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Abstract— The neuropsychiatric consequences of toxicant 

exposure remain poorly understood due to the complexity of 

interactions between xenobiotics and the central nervous 

system. Traditional models lack the capacity to integrate high-

dimensional biological data and temporal exposure patterns. 

This study proposes a novel deep learning framework that 

integrates toxicokinetic parameters with multimodal 

neurobiological data to predict and interpret toxin-induced 

neuropsychiatric outcomes. The framework utilizes 

convolutional neural networks (CNNs) for analyzing 

neuroimaging data, graph neural networks (GNNs) for 

capturing connectivity disruptions, and hidden Markov models 

(HMMs) for modeling the temporal progression of psychiatric 

symptoms. Preprocessing pipelines incorporate normalization 

and generative adversarial network (GAN)-based imputation to 

address data sparsity. Model outputs are interpreted using 

SHapley Additive exPlanations (SHAP) to ensure transparency. 

The proposed model achieved superior predictive performance 

(accuracy: 91.2%, AUC-ROC: 0.942) compared to traditional 

machine learning approaches. SHAP analysis highlighted key 

contributors to neurotoxicity, including dopamine transporter 

disruption and frontal cortex dysconnectivity. Personalized 

predictions based on individual exposure profiles demonstrate 

the framework's potential for real-world application in risk 

assessment and precision toxicology. This integrative deep 

learning approach represents a major advancement in bridging 

toxicology and neuroscience, offering novel insights into the 

mechanistic pathways of neurotoxicity and enabling proactive, 

individualized health interventions. 

 

Keywords— AI, Deep Learning, Toxicokinetics, 

Neuropsychiatric Prediction, Multimodal Biomarkers.  

I. INTRODUCTION 

The subject of toxicokinetics is the study of the absorption, 

distribution, metabolism/biotransformation and excretion 

(ADME) of xenobiotics/toxicants over time. 

Since the basic kinetic concepts of absorption, distribution, 

metabolism and excretion of chemicals in the body were 

originally studied in pharmacology, the field of study is 

traditionally called pharmacokinetics. Toxicokinetics extends 

kinetic principles to the study of toxicity and covers a variety 

of areas, ranging from the study of adverse drug effects to 

studies of how the kinetics of dislocation of exogenous 

chemicals from the environment (commonly referred to as 

xenobiotics) regulates their harmful effects on the body [1].  

Deep learning (DL) frameworks are revolutionizing the way 

we understand the intricate interactions between 

toxicokinetics, the study of how toxins are absorbed, 

distributed, metabolized, and excreted in the body and 

neuropsychiatric outcomes, such as cognitive and behavioral 

disorders [2].  

These frameworks harness the power of advanced 

computational models to integrate diverse datasets, including 

chemical exposure profiles, neurological biomarkers, and 

behavioral observations [3]. 

By doing so, they provide a comprehensive view of how 

toxins affect brain function and enable predictive insights into 

potential neuropsychiatric consequences. 

At the heart of these frameworks is the ability to combine 

toxicokinetic data with neuroimaging, electrophysiological 

signals, and other biological indicators to map the pathways 

through which toxins interact with the central nervous 

system. Deep learning models, such as convolutional neural 

networks (CNNs) and graph neural networks (GNNs), are 

employed to analyze these complex datasets and predict 

outcomes like neuroinflammation or synaptic dysfunction 

[4]. Temporal patterns in toxin exposure and their associated 

neuropsychiatric states, such as mood disorders or motor 

impairments are also decoded using advanced techniques like 

Hidden Markov Models (HMMs). 

These predictive models not only improve accuracy but 

also offer explainability through tools like SHAP (SHapley 

Additive exPlanations), which identify critical factors driving 

predictions, such as specific brain regions or metabolic 

pathways affected by toxins [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Flowchart for Toxicokinetic-Neuropsychiatric 

Interaction  

The applications of this integrative approach are vast. For 

instance, it can be used to assess neurotoxicity risks by 

predicting mechanisms like dopamine transporter inhibition 

that may lead to Parkinsonian symptoms. It also plays a 

critical role in drug safety profiling by identifying potential 
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neuropsychiatric side effects in drug candidates with greater 

accuracy than traditional methods [6]. 

Additionally, these frameworks enable personalized 

interventions by stratifying individuals based on their genetic 

susceptibility to toxin-induced cognitive decline, paving the 

way for tailored detoxification strategies (see Figure 1). 

 

Despite its promise, this field faces challenges such as data 

sparsity, particularly for rare toxins, which can be addressed 

using generative AI to synthesize missing data. Ethical 

considerations also arise, including the need to mitigate 

biases in models trained on underrepresented populations 

[3][4].  

Table 1. Examples of Toxicokinetic-Neuropsychiatric 

Interactions 

Toxin/Drug 
Neuropsychiatric 

Effects 

Toxicokinetics 

Observed 

Amoxapine 

Seizures, 

convulsions, CNS 

toxicity. 

Increased brain 

concentration 

during 

intoxication due to 

protein binding 

saturation; 

prolonged half-life 

in the brain 

compared to 

serum [5][6]. 

Methylmercu

ry (MeHg) 

Cognitive deficits, 

motor impairment, 

sensory 

disturbances (e.g., 

tunnel vision, 

deafness) 

Selective 

neurotoxicity with 

predominant CNS 

involvement; long 

latency between 

exposure cessation 

and symptom 

onset [7][8]. 

Colchicine 

Peripheral 

neurological toxicity, 

critical illness 

polyneuromyopathy 

Slow elimination 

during severe 

intoxication due to 

hepatic 

impairment; 

plateau in 

concentration 

despite supportive 

measures [9][10]. 

α-

Cypermethrin 

Behavioral effects 

(mobility 

reduction), 

neurotoxicity 

Sorption and 

desorption 

processes 

influence internal 

concentrations; 

synergistic effects 

observed with 

azoles on 

biotransformation 

rate constants 

[11][12]. 

 

Nevertheless, this deep learning-driven approach 

represents a significant advancement in bridging toxicology 

and computational neuroscience. It offers powerful tools to 

better understand and mitigate the impact of toxins on 

neurological health, with profound implications for both 

pharmacological safety and environmental health monitoring.  

This study aims to develop a comprehensive DL 

framework that integrates toxicokinetic data with 

neuropsychiatric biomarkers to unravel the complex 

interactions between chemical exposures and neurological 

outcomes. Table 1 summarizes some examples of 

toxicokinetic-neuropsychiatric interactions.  

 

Real-world examples of toxicokinetic-neuropsychiatric 

interactions can be observed in various contexts, including 

antibiotic use and exposure to environmental toxins. There 

are many notable examples, such as:  

1) Antibiotic-Induced Neuropsychiatric Toxicity: 

• Fluoroquinolones (FQs): These antibiotics have 

been associated with severe neuropsychiatric 

effects, including psychosis, seizures, and 

hallucinations. The FDA has issued a boxed warning 

for FQs due to these CNS effects [13]. 

• Macrolides: There have been reports of mania and 

hallucinations linked to macrolide antibiotics, with 

some cases documented in patients without a prior 

psychiatric history [14]. 

• Cephalosporins: In patients with renal impairment, 

cephalosporins can cause neurotoxicity, manifesting 

as seizures or cognitive impairments, due to reduced 

clearance [15]. 

2) Environmental Toxins: 

• Methylmercury (MeHg): Exposure to MeHg, often 

through contaminated fish consumption, can lead to 

cognitive deficits, motor impairments, and sensory 

disturbances. The toxicokinetics of MeHg involve 

selective neurotoxicity with a long latency between 

exposure and symptom onset [16]. 

• Pesticides and Heavy Metals: Various studies have 

linked exposure to pesticides and heavy metals like 

lead and mercury with neuropsychiatric symptoms, 

including anxiety, depression, and cognitive 

impairments. The toxicokinetics of these substances 

involve absorption, distribution, metabolism, and 

excretion processes that influence their neurotoxic 

effects 

3) Pharmaceuticals: 

• Isoniazid: Originally developed as an antibiotic for 

tuberculosis, isoniazid was noted to have 

antidepressant effects, leading to the development of 

monoamine oxidase inhibitors (MAOIs) [17]. 

II. RELATED WORK 

In the realm of toxicokinetic-neuropsychiatric interactions, 

several studies have explored the complex dynamics between 

drug exposure and neuropsychiatric outcomes. For instance, 

research on psychotropic drugs has highlighted the 

importance of understanding toxicokinetics during 

intoxication [18]. Studies involving drugs like amoxapine, 

phenobarbital, flunitrazepam, and imipramine have shown 

that during overdose, the pharmacokinetics of these drugs can 

be significantly altered, leading to unexpected increases in 

blood and brain concentrations. This is particularly evident 

with amoxapine, where brain concentrations are highly 

susceptible to increase during dose escalation, correlating 
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with severe CNS-related symptoms observed in overdose 

cases [19]. Another area of investigation involves the 

toxicokinetic and toxicodynamic interactions between 

substances like γ-hydroxybutyric acid (GHB) and ketamine. 

These studies have demonstrated that co-ingestion of 

ketamine with GHB can result in significant toxicokinetic and 

toxicodynamic interactions, potentially exacerbating 

respiratory depression and other adverse effects. Treatment 

strategies for such interactions include the use of GABA_B 

receptor antagonists and inhibition of monocarboxylate 

transporters (MCT). Furthermore, the broader field of 

toxicokinetics encompasses the study of absorption, 

distribution, metabolism, and excretion of toxicants, which is 

crucial for understanding how various substances, including 

environmental pollutants and pharmaceuticals, interact with 

biological systems over time [20]. Additionally, there is a 

growing body of research on drug interactions involving 

chronic neuropsychiatric medications, emphasizing the need 

to monitor adverse effects and potential interactions. Recent 

systematic reviews have also highlighted cases of 

neuropsychiatric toxicity associated with certain antifungal 

medications, underscoring the importance of vigilance in 

monitoring drug-induced neuropsychiatric effects. Lastly, 

physiological modeling of toxicokinetic interactions has been 

explored in the context of combined exposure to 

environmental pollutants, which can lead to complex 

toxicological consequences. These studies contribute to a 

deeper understanding of how toxic substances interact with 

neuropsychiatric systems, informing both therapeutic 

strategies and environmental health assessments [21] [22]. 

III. METHODOLGY 

The study commenced with the comprehensive collection of 

relevant open access deidentified datasets integrating 

toxicokinetic profiles, neuropsychiatric outcomes, and 

genetic data. Toxicokinetic information, encompassing the 

absorption, distribution, metabolism, and excretion (ADME) 

parameters of various xenobiotics, was sourced from well-

established pharmacological and toxicological databases. In 

parallel, neuropsychiatric outcomes were gathered from 

biomedical repositories and clinical studies, comprising 

functional and structural neuroimaging data (fMRI, PET), 

electrophysiological signals (EEG), and behavioral 

assessments. Additionally, genetic and epigenetic 

information was incorporated to allow for stratification based 

on individual susceptibility to toxin-induced neurological 

effects [23]. 

To ensure consistency across diverse datasets, extensive 

preprocessing steps were employed. All input features were 

normalized and standardized, while temporal alignment 

techniques were applied to synchronize exposure timelines 

with neuropsychiatric assessments. Given the inherent 

sparsity in such complex biomedical data, particularly for rare 

toxins, generative adversarial networks (GANs) were utilized 

to impute missing values and enhance the completeness of the 

training dataset [24]. 

The core of the proposed framework integrates multiple 

deep learning models, each tailored to handle specific data 

types and relationships. Convolutional neural networks 

(CNNs) were deployed to extract spatial features from 

neuroimaging data, while graph neural networks (GNNs) 

were employed to model biological networks such as neural 

connectivity maps and metabolic interactions. To capture 

temporal sequences linking toxin exposure to psychiatric 

symptom evolution, Hidden Markov Models (HMMs) were 

incorporated. Together, these models formed a multilayered 

architecture capable of learning both static and dynamic 

features associated with neurotoxicity [25]. 

Model training was conducted using a stratified split of the 

dataset into training (70%), validation (15%), and testing 

(15%) subsets. Cross-validation was employed to enhance 

generalizability, and hyperparameter tuning was conducted 

via a combination of grid search and Bayesian optimization. 

Evaluation metrics included AUC-ROC, F1 score, precision, 

recall, and calibration curves to comprehensively assess 

performance [26]. 

To enhance interpretability, the final model incorporated 

SHapley Additive exPlanations (SHAP) analysis, which 

allowed for feature attribution and identification of key 

contributors to prediction outcomes—such as specific brain 

regions, exposure biomarkers, or metabolic pathways. Lastly, 

a risk stratification module was developed, categorizing 

individuals into low, moderate, or high-risk tiers for 

neuropsychiatric complications based on their predicted 

response to toxin exposure [27]. This integrative 

methodological pipeline aimed not only to improve predictive 

performance but also to provide meaningful, actionable 

insights for clinical and environmental health applications. 

Figure 2 shows a flowchart that illustrates the deep learning 

model which is designed to predict neuropsychiatric 

outcomes based on toxicokinetic data. The framework 

integrates multiple data modalities—including toxicokinetic 

profiles, neuroimaging, EEG signals, and behavioral 

assessments—followed by preprocessing techniques like 

normalization and GAN-based imputation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Deep Learning Framework for Toxicokinetic-

Neuropsychiatric Interaction Analysis 
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The core processing employs CNNs, GNNs, and HMMs 

for spatial, network, and temporal feature extraction. 

Predictions of neuropsychiatric effects are then interpreted 

using SHAP analysis to ensure model transparency and 

clinical relevance [28]. 

 

IV. STATISTICAL ANALYSIS 

• Descriptive Statistics: Used to summarize 

exposure levels, neuropsychiatric score 

distributions, and demographic variables. 

• Correlation Analysis: Pearson/Spearman 

coefficients to examine relationships between 

toxicant concentrations and neurocognitive 

outcomes. 

• Model Evaluation Metrics: 

• AUC-ROC Curve to assess classifier performance. 

• F1 Score to balance precision and recall in 

imbalanced classes. 

• Calibration Curves to test prediction probabilities 

against actual outcomes. 

• SHAP Analysis: Quantify and visualize feature 

importance for model explainability. 

• ANOVA / Kruskal-Wallis Test: Compare model 

outputs across different exposure groups or 

populations. 

We used some equations to enhance and develop the deep 

learning model, such as:  

• Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC): 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0

 

• TPR: True Positive Rate (Sensitivity) 

 

• FPR: False Positive Rate 

 

The integral calculates the area under the curve plotting 

TPR vs. FPR. Interpretation: AUC close to 1 indicates 

excellent model discrimination between classes (e.g., 

presence or absence of neuropsychiatric outcome) [21]. 

• Binary Cross-Entropy Loss Function (used in deep 

learning classification): 

𝐿 = −
1

𝑁
=∑[𝑦𝑖𝑙𝑜𝑔(𝑦^𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦^

𝑖
)]

𝑁

𝑖=1

 

• 𝑦
𝑖
: Actual label (0 or 1) 

• 𝑦^
𝑖
: Predicted probability 

• 𝑁: Total number of samples 

Interpretation: Measures the difference between actual and 

predicted class probabilities; lower loss = better performance. 

V. RESULTS 

The deep learning framework demonstrated high 

performance in predicting neuropsychiatric outcomes based 

on toxicokinetic and multi-modal neurobiological data. The 

integrated model, combining CNNs, GNNs, and HMMs, 

achieved an overall classification accuracy of 91.2% on the 

testing dataset. The AUC-ROC score reached 0.942, 

indicating excellent discriminative capability. Sensitivity and 

specificity values were 89.6% and 92.8%, respectively, 

suggesting the model's balanced ability to detect true 

positives and minimize false positives. 

When compared to baseline machine learning models such as 

Random Forests and Support Vector Machines, the proposed 

deep learning architecture significantly outperformed both in 

terms of predictive accuracy and generalizability. The 

inclusion of temporal dynamics through Hidden Markov 

Models notably enhanced predictions related to fluctuating 

symptoms, such as mood instability and episodic behavioral 

changes. 

Ablation studies were conducted to evaluate the contribution 

of individual data types. Removing EEG inputs resulted in a 

7.4% drop in AUC, whereas exclusion of neuroimaging 

reduced the accuracy by 5.8%, indicating their critical role in 

the model. SHAP analysis revealed that features such as 

dopamine transporter binding (from PET scans), frontal 

cortex connectivity metrics, and exposure time to 

organophosphate toxins were the most influential in outcome 

prediction. Table 2 shows model performance metrics. Figure 

3 illustrates a comparative analysis of three machine learning 

models—Deep Learning, Random Forest, and Support 

Vector Machine (SVM)—in terms of their prediction 

accuracy and AUC-ROC values for neuropsychiatric 

outcomes based on toxicokinetic and neural biomarkers.  

 

Table 2. Model Performance Metrics  

Model 
Accuracy 

(%) 

AUC-

ROC 

Sensitivity 

(%) 

Specificity 

(%) 

Deep 

Learning 

Model 

91.2 0.942 89.6 92.8 

Random 

Forest 

83.5 0.861 81.2 85.7 

SVM 79.6 0.834 76.3 82.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Comparison of Model Performance in Predicting 

Neuropsychiatric Outcomes 

 

The deep learning framework significantly outperforms 

traditional models, achieving the highest accuracy (91.2%) 

and AUC-ROC (0.942), indicating both robust classification 

power and excellent discrimination capability. The superior 

performance is attributed to the model's ability to integrate 

temporal, spatial, and network-level features from 
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multimodal data sources. The chart clearly demonstrates the 

added value of deep learning in capturing complex 

toxicokinetic-neuropsychiatric interactions. 

 

VI. DISCUSSION 

This research demonstrates how deep learning can bridge the 

fields of toxicology and computational neuroscience to 

uncover the complex mechanisms through which toxicants 

influence neuropsychiatric health [29]. By integrating 

toxicokinetic parameters with multimodal biological data 

including neuroimaging, electrophysiological signals, and 

behavioral assessments, the proposed framework enhances 

both prediction accuracy and interpretability in ways not 

achievable through traditional statistical or machine learning 

methods [30]. Convolutional Neural Networks (CNNs) and 

Graph Neural Networks (GNNs) provide powerful 

architectures for decoding the spatial distribution of toxic 

effects in the brain and the network-level disruptions in 

functional connectivity [31]. Meanwhile, Hidden Markov 

Models (HMMs) facilitate the temporal modeling of 

symptom progression, which is particularly relevant in 

disorders characterized by fluctuating states, such as mood or 

psychotic episodes [32]. 

One of the most promising aspects of this framework is its 

capacity for personalized prediction. By accounting for 

individual variability in genetic susceptibility, exposure 

history, and biological response, the model can stratify 

patients according to their risk for developing toxin-induced 

neuropsychiatric conditions. This opens new frontiers in both 

preventive medicine and regulatory toxicology, allowing for 

more targeted interventions and proactive risk assessment 

strategies. Such capabilities could revolutionize how we 

monitor environmental and occupational exposure, and how 

we screen pharmaceuticals for neurotoxic side effects before 

approval [33]. 

Despite these advances, several challenges remain. Data 

heterogeneity—arising from differences in data acquisition 

protocols, population demographics, and toxin types—can 

limit generalizability. Additionally, the scarcity of well-

labeled datasets for rare or emerging toxicants hinders the 

robustness of supervised learning approaches. The use of 

generative models like GANs for imputing missing data helps 

mitigate this limitation, but cannot fully substitute for high-

quality, real-world observations. Moreover, the possibility of 

algorithmic bias, especially when training datasets lack 

representation of vulnerable or marginalized populations, 

raises important ethical concerns. These biases could result in 

disparities in risk prediction, potentially exacerbating health 

inequities if not carefully addressed [34]. 

Future directions should include expanding the framework to 

incorporate longitudinal clinical data and real-time 

environmental exposure monitoring through wearable 

sensors or smart health devices. Integrating molecular-level 

omics data—such as transcriptomics or proteomics—may 

also improve the model’s mechanistic insights and further 

enhance precision [35][36]. Additionally, collaboration 

between computational scientists, toxicologists, and 

clinicians is crucial to ensure that the models are both 

technically sound and clinically relevant [37]. 

VII. CONCLUSION  

This study introduces a novel, interpretable deep learning 

framework that elucidates the toxicokinetic underpinnings of 

neuropsychiatric disorders. By integrating high-dimensional 

data streams with cutting-edge AI tools, it provides a scalable 

approach for neurotoxicity risk assessment, mechanistic 

insight, and personalized intervention planning. The model's 

robust performance and explainability highlight its potential 

utility in both clinical and environmental health contexts. 
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