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Investigation of directed interaction between
neural populations using spectral analysis
methods

B.B. Batuev, S.V. Sukhov

Abstract—In this work, the mechanisms of directed
interaction between two populations of neurons were
investigated using spectral analysis methods. The key conclusion
of this work is the demonstration that manipulating the
background noise level allows the inversion of the direction of
information flow between neural populations, opening up new
possibilities for controlling functional connectivity in spiking
networks. The dynamics of the membrane potentials of two
neural populations were modeled based on the “Leaky
integrate-and-fire” model. To quantitatively assess the
directional information exchange, Granger causality (GC),
directional transfer function (DTF), and partial directional
coherence (PDC) were used. The results confirm the
effectiveness of GC, DTF and PDC for analyzing directed
connections in neural networks and justify their use in
neurophysiological research. Structural connectivity was
generated via an undirected stochastic block model.
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I. INTRODUCTION

Modern methods of analyzing functional connectivity in
neural networks are often focused on assessing directed
interactions between groups of neurons, as understanding
these connections opens up new pathways for studying the
mechanisms of information processing in the brain. One
approach to studying such interactions is to use spectral
methods for analyzing time series of neural activity, such as
Granger causality (GC) [1], directed transfer function (DTF)
[2], and partial directed coherence (PDC)[3].

The aim of present work is to conduct a comparative
analysis of the effectiveness of GC, DTF, and PDC methods
in identifying the direction of information flow between two
neural clusters. Within the framework of this objective, the
activity of two neural clusters will be simulated at different
externalstimulus frequencies and noise levels.

The spectral causality indices according to Granger, the
directional transfer function, and the partial directional
coherence will be calculated on the obtained time series of
membrane potential.
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GC, DTF, and PDC were selected for our comparative
analysis for the following reasons. First, GC provides a clear
and quick assessment of the impact based on the logarithm of
the ratio of forecast error variances (residuals), which makes
the method effective for small sample sizes and a small
numberof channels [1], [4], [5]- Second, DTF shows notonly
direct but also cascading flows; specifically, in the case of
signal propagation along the path 1—»2—3, it also shows
signal propagation 1—3 [2], [6]. Third, PDC, by normalizing
the columns of the autoregression matrix, identifies only
direct connections, which reduces the number of false
positive indications of information transferand facilitates the
interpretation of resultsin complex multidimensionalsystems
31, [5]. [7]-

This combination of transparency, sensitivity to the
direction of flow, and computational efficiency makes these
methods the optimal choice for spectral analysis of directed
interactions in simulated spiking neural networks.

II. RELATED WORK

For a more detailed understanding ofexisting approaches for
estimating directed functional and effective connectivity in
neural networks, let us review the key methodological
developments in this field. In modern neuroscience, a wide
range of methodological approaches has been proposed for
estimating directed functional connectivity. Among linear
parametric methods, classical Granger causality is
traditionally applied to time series by simply comparing
autoregressive models and estimating the reduction in
residual variance when past values of the “causal” series are
added [4]. For spectral analysis based on multidimensional
autoregressive models, directed transfer function and partial
directed coherence are used to identify the direction of
information flow in the frequency domain while taking into
account the influences of all recording channels [7]. Transfer
entropy estimates the directed exchange of information
between time series based on entropy measures, which does
not require the determination of a specific parametric model
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and allows the detection ofboth linearand complex nonlinear
dependencies between signals [8]. In addition, there are also
phase indicators (phase-locking value, phase-slope index),
attractorreconstruction methods (convergent cross mapping),
and Bayesian approaches (Dynamic Causal Modeling), each
of which has its own advantages and limitations [5].

The role of the noise for the modulation of information
flow in neural systems was studies previously in several
works. In the work of Cecchi G.A. et al. [9], the authors
restore the signal by reducing the noise level. In Gammaitoni
L. et al. [10], a classic overview of the phenomenon of
stochastic resonance is presented, demonstrating how an
optimal noise level can enhance the transmission of weak
signals in nonlinear systems. The work by Faisal A. A., Selen
L. P.J., Wolpert D. M. [11] describes the functional role of
noise in neural networks, including its contribution to
improving the reliability of coding and synchronization of
neural ensembles. The work by McDonnell M.D., Abbott D.
[12] presents a critical analysis of various interpretations of
stochastic resonance and discusses its applicability to
biological systems, including neuralnetworks. Pikovsky A.S.
and Kurths J. [13] describe the phenomenon of “coherence
resonance,” in which a certain level of noise increases the
regularity of spike responses in excitable systems. Ward L.
M., MacLean S. E., Kirschner A. [14] conduct an
experimental and theoretical study of how noise affects the
synchronization of neural populations by changing the
direction and strength of information exchange. Each of these
works shows that noise is not just a source of fluctuations, but
also a mechanism for controlling the direction and efficiency
of signal transmission in complex systems.

III. SPIKING NETWORK SIMULATION

As a model system for numerical simulations, we consider
spiking neural network. The architecture of the modeled
neural network represents an undirected stochastic block
model (SBM) [15] consisting of two communities of 50
neurons each (the total number of simulated neurons is N =
100). Importantly, the directionality reported by
GC/DTF/PDC refers to temporal causal direction, not to the
edge orientation of the structural graph. All neurons are
described by the leaky integrate-and-fire (LIF) model [16].
The change in the membrane potential of a neuron v (t) is

given by the equation:
dv _ Vrest—V+RI+vn+Ve+v;

dt T ! (1)
where v, is the steady-state value of the membrane
potential, R = 80 MQ is the membrane resistance, [ is the
external current, T = 20 ms is the membrane time constant,
Vpe, is the change in the membrane potential caused by
synaptic currents from external noise sources and from
excitatory e and inhibitory i neurons:

vn+=]Zan '6(t_tn)t 2)
Ve t= ]Ze We - 6(t - te)' 3)
vit=] X w; - 5(t —ty). “)

where | = 1mV is a scale factor of a single postsynaptic
potential (PSP) that determines the amplitude of the voltage

increment; w, .; is the strength (weight) of the synaptic
contact (dimensionless) for external noise, excitatory, and

inhibitory connections, correspondingly; 6(t —t;) is the
Dirac delta function, modeling an instantaneous voltage jump
at the moment of spike; t,, ,; is the moment of spike arrival.
The neuron produces a spike when v(t) reaches the
excitation threshold v, after which the potential is instantly
reset to Vg - Formally, thisis described by the condition
[v(®) > vyl = vt +0) = v,y )
The time dependence of the external current I(t) is
specified as a piecewise function:
1@ = {A -s%n(anlt+q.’>), t<5s ©
A-sinQuft+ ¢), t>5s
where f; =10 Hz and f, = 30 Hz are the frequencies of

sinusoidal currents with amplitude A = 100 pA.
Background noise is modeled by two Poisson generators
P, and P,. Both generators P, and P, are connected to
communities 1 and 2, respectively, with a probability of p =
0.3. The rates A1,(t) and A,(t) of the occurrence of point
events of these Poisson processes are set based on discretized

frequency arrays defined at each integration step At = fis,
where fs = 100.
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Fig. 1. The scheme of experiment.

Let X denote the number of spikes recorded over a small
interval At. If the spikes are generated by a Poisson process
with a point event rate parameter 4, then X obeys a Poisson
distribution:

A e
!

PO = 2, @)
where the mathematical expectation E[X] = A and the
variance Var (X) = A. In the context of modeling, this means
that, on average, 14t spikes will occur during the time At,
while their actual number fluctuates around the mean with a
standard deviation of VAAt.

Let piyera1,. = 0.15 be the probabilities of excitatory and
inhibitory synaptic connections within the first and second
communities, and py,¢er1 ., = 0.05 be the probabilities of
excitatory and inhibitory synaptic connections between the
communities. The weights of the intra- and inter-community
connections are equal (W, =W,, =W, = W,, = 7).
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Intra- and inter-community connections are divided into
excitatory and inhibitory in a ratio of 80:20. Neuron dynamics
were modeled using the Brian 2 simulator [17], [18]. The total
simulation time was t = 10 s.

Havinga spiking neuralnetwork model forgenerating time
series of membrane potential, we proceed to formalize
spectral methods for analyzing directed information
exchange.

IV. SPECTRAL ANALYSIS METHODS

After modeling for each time point t, we average the
membrane potentials across all the neurons in the first and
second communities, forming a two-dimensional time series.
To calculate GC, DTF, and PDC, we need to find the spectral
power density S(w), transfer function H(w), and polynomial
matrix A(w) [18].

Lety, = (yt(l),yt(z))T € R¥(k = 2) is a two-dimensional
time series, where yt(l) is the average membrane potential of
community 1, and yt(z) is the average membrane potential of
community 2. Suppose that y, satisfies a vector
autoregression (VAR) model of order p = 3 with a constant:

ye = c+ 20 Ay +u, u~N0,Z5,). ®)
Here, A; € R?*2 is the matrix of time delay coefficients, ¢ €
R? is the vector of constant terms, and X, € R**? is the
covariance matrix of Gaussian white noise u,. We selected
the VAR order by minimizing an information criterion in each
sliding window and then aggregating the per-window
choices. Using a grid p € {1,...,20} and the Bayesian
Information Criterion (BIC) [19], which is consistent for
order selection, the modal order across windows was p = 3.

For two components with frequencies f; = 10 Hz and
f, = 30Hz, it is advisable to divide the spectral interval
[fi, £]into Ny = 10 — 20 equalsegmentswith the width Af.
Then

oAl
Ng = VR 9

Since, for a window span T, the frequency resolution is

defined as

_5_1
Af = 2=2, (10)
we obtain
_lp-Al _ _lp-alr _ Npfs
Np === 1f f1|T——fS =T=720 1)
Substituting Nz = 10,f£, = 100 Hz, and |f, — f,| =

10-100

20 Hz, we obtain T = = 50. This rule is valid for a

target resolution of Af = 20 Hz.
From the sample with window length T = 50, we form a
matrix of dependent variables

yp'
Yy =[P+ e RV, N =T —p=50-3=47. (12)
Yr-1
Eachlagl =1, ..., p forms a block of N rows
yp—l
Y., = |Ypri-v| e RV¥E, (13)
Yr-1-1

The constant ¢ is estimated as a free column, so the
regressor matrix takes the form:

X = [1N Y, Y ,Y, le RN*(1+kp) — R47x7 (14)
The least squares method minimizes the expression
s@ = lly — xpll? (15)
and leads to the equations:
(XTX)‘B — XT Y, ,8 c ]R(1+kp)><k_ (16)

N

The first k elements of B give the estimate ¢, the
subsequent blocks of k rows arethe estimates 4y, ..., 45.

T
A= [Bl+k(l—1):1+kl] ,l=1..,p (7)
The residual matrix is formed as:
E=Y - XB. (18)

The unbiased covariance estimate takes into account that

kp + 1 parameterswere estimated, so the number of degrees
of freedomis

v=N—(kp +1) = 40. (19)
The covariance matrix is calculated as
T
=% (20)

v

We return the coefficient tensor A € R3*?*2 and the
covariance X € R?*2,

To transition to the frequency domain, we introduce the w-
transform y(w) = X% _, y,z "% Combining all time delays
into a polynomial matrix

—j2nf
Aw) =1-2Z]_ Az, z=¢e f5 @21)
by calculating the invariant, we find the transfer (frequency)
matrix, which will be used to find the DTF:

—jzmf\ 71

H(w) =A<e fs ) :

On the unitcircle w = e ™™, the formula gives the spectral
power density ofthe k X k vector series of the process:

S(w) = Hw)2H (w), (23)
where the symbol “*” denotes the Hermitian conjugate. The
spectral power density can be used to calculate Granger
causality.

A. Granger causality
Granger causality (GC) is based on the concept that a time

(22)

. (1) . . . . (2)
series y, Y is considered to be the cause of a time series Ve 2

if including its past values in the regression model for yt(Z)

reduces the prediction error compared to a model using only

the history ofyt(Z).

Consider the two-dimensional case k = 2. The total
spectral density is written in blocks

_(Su Su)

S = (521 $2)

To obtain the conditional spectrum used in GC, we first

orthogonalize the one-step prediction errors (VAR residuals),

thereby removing instantaneous (zero-lag) correlation [1].
For the direction 2 — 1, use the upper—triangular transform

24

_ (1 —S12/522
Ty _~(0 /o), (25)
Andset £ = TETT, H(w) = TH(w).
The conditional spectrumof y™® given y(® is then
~ 2
511|2(‘U) = 511|H11(‘U)| , (26)

Where 6, is the (1,1) element of .
The Granger causality from 2 to 1 is
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Sll(w)

GCyyy(@) =1n 27)

511|2(w) )
Similarly, for the direction 1 — 2 use the lower-triangular
transform

1 0
To=(Lo s 1) (8)
so that
- ~ 2
522|1(‘*’) =622|H22(a))| , 29)
and
GCpy(w) = In22%L (30)

a2 @
By construction, GC;_;(w) = 0 indicates that past values
of y ) provide statistically significant predictive information
for y® at frequency w.
B. Directed Transfer Function
The directed transfer function (DTF) is also determined based
on the same coefficients of the autoregressive model. In the
matrix H(w), the index i describes how all sources affect y;.
The total energy inflow into the i-th column is equal to
K —1|Hyn (@) |2, Therefore, the value

DTF;; (w) = Lyl
S IH () 12
which quantifies the fraction of the flow from y; thatreaches
Yy; at frequency w. Since H; (w) = A~Y(w), DTF takes into
accountboth direct and all possible indirect paths.
C. Partial directed coherence
Partial directed coherence (PDC) is a further development
of the idea of directed analysis, but unlike DTF, it isolates
direct (partial) influences between signals, eliminating the
contribution of indirect paths through auxiliary variables. To
do this, normalization is performed not on the columns of the
transfer matrix H(w), but on the columns of the polynomial
matrix A(w). The element A;; (w) describes the direct

G

contribution of y;(t —(fl—s)) to y;(t) with a weight that

depends on the frequency. The column vector j has a norm of

an:l |Am] ((1)) |2. Then

|Aij(w)|

2
Y

shows the relative strength of the direct path j — i at
frequency w compared to all interactions originating from
channel j. High PDC values at w, clearly indicate a strong
direct influence of source j on receiveri at this particular
frequency.

Thus, GC allows us to determine how much taking into
account previous values of x; improves the prediction of the

(32)

time series x; as a function of frequency, while DTF analyzes
the signal transmission along all possible paths, revealing the
frequency characteristics of directed interactions. In contrast,
PDC focuses exclusively on direct connections, i.e., cases
where the influence of x; on x; is expressed directly without
taking into account the contribution of other signals. Based
on the computational approaches outlined above, the
following section presents the results of numerical
experiments and the visualization ofthe signal flow direction.

V. RESULTS

Fig. 2 shows the adjacency matrices with the probability of
the connection within clusters 1 and 2 being equal to
Pitra1,, = 0.15 andthe probability of a connection between

clusters being equalto P, , = 0.05.
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Fig. 2. Adjacency matrix forthe simulated neural network.

Fig. 3 shows the example spike activity obtained in the
simulation.
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Fig. 3. Spiking activity.

The results of numerical experiments show that neural
populations exhibit pronounced oscillations at characteristic
frequencies 10 and 30 Hz (see Fig. 4). Until time t =5 s,
cluster 1 is more active, generating a clear 10 Hz rhythm,
which leads to a strong directed connection 1 - 2 at a
frequency of f =~ 10 Hz. After t =5 s, the situation is
reversed: cluster 2 switches to a 30 Hz rhythm, resultingina
bright peak of directed communication 2 — 1 at f =~ 30 Hz.
The noise level determines the direction in which the signals
of one cluster affect the signals of another cluster; if the noise
is lower, the signal is transmitted better.

The change in the direction of information flows is
confirmed by spectral methods (GC, PDC, and DTF) and
illustrates how the noise level determines the “direction of
information transmission” in the network.
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Fig. 4. Spectrograms of a) Granger causality (GC), b)

partial directed coherence (PDC),
function (DTF).

c) directed transfer

VI.CONCLUSION

In conclusion, by regulating the intensity of background
noise, it is possible to purposefully change the directionality
of information exchange between neural clusters. Numerical
modeling and spectral analysis confirmed the high
effectiveness of GC, DTF and PDC methods for detecting
directional connectionsin simulated neural populations. The
simulation results highlight the role of the network topology
parametersandthe statistical characteristics of neurons (noise
intensity, time constants, synaptic connection weights) in the
formation of spectral features of directed interaction.
Changes in the noise levels are a key factor capable of
reconfiguring the dominant rhythm of a single cluster and
reorienting the flow of information.

The conclusions obtained justify the use of DTF and PDC
in neurophysiological studies focused on investigating the
dynamics of functional and effective connectivity in the
brain.
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