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Abstract: Modern language models are widely used
across various domains due to their ability to generate
coherent and contextually relevant text. However, despite
significant advancements, such models remain prone
to errors and may produce hallucinations—statements
that are well-formed but factually incorrect. This article
proposes a novel approach to evaluating uncertainty
in language model responses based on conformal pre-
diction methods. It explores techniques for calibrating
the models’ probabilistic estimates in order to enhance
the reliability and interpretability of their outputs. The
study demonstrates how the proposed method can more
effectively identify potential errors and improve the
justification of generated responses. The results open up
new possibilities for increasing the reliability of language
models in critical applications where accuracy and con-
fidence in responses are of paramount importance.
key words: conformal prediction, model calibration,

uncertainty quantification function, large language mod-
els

I. Introduction

In recent years, language models (LMs) such as GPT
and BERT have demonstrated significant progress in Natural
Language Processing (NLP) tasks. They are successfully ap-
plied in diverse scenarios—from machine translation and text
summarization to code generation. However, despite these
impressive achievements, several unresolved issues remain,
among which the problem of calibration—the model’s ability
to adequately assess its confidence in its own predictions—is
particularly important.
The lack of reliable confidence assessment limits the

application of LMs in safety-critical domains where the
cost of error can be high. In fields such as medicine, law,
and finance, not only accuracy is required, but also the
ability to identify situations where the model might err. The
inability to do so increases the risk of disseminating incorrect
information and undermines trust in such systems.
Conformal prediction methods represent a promising ap-

proach to addressing this challenge. These methods allow for
the generation of statistically sound predictions with a con-
trolled level of reliability. This work explores the application
of the conformal approach for calibrating language models.
Particular attention is given to the development of a novel
uncertainty quantification method based on the analysis of
token distributions in generated responses.
This paper presents an experimental investigation into the

effectiveness of the proposed method, along with a compari-
son to existing approaches. The obtained results demonstrate

the potential of conformal prediction as a tool for enhancing
the reliability and interpretability of language models.

II. Related Work

• Learning by transduction - Vapnik V., Vovk V., Gam-
merman, 2013 [1]. In this work, the authors investigated
the applicability of conformal prediction methods to
heteroscedastic and sparse data. The method proposed
in this work formed the basis of transductive learning -
— a conformal prediction method applicable to Natural
Language Processing (NLP) tasks.

• Least ambiguous set-valued classifiers (LAC) -
Sadinle et al., 2019 [2]. In this paper, the authors fo-
cused on applying conformal prediction to classification
tasks with a large number of classes. Their developed
Least Ambiguous set-valued Classifier (LAC) function
allowed for effective uncertainty estimation in model
responses and became widely used for model calibration
in classification tasks, including the evaluation of large
language models.

• Conformal Prediction with Large Language Models
for Multi-Choice Question Answering - Kumar et
al., 2023 [3]. In this article, the authors investigated
the applicability of conformal prediction methods to
modern LLMs and the improvement of their accuracy.
Building on previous work, they succeeded in enhancing
the quality of model calibration. However, the method
for calibrating language models proposed in this article
is not universal – an uncertainty scoring function needs
to be developed separately for each task. Also, it was
found that the quality of model calibration strongly
depends on the prompt -— the formulation of the
question.

• Robots That Ask For Help: Uncertainty Alignment
for Large Language Model Planners - Allen Z.
Ren, Anushri Dixit et al., 2023 [4]. In this paper, the
authors applied conformal prediction to identify model
uncertainty in tasks involving the model’s interaction
with the environment and the execution of commands in
natural language. In their work, the authors highlighted
the main difficulties arising in solving these tasks—
the ambiguity of natural language, problems in un-
derstanding language commands, etc. To address these
problems, it was necessary to identify moments of
model uncertainty and send a clarifying query to obtain
additional information. To identify these moments, the
researchers created the KNOWNO framework, which
allowed for the detection of model uncertainty and the
clarification of user queries.
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• Scalable Best-of-N Selection for Large Language
Models via Self-Certainty - Zhewei Kang, Xuandong
Zhao, Dawn Song, 2025 (Note: Year might be a place-
holder or future publication, check if this is intended)
[5]. In this article, the authors investigated a method for
assessing the uncertainty of language models directly
through the analysis of the probability distribution for
each token in the generated response. The uncertainty
estimation methods they proposed allowed for the cali-
bration of language models for any task.

III. Principles of Language Model Operation
Modern language models, including architectures from the

GPT family, are typically implemented as autoregressive
transformers. The fundamental principle of their operation
involves the sequential generation of an output sequence,
where each token is predicted conditionally based on the in-
put query and previously generated tokens. This factorization
of the probability space allows the task of text generation to
be formalized as a sequential prediction problem.
Let q be the input query, and a = (a1, a2,…, an) be

the output text sequence composed of tokens. Then, the
conditional probability of generating the complete sequence
a can be represented as follows:

p(a|q) =
n∏

i=1

p(ai|q, a<i)

where a<i = (a1,…, ai−1) are the preceding tokens.
At each step i, the model generates a probability distri-

bution p(ai�q, a<i) over the vocabulary of possible tokens,
reflecting the estimated probability of each token appearing
in that position. A specific token is selected either by sam-
pling from this distribution or by deterministically choosing
the most probable token (e.g., using greedy decoding or beam
search).
Such an autoregressive structure enables models to effec-

tively consider context and construct coherent text outputs.
However, it also imposes limitations: errors in early steps
can accumulate, and the model itself lacks an inherent
mechanism for globally controlling the reliability of the
entire sequence. Consequently, models may ”hallucinate,”
especially when errors occur in the initial stages of genera-
tion. This makes the task of reliable uncertainty estimation
and subsequent calibration of output distributions particu-
larly crucial when applying language models in high-stakes
domains.

IV. Conformal Prediction Method
Conformal prediction is a powerful tool for constructing

prediction intervals and for model calibration. These intervals
are constructed using an uncertainty quantification func-
tion for the model’s responses. By analyzing the behavior
of the uncertainty quantification function, we can detect
hallucinations based on the model’s anomalous responses.
Consequently, it becomes possible to calibrate the model to
improve the quality of its responses [6].

A. Uncertainty Scoring Function
More formally, the uncertainty scoring function can be

defined as follows:

Figure 1. Model calibrating scheme

F : Rm → [0, 1]

Where Rm is the space of model responses, and [0, 1]
represents the model’s uncertainty, expressed numerically.
Accordingly, if F (a1) < F (a2), then the model is more
confident in response a1 than in a2. And if the difference
between the values becomes too large, this may indicate the
detection of an anomaly. In Natural Language Processing
(NLP) tasks, particularly for multiple-choice tasks (or tasks
involving the selection of a correct answer), the LAC (Least
Ambiguous set-valued Classifier) function is often used:

S(X,Y ) = 1− |F (X)|Y
where |F (X)|Y is the softmax probability of class Y for
input X .
A key feature of uncertainty scoring functions is their

sensitivity, i.e., their ability to detect anomalies. The more
accurately the function detects deviations in the model’s re-
sponses, the more effectively its responses can be improved.

B. Model Calibration
After selecting the uncertainty scoring function, the model

needs to be calibrated. The calibration process proceeds as
follows:

• A dataset is collected on which the calibration will be
performed. This is typically a small subset of the data
on which the model was trained.

• This data is processed by the model, and the ob-
tained results are analyzed using the uncertainty scoring
function. Patterns in the model’s responses, its typical
confidence level, and areas where it is least confident
are identified.

• For new data from the test set, prediction intervals
are constructed, or the model’s confidence level in its
predictions is displayed.

It is important to note that for text generation tasks, it is
often impossible to construct prediction intervals. Therefore,
for the model’s generated responses, the degree of confidence
in its prediction is most often calculated.

C. Model Response Adjustment
After calibrating the language model, it becomes possible

to quantitatively assess its degree of uncertainty during
response generation. The resulting probabilistic character-
istics of the output distribution allow for an analysis of
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how confidently the model makes a specific prediction in
a given context. This information can be used for post-
processing generation results, in particular—for adjusting or
filtering responses that exhibit a high degree of uncertainty.
One effective approach in this direction involves construct-
ing prediction intervals for the model’s predictions, which
allows for the generation of estimates with a controlled
level of reliability. Thus, a calibrated model not only pro-
vides probabilistic predictions but also accompanies them
with additional information that can serve as a basis for
decision-making under uncertainty. A prediction interval is
constructed as follows:

qα = Quantile(S1..n,
(n+ 1)(1− α)

n
)

One of the key challenges in applying the conformal
prediction method to language models is the limited ef-
fectiveness of existing uncertainty scoring functions. This
is due to the specifics of Natural Language Processing
tasks, particularly phenomena such as semantic ambiguity
and contextual variability. An additional complexity is the
high dimensionality and sparsity of the input space: language
data are represented as tokens from an extremely large
vocabulary, which complicates the construction of reliable
statistical estimates.
These factors significantly limit the application of classical

conformal prediction approaches, whose effectiveness largely
depends on the stability and representativeness of the features
used. Consequently, there is a need to develop specialized
methods adapted to the structure of language models’ out-
put distributions. This work proposes a novel approach to
uncertainty quantification, based on the analysis of the to-
ken probability distribution during response generation. The
method aims to enhance the sensitivity of the assessment to
the linguistic characteristics of the model and to ensure more
accurate calibration of output predictions under conditions of
high ambiguity.

V. Quantification of Model Confidence
The new method for model uncertainty quantification is

based on the following improvements: a weighted assessment
of model confidence during the generation of each token,
taking into account its importance in the output response,
and an analysis of the probability distribution during the
generation of each token. These aspects will be elaborated
upon below.

A. Weighted Assessment of Model Confidence During the
Generation of Each Token
The primary method for assessing model confidence in

their predictions is the normalized log probability of the
prediction [7]:

AvgLogP = − 1

n

n∑
i=1

log p(ai|q, a<i)

Besides its obvious advantages, such as analyzing model
confidence across all tokens of the generated response and
good interpretability of the results, this metric also has
several drawbacks, the most significant of which is low
specificity, especially for long sequences. Since natural
language is highly redundant, texts generated in natural

language often contain prepositions, linking words, and
idiomatic expressions, which improve the quality of the
response itself but significantly skew the score. This can be
seen in the following example. In this example, the Qwen-
2.5-1.5B model was used.
Question: If you write out all the numbers from 1 to

1000 in a single line, how many digits will be in this line?
Answer 2: In the sequence of numbers from 1 to

1000, there will be 9 single-digit numbers, 90 two-digit
numbers, and 900 three-digit numbers, as well as the
four-digit number 1000. Therefore, in our answer, we
will have 9*1 + 90*2 + 900*3 + 4 = 2890. Answer: 2890
digits.
In this case, the language model made a calculation

error. However, because many tokens in the response were
generated with high model confidence (i.e., p(ai|q, a<i)
was high for many ai), the resulting AvgLogP score was
low (indicating high overall confidence). This is one of
the problems with this metric: when generating long texts,
for most tokens p(ai|q, a<i) → 1, causing the model’s
confidence in the response to become high, even if the final
answer is incorrect.
This becomes even more problematic given that modern

reasoning models can generate very long text chains, making
the AvgLogP score uninformative.
Currently, the Best-of-N method is used to address this

problem, where multiple responses are generated, and a
weighted average of the model’s confidence across all re-
sponses is taken [8][9]. This method (Best-of-N) demon-
strates improved characteristics in quantifying the uncertainty
of language models, especially in tasks requiring logical
inference and step-by-step reasoning – such as physics,
mathematics, and algorithmic problems. In these cases, the
accuracy of identifying uncertain predictions significantly
increases, contributing to more reliable model calibration.
However, for tasks primarily testing factual or terminological
knowledge (e.g., in geography, biology, astronomy), the
quality improvement is less pronounced. This is because in
such tasks, uncertainty is often related not to the inference
process but to the absence of relevant information in the
model’s parameters.
It should also be noted that this approach (Best-of-N) has

high computational complexity. Its implementation requires
generating multiple responses for the same input query,
which significantly increases time and resource costs com-
pared to basic methods.
To increase the sensitivity of uncertainty quantification, it

was proposed to modify the aggregation function by ampli-
fying the contribution of tokens with the highest prediction
entropy. This approach is based on the empirical observation
that errors in the generation of language model responses
often occur in segments where the probability distribution
is most unstable, and the model exhibits a high degree of
uncertainty. It is precisely during the generation of such
”weak” tokens that deviations from the correct logical or
semantic line of reasoning often occur, ultimately leading to
the formation of an incorrect or distorted response.
Thus, assigning increased weight to tokens with high

uncertainty allows for a more accurate reflection of the
model’s true confidence in the correctness of the complete
response. It is assumed that an increase in the proportion of
such tokens in the generated sequence directly correlates with
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an increased probability of error and can therefore serve as a
reliable marker of potential output unreliability. The resulting
metric takes the following form:

AvgLogP = − 1

n

n∑
i=1

log p(ai)
p(ai)

The use of these weights has made the metric more
specific, better at identifying the model’s uncertainty in its
response.

B. Using Information from Token Distributions
As is known, at each step, language models generate a

probability distribution for the next token ai. Consequently,
we can use information from this probability distribution
to quantify the model’s uncertainty for this token. It can
be assumed that the model’s maximum uncertainty will
manifest as a uniform probability distribution. Therefore,
the less equiprobable the distribution, the higher the model’s
confidence in its response.
To measure the distance between two distributions, the

Kullback-Leibler (KL) divergence can be used:

KL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)

In this case, the resulting token uncertainty scoring func-
tion will take the following form:

KL(U ||p) = − 1

N

∑
x

log(Np(x))

Here, N is the size of the token vocabulary over which
the distribution is defined.

This function is more flexible than the classical token
generation probability; it allows for the incorporation of
information from the generated distribution, thereby enabling
more effective identification of the model’s uncertainty in
its prediction.

Consequently, the final uncertainty scoring function will
be as follows:

F = − 1

n

n∑
i=1

KL(U ||pi(·))
p(ai)

=
1

nN

n∑
i=1

∑N
j=1 log(Npi(xj))

p(ai)

where x1, . . . , xN is the vocabulary of tokens in the gener-
ated distribution, and pi(xj) is the probability of generating
token xj at the i-th step. The term pi(·) in KL(U ||pi(·))
refers to the probability distribution generated by the model
at step i for the next token, and p(ai) refers to the probability
assigned by that distribution to the actually generated token
ai.

VI. Experimental Setup
The primary method for evaluating model quality via

conformal prediction techniques is model calibration. For
a well-calibrated model, its confidence function regarding
its responses should correlate with the correctness of those
predicted responses. More formally, let F (x) be the model’s
confidence score for a response x. Let Xy be the set of

Figure 2. Good and bad calibrating models

all model responses for which the confidence score F (x) is
greater than y:

Xy = {x : F (x) > y}

Then, a well-calibrated model will satisfy the condition:

|TP (Xy)|
|Xy|

≥ y

That is, the proportion of correct responses in the set Xy

(i.e., among those responses where the model’s confidence
was greater than y) will be no less than y.
An example of well-calibrated and poorly-calibrated func-

tions is shown in Fig. 2.
To evaluate the effectiveness of the applied solutions,

experiments were conducted on small language models from
the Qwen and Llama families. A comparative analysis was
performed on the responses of:
1) models without conformal calibration (baseline)
2) models calibrated using the LAC function
3) models calibrated with the method proposed in this

article.
Model testing was conducted on the MMLU benchmark.

MMLU is a large collection of test questions on various
topics used to evaluate the factual knowledge of language
models. For testing, only multiple-choice questions where
the model had to select one of the provided answer options
were used.
To assess the calibration of the baseline models (those not

subjected to conformal prediction techniques), their accuracy
on the full set of questions was evaluated against their
native confidence scores (e.g., the probability assigned to
the chosen answer). When evaluating models calibrated with
LAC, only the model’s final selected answer was analyzed,
and its reasoning steps (if any were generated before the final
choice) were disregarded for the LAC score calculation. For
evaluating models with our proposed method, the model’s
confidence over the entire generated response (which may
include reasoning leading to the final answer) was consid-
ered.
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Figure 3. 3B parameters models

The results presented in the figures show that the pro-
posed method significantly improved the quality of model
responses and ensured more accurate calibration of its pre-
dictions. This is particularly noticeable for small and ultra-
small models, which have a limited generalization capacity
and perform worse on tasks requiring precise knowledge
reproduction.
The greatest improvement was achieved in sections test-

ing factual knowledge—geography, anatomy, biology, and
astronomy. In these domains, the method effectively iden-
tified errors through accurate uncertainty quantification and
subsequent response correction.
Furthermore, in tasks involving step-by-step reasoning

(mathematics, physics), the new uncertainty scoring function
outperformed the standard LCA metric. Its sensitivity to in-
termediate tokens with high entropy contributed to improved
accuracy of the final predictions.
Models with a larger number of parameters possess a

higher memorization capacity, which enables them to better
reproduce factual knowledge compared to smaller models.
Large language models exhibit a higher degree of calibration
even without the application of additional methods, including
conformal prediction.

Figure 4. 7-8B parameters models

When comparing the Qwen and LLaMA architectures, no
significant differences in response quality were observed—
their predictions were comparable in accuracy.
The uncertainty scoring function proposed in this work

demonstrated particularly high effectiveness in physics and
mathematics tasks, which are characterized by detailed and
step-by-step responses. The assessment of the probability
distribution at the individual token level allowed for the
identification of segments with high uncertainty, thereby
enhancing the reliability of predictions.
At the same time, more modest results were obtained

in humanities disciplines—history, law, archaeology, and
sociology. Here, high response accuracy requires access to
specific facts that smaller models often lack. However, as
the number of parameters increases, the model demonstrates
improvement in these tasks, which indicates its capacity
for memorizing and generalizing factual information from
a wide range of domains.
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