. Wiley, 2021. 

[15] Sedgewick R., Wayne K. Introduction to Programming in Java, 2nd ed. 
Addison-Wesley, 2017. 

[16] Crotts J. Learning Java. A Test-Driven Approach. Springer, 2024. 
DOI: 10.1007/978-3-031-66638-4. 

[17] Anderson J., Franceschi H. Java Illuminated. An Active Learning 
Approach, 5th ed. Jones & Bartlett Learning, 2019. 

[18] Lelek T., Skeet J. Software Mistakes and Tradeoffs. How to Make 
Good Programming Decisions. Manning, 2022. 

[19] Mongan J. et al. Programming Interviews Exposed, 4th ed. Wrox, 
2018. 

[20] Dale N. et al. Object-Oriented Data Structures using Java, 4th ed. Jones 
& Bartlett Learning, 2018. 

[21] Deitel P., Deitel H. Java 9 for Programmers, 4th ed. Pearson, 2018. 
[22] Saumont P.-Y. Functional Programming in Java. How Functional 

Techniques Improve Your Java Programs. Manning, 2017. 

[23] Subramaniam V. Functional Programming in Java. Harness the Power 
of Streams and Lambda Expressions, 2nd ed. The Pragmatic 
Programmers, 2023. 

[24] Urma R.-G. et al. Modern Java in Action. Lambdas, Streams, 
Functional and Reactive Programming. Manning, 2019. 

[25] Weidig B. A Functional Approach to Java. Augmenting Object-

Oriented Code with Functional Principles. O’Reilly, 2023. 
[26] Liang Y. Introduction to Java Programming and Data Structures. 

Comprehensive Version, 12th ed. Pearson, 2019. 
[27] Matuszek D. Quick Recursion. CRC Press, 2023. 

[28] Sedgewick R., Wayne K. Computer Science. An Interdisciplinary 
Approach. Addison-Wesley, 2017. 

[29] Sanders K. et al. Student Understanding of Object-Oriented 
Programming as Expressed in Concept Maps // SIGCSE, 2008:332–

336. 
[30] Pashukova A.D. Pedagogicheskaja Tekhnologija v Sovremennom 

Obrazovatel'nom Prostranstve Podgotovki Penitentsiarnykh 
Psikhologov [Pedagogical Technology in the Actual Educational Space 

of Teaching Penitentiary Psychologists] // Vectors of Psychological 
and Pedagogical Research, 2024, 2(3):74–81. [in Rus]. 

[31] Prutzkow A. Class Functionality and its Related Concepts: Research 

and Practice // International Journal of Open Information 
Technologies, 2024, 12(11):63-71. 

[32] Baron A., Feitelson D. How a Data Structure’s Linearity Affects 
Programming and Code Comprehension: The Case of Recursion vs. 

Iteration // 34th Workshop of PPIG, 2023:44–59. 
[33] Sulov V. Iteration vs Recursion in Introduction to Programming 

Classes // Cybernetics and Information Technologies, 2016, 16(4):63–
72. DOI: 10.1515/cait-2016-0068. 

[34] Esteero R. et al. Recursion or Iteration: Does it Matter What Students 
Choose? // SIGCSE, 2018:1011–1016. 
DOI: 10.1145/3159450.3159455. 

[35] Baron A., Feitelson D. Why Is Recursion Hard to Comprehend? An 

Experiment with Experienced Programmers in Python // ITiCSE, 2024. 
DOI: 10.1145/3649217.3653636. 

[36] Chao J. et al. Dynamic Mental Model Construction: A Knowledge in 
Pieces-Based Explanation for Computing Students’ Erratic 

Performance on Recursion, Journal of the Learning Sciences, 2018, 
27(3):431–473. DOI: 10.1080/10508406.2017.1392309. 

[37] Aqeel A. Understanding Comprehension of Iterative and Recursive 

Programs with Remote Eye Tracking // 32nd Workshop of PPIG, 2022. 
[38] Mackay S. What Does Literature Tell Us About Recursion? // SIGCSE, 

2022, 2:1173. DOI: 10.1145/3478432.3499210. 
[39] Abelson H., Sussman G. Structure and Interpretation of Computer 

Programs, 2nd ed. MIT Press, 1996. 
[40] Yourdon E., Constantine L. Structured Design. Fundamentals of a 

Discipline of Computer Program and Systems Design, 2nd ed. Yourdon 
Press, 1978. 

[41] Jones M. The Redesign of the Delivery of an Introductory 
Programming Unit // Innovation in Teaching and Learning in 
Information and Computer Sciences, 2007, 6(4):169–182. DOI: 
10.11120/ital.2007.06040169. 

[42] Smith D. et al. Dealing with the Challenges of Learning Recursive 
Programming – Helpful Functions and Incremental Approaches to 
Encourage Recursive Thinking // Issues in Information Systems, 2024, 

25(3):357–370. DOI: 10.48009/3_iis_2024_127. 
[43] Campesato O. Data Structures in Java. Mercury Learning and 

Information, 2023. 
[44] Liben-Nowell D. Connecting Discrete Mathematics and Computer 

Science, 2nd ed. Cambridge University Press, 2022. 

 


