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Abstract—In this work, the mechanisms of directed 

interaction between two populations of neurons were 

investigated using spectral analysis methods. The key conclusion 
of this work is the demonstration that manipulating the 

background noise level allows the inversion of the direction of 

information flow between neural populations, opening up new 

possibilities for controlling functional connectivity in spiking 

networks. The dynamics of the membrane potentials of two 
neural populations were modeled based on the “Leaky 

integrate-and-fire” model. To quantitatively assess the 

directional information exchange, Granger causality (GC), 

directional transfer function (DTF), and partial directional 

coherence (PDC) were used. The results confirm the 
effectiveness of GC, DTF and PDC for analyzing directed 

connections in neural networks and justify their use in 

neurophysiological research. Structural connectivity was 

generated via an undirected stochastic block model.  

 

Key words— directed transfer function, Granger causality, 
information flow, partial directional coherence, spiking neural 

networks 

I. INTRODUCTION 

Modern methods of analyzing functional connectivity in 

neural networks are often focused on assessing directed 

interactions between groups of neurons, as understanding 

these connections opens up new pathways for studying the 

mechanisms of information processing in the brain. One 

approach to studying such interactions is to use spectral 

methods for analyzing time series of neural activity, such as 

Granger causality (GC) [1], directed transfer function (DTF) 

[2], and partial directed coherence (PDC)[3]. 

The aim of present work is to conduct a comparative 

analysis of the effectiveness of GC, DTF, and PDC methods 

in identifying the direction of information flow between two 

neural clusters. Within the framework of this objective, the 

activity of two neural clusters will be simulated at different 

external stimulus frequencies and noise levels. 

The spectral causality indices according to Granger, the 

directional transfer function, and the partial directional 

coherence will be calculated on the obtained time series of 

membrane potential. 
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GC, DTF, and PDC were selected for our comparative 

analysis for the following reasons. First, GC provides a clear 

and quick assessment of the impact based on the logarithm of 

the ratio of forecast error variances (residuals), which makes 

the method effective for small sample sizes and a small 

number of channels [1], [4], [5]. Second, DTF shows not only 

direct but also cascading flows; specifically, in the case of 

signal propagation along the path 1→2→3, it also shows 

signal propagation 1→3 [2], [6]. Third, PDC, by normalizing 

the columns of the autoregression matrix, identifies only 

direct connections, which reduces the number of false 

positive indications of information transfer and facilitates the 

interpretation of results in complex multidimensional systems 

[3], [5], [7].  

This combination of transparency, sensitivity to the 

direction of flow, and computational efficiency makes these 

methods the optimal choice for spectral analysis of directed 

interactions in simulated spiking neural networks. 

II. RELATED WORK 

For a more detailed understanding of existing approaches for 

estimating directed functional and effective connectivity in 

neural networks, let us review the key methodological 

developments in this field. In modern neuroscience, a wide 

range of methodological approaches has been proposed for 

estimating directed functional connectivity. Among linear 

parametric methods, classical Granger causality is 

traditionally applied to time series by simply comparing 

autoregressive models and estimating the reduction in 

residual variance when past values of the “causal” series are 

added [4]. For spectral analysis based on multidimensional 

autoregressive models, directed transfer function and partial 

directed coherence are used to identify the direction of 

information flow in the frequency domain while taking into 

account the influences of all recording channels [7]. Transfer 

entropy estimates the directed exchange of information 

between time series based on entropy measures, which does 

not require the determination of a specific parametric model 
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and allows the detection of both linear and complex nonlinear 

dependencies between signals [8]. In addition, there are also 

phase indicators (phase-locking value, phase-slope index), 

attractor reconstruction methods (convergent cross mapping), 

and Bayesian approaches (Dynamic Causal Modeling), each 

of which has its own advantages and limitations [5].  

The role of the noise for the modulation of information 

flow in neural systems was studies previously in several 

works. In the work of Cecchi G.A. et al. [9], the authors 

restore the signal by reducing the noise level. In Gammaitoni 

L. et al. [10], a  classic overview of the phenomenon of 

stochastic resonance is presented, demonstrating how an 

optimal noise level can enhance the transmission of weak 

signals in nonlinear systems. The work by Faisal A. A., Selen  

L. P. J., Wolpert D. M. [11] describes the functional role of 

noise in neural networks, including its contribution to 

improving the reliability of coding and synchronization of 

neural ensembles. The work by McDonnell M.D., Abbott D.  

[12] presents a critical analysis of various interpretations of 

stochastic resonance and discusses its applicability to 

biological systems, including neural networks. Pikovsky A.S. 

and Kurths J. [13] describe the phenomenon of “coherence 

resonance,” in which a certain level of noise increases the 

regularity of spike responses in excitable systems. Ward L. 

M., MacLean S. E., Kirschner A. [14] conduct an 

experimental and theoretical study of how noise affects the 

synchronization of neural populations by changing the 

direction and strength of information exchange. Each of these 

works shows that noise is not just a  source of fluctuations, but 

also a mechanism for controlling the direction and efficiency 

of signal transmission in complex systems. 

III. SPIKING NETWORK SIMULATION 

As a model system for numerical simulations, we consider 

spiking neural network. The architecture of the modeled 

neural network represents an undirected stochastic block 

model (SBM) [15] consisting of two communities of 50 

neurons each (the total number of simulated neurons is 𝑁 =

100). Importantly, the directionality reported by 

GC/DTF/PDC refers to temporal causal direction, not to the 

edge orientation of the structural graph. All neurons are 

described by the leaky integrate-and-fire (LIF) model [16]. 

The change in the membrane potential of a neuron 𝑣(𝑡) is 

given by the equation: 

 
𝑑𝑣

𝑑𝑡
=

𝑣𝑟𝑒𝑠𝑡−𝑣+𝑅⋅𝐼+𝑣n+𝑣𝑒+𝑣𝑖

𝜏
, (1) 

where 𝑣𝑟𝑒𝑠𝑡  is the steady-state value of the membrane 

potential, 𝑅 = 80 𝑀Ω  is the membrane resistance, 𝐼 is the 

external current, 𝜏 = 20 ms is the membrane time constant, 

𝑣𝑛,𝑒 ,𝑖 is the change in the membrane potential caused by 

synaptic currents from external noise sources and from 

excitatory 𝑒 and inhibitory 𝑖 neurons: 

 𝑣𝑛+= 𝐽 ∑ 𝑤𝑛 ⋅ 𝛿(𝑡 − 𝑡𝑛)𝑛 ,  (2) 

 𝑣𝑒+= 𝐽 ∑ 𝑤𝑒 ⋅ 𝛿(𝑡 − 𝑡𝑒)𝑒 , (3) 

 𝑣𝑖+= 𝐽 ∑ 𝑤𝑖 ⋅ 𝛿(𝑡 − 𝑡𝑖)𝑖 . (4) 

where 𝐽 = 1 mV is a scale factor of a single postsynaptic 

potential (PSP) that determines the amplitude of the voltage 

increment; 𝑤𝑛 ,𝑒,𝑖 is the strength (weight) of the synaptic 

contact (dimensionless) for external noise, excitatory, and 

inhibitory connections, correspondingly; 𝛿(𝑡 − 𝑡𝑖) is the 

Dirac delta function, modeling an instantaneous voltage jump 

at the moment of spike; 𝑡𝑛 ,𝑒,𝑖 is the moment of spike arrival. 

The neuron produces a spike when 𝑣(𝑡) reaches the 

excitation threshold 𝑣𝑡ℎ , after which the potential is instantly 

reset to 𝑣𝑟𝑒𝑠𝑒𝑡 . Formally, this is described by the condition 

 [𝑣(𝑡) > 𝑣th
] ⇒ 𝑣(𝑡 + 0) = 𝑣reset . (5) 

The time dependence of the external current 𝐼(𝑡) is 

specified as a piecewise function: 

 𝐼(𝑡) = {
𝐴 ⋅ sin(2𝜋𝑓1 𝑡 + 𝜙),              𝑡 < 5 s

𝐴 ⋅ sin(2𝜋𝑓2 𝑡 + 𝜙),              𝑡 ≥ 5 s
 (6) 

where 𝑓1 = 10 Hz and 𝑓2 = 30 Hz are the frequencies of 

sinusoidal currents with amplitude 𝐴 = 100 pA. 

Background noise is modeled by two Poisson generators 

𝑃1 and 𝑃2 . Both generators 𝑃1 and 𝑃2  are connected to 

communities 1 and 2, respectively, with a probability of 𝑝 =
0.3. The rates 𝜆 1(𝑡) and 𝜆 2(𝑡) of the occurrence of point 

events of these Poisson processes are set based on discretized 

frequency arrays defined at each integration step 𝛥𝑡 =
1

𝑓𝑠
, 

where 𝑓𝑠 =  100. 

• For t ∈ [0, 5) s: 𝜆 1 = 10, 𝜆 2 = 60 

• For t ∈ [5, 10) s: 𝜆1 = 60, 𝜆 2 = 10 

 
Fig. 1. The scheme of experiment. 

Let 𝑋 denote the number of spikes recorded over a small 

interval 𝛥𝑡. If the spikes are generated by a Poisson process 

with a point event rate parameter 𝜆, then 𝑋 obeys a Poisson 

distribution: 

 𝑃(𝑋)  =  
λ𝑥  𝑒−λ

𝑥 !
, (7) 

where the mathematical expectation 𝐸[𝑋] = 𝜆 and the 

variance Var (𝑋) = 𝜆. In the context of modeling, this means 

that, on average, 𝜆𝛥𝑡 spikes will occur during the time 𝛥𝑡, 

while their actual number fluctuates around the mean with a 

standard deviation of √𝜆𝛥𝑡.  

Let 𝑝𝑖𝑛𝑡𝑟𝑎1,2 = 0.15 be the probabilities of excitatory and 

inhibitory synaptic connections within the first and second 

communities, and 𝑝𝑖𝑛𝑡 𝑒𝑟1,2 = 0.05 be the probabilities of 

excitatory and inhibitory synaptic connections between the 

communities. The weights of the intra- and inter-community 

connections are equal (𝑊11 = 𝑊22 = 𝑊12 = 𝑊21 = 7). 
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Intra- and inter-community connections are divided into 

excitatory and inhibitory in a ratio of 80:20. Neuron dynamics 

were modeled using the Brian 2 simulator [17], [18]. The total 

simulation time was 𝑡 = 10 s.  

Having a spiking neural network model for generating time 

series of membrane potential, we proceed to formalize 

spectral methods for analyzing directed information 

exchange. 

 

IV. SPECTRAL ANALYSIS METHODS 

After modeling for each time point 𝑡, we average the 

membrane potentials across all the neurons in the first and 

second communities, forming a two-dimensional time series. 

To calculate GC, DTF, and PDC, we need to find the spectral 

power density 𝑆(𝜔), transfer function 𝐻(𝜔), and polynomial 

matrix 𝐴(𝜔) [18]. 

Let 𝑦𝑡 = (𝑦𝑡
(1)

, 𝑦𝑡
(2) )

𝑇
∈ ℝ𝑘(𝑘 = 2) is a two-dimensional 

time series, where 𝑦𝑡
(1)

 is the average membrane potential of 

community 1, and 𝑦𝑡
(2)

 is the average membrane potential of 

community 2. Suppose that 𝑦𝑡  satisfies a vector 

autoregression (VAR) model of order 𝑝 = 3 with a constant: 

 𝑦𝑡 = 𝑐 + ∑ 𝐴𝑙𝑦𝑡 −𝑙 + 𝑢𝑡
𝑝
𝑙=1 , 𝑢𝑡~𝒩(0, 𝛴𝑢

). (8) 

Here, 𝐴𝑙 ∈ ℝ2×2 is the matrix of time delay coefficients, 𝑐 ∈
𝑅2 is the vector of constant terms, and 𝛴𝑢 ∈ ℝ2×2 is the 

covariance matrix of Gaussian white noise 𝑢𝑡 . We selected 

the VAR order by minimizing an information criterion in each 

sliding window and then aggregating the per-window 

choices. Using a grid 𝑝 ∈ {1, … ,20}  and the Bayesian 

Information Criterion (BIC) [19], which is consistent for 

order selection, the modal order across windows was 𝑝 = 3.  

For two components with frequencies 𝑓1 = 10 Hz and 

𝑓2 = 30 Hz, it is advisable to divide the spectral interval 

[𝑓1 , 𝑓2 ] into 𝑁𝐵 ≈ 10 − 20 equal segments with the width Δ𝑓. 

Then 

 𝑁𝐵 =
|𝑓2 −𝑓1 |

Δ𝑓
. (9) 

Since, for a window span 𝑇, the frequency resolution is 

defined as 

 Δ𝑓 =  
𝑓𝑠

𝑁
=

1

𝑇
 , (10) 

we obtain 

 𝑁𝐵 =
|𝑓2 −𝑓1

|

Δ𝑓
= |𝑓2 − 𝑓1

|𝑇 =
|𝑓2 −𝑓1

|𝑇

𝑓𝑠
⟹ 𝑇 =

𝑁𝐵 𝑓𝑠

|𝑓2 −𝑓1|
. (11) 

Substituting 𝑁𝐵 = 10, 𝑓𝑠 = 100 Hz, and |𝑓2 − 𝑓1
| =

20 Hz, we obtain 𝑇 =
10⋅100

20
= 50. This rule is valid for a 

target resolution of Δ𝑓 = 20 Hz. 

From the sample with window length 𝑇 = 50, we form a 

matrix of dependent variables 

 𝑌 = [

𝑦𝑝 ,
𝑦𝑝 +1

…
,

𝑦𝑇 −1

] ∈ ℝ𝑁 ×𝑘 , 𝑁 = 𝑇 − 𝑝 = 50 − 3 = 47.  (12) 

Each lag 𝑙 = 1, … , 𝑝 forms a block of 𝑁 rows 

 𝑌−𝑙 = [

𝑦𝑝 −𝑙

𝑦𝑝 +1−𝑙

…
,

𝑦𝑇 −1−𝑙

] ∈ ℝ𝑁×𝑘 . (13) 

The constant 𝑐  is estimated as a free column, so the 

regressor matrix takes the form: 

 𝑋 = [1𝑁  𝑌−1 𝑌−2 𝑌−3 ] ∈ ℝ𝑁×(1+𝑘𝑝)
= ℝ47×7.  (14) 

The least squares method minimizes the expression 

 𝑆(𝛽) = ‖𝑌 − 𝑋𝛽‖2  (15) 

and leads to the equations: 

 (𝑋𝑇 𝑋)𝛽 = 𝑋𝑇 𝑌, 𝛽 ∈ ℝ
(1+𝑘𝑝) ×𝑘 . (16) 

The first 𝑘 elements of 𝛽 give the estimate 𝑐̂ , the 

subsequent blocks of 𝑘 rows are the estimates 𝐴1, … , 𝐴3 . 

 𝐴 = [𝐵1+𝑘(𝑙−1):1+𝑘𝑙]
𝑇

, 𝑙 = 1, … , 𝑝. (17) 

The residual matrix is formed as: 

 𝐸 = 𝑌 − 𝑋𝛽. (18) 

The unbiased covariance estimate takes into account that 

𝑘𝑝 + 1 parameters were estimated, so the number of degrees 

of freedom is 

 𝜈 = 𝑁 − (𝑘𝑝 + 1) = 40. (19) 

The covariance matrix is calculated as 

 Σ =
𝐸𝑇𝐸

𝜈
. (20) 

We return the coefficient tensor 𝐴 ∈ ℝ3×2×2 and the 

covariance Σ ∈ ℝ2×2. 

To transition to the frequency domain, we introduce the 𝜔-

transform 𝑦(𝜔) = ∑ 𝑦𝑡𝑧 −𝑡∞
𝑡 =−∞ . Combining all time delays 

into a polynomial matrix 

 𝐴(𝜔) = 𝐼 − ∑ 𝐴𝑙 𝑧𝑙 ,
𝑝
𝑙=1  𝑧 = 𝑒

−𝑗2𝜋𝑓

𝑓𝑠 , (21) 

by calculating the invariant, we find the transfer (frequency) 

matrix, which will be used to find the DTF: 

 𝐻(𝜔) = 𝐴 (𝑒
−𝑗2𝜋𝑓

𝑓𝑠 )
−1

. (22) 

On the unit circle 𝜔 = 𝑒 −𝑖𝑤, the formula gives the spectral 

power density of the 𝑘 × 𝑘 vector series of the process: 

 𝑆(𝜔) = 𝐻(𝜔)Σ𝐻∗(𝜔) , (23) 

where the symbol “*” denotes the Hermitian conjugate. The 

spectral power density can be used to calculate Granger 

causality. 

A. Granger causality 

Granger causality (GC) is based on the concept that a time 

series 𝑦𝑡

(1)
 is considered to be the cause of a time series 𝑦𝑡

(2)
 

if including its past values in the regression model for 𝑦𝑡
 (2)

 

reduces the prediction error compared to a model using only 

the history of 𝑦𝑡

(2)
. 

Consider the two-dimensional case 𝑘 = 2. The total 

spectral density is written in blocks 

 𝑆(𝜔) = (
𝑆11 𝑆12

𝑆21 𝑆22
).  (24) 

To obtain the conditional spectrum used in GC, we first 

orthogonalize the one-step prediction errors (VAR residuals), 

thereby removing instantaneous (zero-lag) correlation [1]. 

For the direction 2 → 1, use the upper–triangular transform 

 𝑇2→1 = (1 −𝑠12/𝑠22

0 1
), (25) 

And set Σ̃ = 𝑇Σ𝑇 𝑇, 𝐻(𝜔) = 𝑇𝐻(𝜔). 

The conditional spectrum of 𝑦(1)  given 𝑦(2)  is then 

 𝑆11|2
(𝜔) = 𝜎11|𝐻11(𝜔)|

2
, (26) 

Where 𝜎11 is the (1,1) element of Σ̃. 

The Granger causality from 2 to 1 is  
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 𝐺𝐶2→1
(𝜔) = ln

𝑆11(𝜔)

𝑆11|2(𝜔)
. (27) 

Similarly, for the direction 1 → 2 use the lower-triangular 

transform 

 𝑇1→2 = (
1 0

−𝑠21/𝑠11 1
), (28) 

so that 

 𝑆22|1
(𝜔) = 𝜎22|𝐻22(𝜔)|

2
, (29) 

and 

 𝐺𝐶1→2
(𝜔) = ln

𝑆22(𝜔)

𝑆22|1(𝜔)
.  (30) 

By construction, 𝐺𝐶𝑗→𝑖(𝜔) ≥ 0 indicates that past values 

of 𝑦 (𝑗) provide statistically significant predictive information 

for 𝑦(𝑖)  at frequency 𝜔. 

 

B. Directed Transfer Function 

The directed transfer function (DTF) is also determined based 

on the same coefficients of the autoregressive model. In the 

matrix 𝐻(𝜔), the index 𝑖 describes how all sources affect 𝑦𝑖 . 

The total energy inflow into the 𝑖-th column is equal to 
∑ |𝐻𝑖𝑚

(𝜔)|2𝑘
𝑚=1 . Therefore, the value 

 DTFij
(ω)  =  

|𝐻𝑖𝑗 (ω)|

√∑ |𝐻𝑖𝑚(ω) |2𝑘
m=1

, (31) 

which quantifies the fraction of the flow from 𝑦𝑗  that reaches 

𝑦𝑖  at frequency 𝜔. Since 𝐻𝑖𝑗
(𝜔) = 𝐴−1(𝜔), DTF takes into 

account both direct and all possible indirect paths. 

C. Partial directed coherence 

Partial directed coherence (PDC) is a further development 

of the idea of directed analysis, but unlike DTF, it isolates 

direct (partial) influences between signals, eliminating the 

contribution of indirect paths through auxiliary variables. To 

do this, normalization is performed not on the columns of the 

transfer matrix 𝐻(𝜔), but on the columns of the polynomial 

matrix 𝐴(𝜔). The element 𝐴𝑖𝑗
(𝜔)  describes the direct 

contribution of 𝑦𝑗(𝑡 − (
𝑙

𝑓𝑠
)) to 𝑦𝑖

(𝑡) with a weight that 

depends on the frequency. The column vector 𝑗 has a norm of 

√∑ |𝐴𝑚𝑗
(𝜔)|

2
𝑘
𝑚=1 . Then 

 PDCij
(ω)  =  

|𝐴𝑖𝑗(𝜔)|

√∑ |𝐴m𝑗(ω) |
2𝑘

m =1

 (32) 

shows the relative strength of the direct path 𝑗 → 𝑖 at 

frequency 𝜔 compared to all interactions originating from 

channel 𝑗. High PDC values at 𝜔0  clearly indicate a strong 

direct influence of source 𝑗 on receiver 𝑖 at this particular 

frequency. 

Thus, GC allows us to determine how much taking into 

account previous values of 𝑥𝑗 improves the prediction of the 

time series 𝑥 𝑖 as a function of frequency, while DTF analyzes 

the signal transmission along all possible paths, revealing the 

frequency characteristics of directed interactions. In contrast, 

PDC focuses exclusively on direct connections, i.e., cases 

where the influence of 𝑥𝑗 on 𝑥 𝑖 is expressed directly without 

taking into account the contribution of other signals. Based 

on the computational approaches outlined above, the 

following section presents the results of numerical 

experiments and the visualization of the signal flow direction. 

V. RESULTS 

Fig. 2 shows the adjacency matrices with the probability of 

the connection within clusters 1 and 2 being equal to 

𝑃𝑖𝑛𝑡𝑟𝑎1,2 = 0.15 and the probability of a  connection between 

clusters being equal to 𝑃𝑖𝑛𝑡𝑒𝑟1 ,2 = 0.05.  

 
Fig. 2. Adjacency matrix for the simulated neural network. 

 

Fig. 3 shows the example spike activity obtained in the 

simulation. 

 

 
Fig. 3. Spiking activity. 

The results of numerical experiments show that neural 

populations exhibit pronounced oscillations at characteristic 

frequencies 10 and 30 Hz (see Fig. 4). Until time 𝑡 = 5 s, 

cluster 1 is more active, generating a clear 10 Hz rhythm, 

which leads to a strong directed connection 1 → 2 at a 

frequency of 𝑓 ≈ 10 Hz. After 𝑡 = 5 s, the situation is 

reversed: cluster 2 switches to a 30 Hz rhythm, resulting in a 

bright peak of directed communication 2 → 1 at 𝑓 ≈ 30 Hz. 

The noise level determines the direction in which the signals 

of one cluster affect the signals of another cluster; if the noise 

is lower, the signal is transmitted better. 

The change in the direction of information flows is 

confirmed by spectral methods (GC, PDC, and DTF) and 

illustrates how the noise level determines the “direction of 

information transmission” in the network. 
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Fig. 4. Spectrograms of a) Granger causality (GC), b) 

partial directed coherence (PDC), c) directed transfer 

function (DTF). 

VI.CONCLUSION 

In conclusion, by regulating the intensity of background 

noise, it is possible to purposefully change the directionality 

of information exchange between neural clusters. Numerical 

modeling and spectral analysis confirmed the high  

effectiveness of GC, DTF and PDC methods for detecting 

directional connections in simulated neural populations. The 

simulation results highlight the role of the network topology 

parameters and the statistical characteristics of neurons (noise 

intensity, time constants, synaptic connection weights) in the 

formation of spectral features of directed interaction. 

Changes in the noise levels are a key factor capable of 

reconfiguring the dominant rhythm of a single cluster and 

reorienting the flow of information. 

The conclusions obtained justify the use of DTF and PDC 

in neurophysiological studies focused on investigating the 

dynamics of functional and effective connectivity in the 

brain. 
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