Метод идентификации масштабных параметров градиентной теории упругости на основе численных экспериментов для плоских композитных структур

С.А. Лурье, М.А. Посыпкин, Ю.О. Соляев

Аннотация— В данной работе развивается методика определения неклассических физических постоянных градиентной теории упругости неоднородных композитных структур (scale parameters), основанная на сравнении результатов прямого дискретно-атомистического моделирования и результатов моделирования с использованием континуальной градиентной теории. Формулируются принципы построения такой методики применительно к двумерным неоднородным структурам.

Ключевые слова—градиентные модели, атомистическое моделирование, неоднородные структуры, градиентная теория.

I. Введение

Известно, что классическая механика сплошной среды основана на аксиомах, которые позволяют применять ее для описания масштабнонезависимых процессов деформирования [1].

Однако новые эффекты, которые привлекли значительное внимание в последнее время, такие как влияние масштабных факторов, нелокальных эффектов размеро-зависимость явлений. И механических при деформировании тонких пленок например, нанопроволок, нанотрубок, и композитов с микро-нановключениями, не могут быть легко объяснены с использованием классической механики сплошных сред.

В недавней работе [2] достаточно четко и полно сформулированы физические причины и объекты, указывающие на невозможность применения к ним классической механики сред: поверхностные эффекты для гетерогенных сред с микроструктурой (роль которых чрезвычайно важна), физико-механические эффекты, распространенные на одну или несколько элементарных ячеек микро-наноструктуры, наличие полей дефектов, расширенный спектр обобщенных переменных в мезо и наноструктурах таких как свободные повороты элементов структуры, свободное формоизменение, пористость. Для описания подобных эффектов связанных с И ним особенностей процессов деформирования могут использоваться прямые дискретно атомистические исследования, молекулярной методы методы квантово-механические динамики, численные методы. Однако известны И трудности И ограничения, возникающие на пути использования таких подходов.

В связи с этим в последнее время возник значительный интерес к нелокальным континуальным градиентным теориям, содержащим масштабные параметры и наиболее подходящими для моделирования масштабных эффектов. В работах [3-7] показано, что градиентные теории упругости могут быть эффективно использованы для моделирования масштабных эффектов в композитах, адгезионных эффектов в гетерогенных структурах, сред с полями дефектов, масштабных эффектов в механике разрушения и пр.

Более того, градиентные континуальные модели позволяют сред В ряде случаев получать аналитические оценки, представляющие значительный интерес в прикладных задачах. Поэтому проблема определения дополнительных физических параметров, характеризующих масштабные эффекты в градиентных теориях упругости, является весьма актуальной.

В данной работе мы развиваем методику определения неклассических физических постоянных, основанную на сравнении результатов прямого дискретноатомистического моделирования неоднородных структур и результатов моделирования, проведенного с использованием континуальной градиентной теории. Ранее, в работе [8] эта методика была реализована для одномерной дискретной модели и, соответственно, одномерной континуальной модели композита. Здесь мы описываем принципы построения такой методики применительно к двумерным неоднородным структурам. Отметим, что идея использования дискретных методов

Работа выполнена за счет гранта Российского научного фонда (проект №14-11-00782) в ВЦ РАН.

С.А. Лурье работает в ИПРИМ РАН, ВЦ РАН (e-mail: slurie@mail.ru)

М.А.Посыпкин работает в ИППИ РАН, ВЦ РАН (e-mail: mposypkin@gmail.com)

Ю.А. Соляев работает в ИПРИМ РАН, ВЦ РАН (e-mail: juri86@bk.ru)

моделирования, методов молекулярной динамики для идентификации параметров континуальных градиентных теорий упругости была реализована в статье [2], где проблема идентификации решалась путем сравнения дисперсионных кривых полученных с одной стороны теоретически с использованием градиентных континуальных теорий упругости, а с другой путем прямого численного моделирования в рамках методов молекулярной динамики.

II. ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ ГРАДИЕНТНОЙ МОДЕЛИ

Предлагаемая методика является развитием алгоритма идентификации параметров градиентной модели, предложенного ранее [8] и основанного на сравнении результатов континуального дискретного И атомистического моделирования одномерного представительного фрагмента композитной структуры. Кратко изложим этот алгоритм на примере одномерного композита, свойства которого полностью определяются представительным фрагментом И условиями периодичности. В работе [8] краевая задача градиентной теории упругости для одномерного фрагмента с площадью поперечного сечения F и модулем упругости Е, деформируемого в направлении определяется следующим оси Х полностью вариационным равенством (вариацией функционала Лагранжа):

$$\int_{0}^{1} \{ EF[-u''(E / C)u'''] + (P_{i}^{V}X_{i}) \} \delta u dx + \\ + [EF(E / C)u'' + A u'] \delta u' \Big|_{x=0}^{x=l} +$$
(1)

$$+ [(P_{i}^{F}X_{i}) - EF(u' - (E / C)u''')] \delta u \Big|_{x=0}^{x=l} = 0$$

здесь *u* - вектор перемещений в направлении оси *x*, u' = (du / dx), постоянная *A* описывает адгезионные взаимодействия отрыва на торцах фрагмента. P_i^V – плотность внешних нагрузок по длине фрагмента; P_i^F – заданные внешние нагрузки на торцах.

Отметим, что точно такая же одномерная постановка задачи может использоваться для моделирования деформации слоя, находящегося в условиях чистого сдвига. Тогда вместо модуля E надо подставлять модуль сдвига G, а l определяет толщину слоя.

Воспользуемся постановкой (1) и вычислим эффективный модуль упругости для слоистой среды с учетом когезионных и адгезионных взаимодействий.

В этом случае рассматривается представительный фрагмент, состоящий из двух фаз: первая фазавключение занимает область $x \in [0, l]$, вторая фаза, являющаяся матрицей, связана с областью $x \in [l, L]$. Для представительного фрагмента следует решить контактную краевую задачу с условиями контакта на границе x = l, полностью определенную вариационным равенством (1):

разрешающее уравнение $LL_C(u) = 0$,

где
$$L(u) = E(u''), \quad L_C(u) = E(u'') - Cu,$$

условия контакта при x = l

[u] = [u'] = [(E / C)L(u)] + Au' = [-(E / C)(dL(u) / dx] = 0,

запись [..] означает скачек функции при переходе через границу контакта.

На границах на ячейки периодичности $x \in [0, (l+L)]$ выполняются очевидные условия периодичности в перемещениях. Предполагая, что фрагмент испытывает единичную деформацию, условия периодичности принимаются следующими: $u_M(L+l) = u_D(0) + L + l$, здесь u_M , u_D - перемещения матрицы и включения соответственно.

Процедура оценки эффективного модуля упругости композита \hat{E} в рамках континуальной модели сводится сначала к построению решений в каждой из областей представительного фрагмента, удовлетворяющим условиям контакта и условиям периодичности для единичной деформации, которые определяют условия нагружения фрагмента. Далее вычисляется приращение потенциальной энергии деформации, которая с другой стороны равна $\Delta U = \hat{E} (L+l)/2$. В результате получим

следующее выражение для эффективного модуля E периодической структуры:

$$E = E_M E_D (E_D \alpha_M + E_M \alpha_D - A \alpha_D \alpha_M) (L+l) / Q,$$
(2)
где

$$Q = (E_D L + E_M l + A)(E_D \alpha_M + E_M \alpha_D - A \alpha_D \alpha_M) - (E_D - E_M - A \alpha_D)(E_D - E_M + A \alpha_M)$$

$$\alpha_M = \kappa_M / \text{th}(\kappa_M L), \qquad \alpha_D = \kappa_D / \text{th}(\kappa_D l),$$

$$\kappa_{D,M} = \sqrt{C_{D,M} / E_{D,M}}, E_{D,M} - \text{масштабный параметр и}$$

модуль упругости для включения и матрицы
соответственно.
Концентрация включений (относительное объемное

Концентрация включений (относительное объемное содержание включений) v определяется очевидным образом через параметр f = l/L, v = f/(1+f), ширина межфазного слоя определяется параметрами $(\kappa_{D,M})^{-1}$. Задание параметров $(\kappa_{D,M})^{-1}$ эквивалентно заданию C_M и C_D . Считаем, что в жесткой фазе протяженность зоны межфазного взаимодействия равна нулю или, что то же самое $C_D = \infty$.

При атомистическом моделировании 1D периодической структуры рассматривалась ячейка, состоящая из двух однородных областей с $n_1 \equiv n_D$ и $n_2 \equiv n_M$ атомами сортов 1 и 2 соответственно. Длина каждой из областей представительного фрагмента в первом приближении может связываться с числом атомов областей и равновесным расстоянием между атомами. Так, если для описания межатомных взаимодействий используется потенциал Ленарда-Джонса (6-12), $U(r) = 4\varepsilon[(\sigma/r)^{12} - (\sigma/r)^6]$ то длины областей, соответствующие включению и матрице, определяются равенствами: $l = 2^{1/6} n_D \sigma_D$, $L = 2^{1/6} n_M \sigma_M$. Если

учитывать только взаимодействия между соседними атомами, то можно считать, что в первой области (включение) имеется $n_D - 1$ пружинок действующих между атомами первого сорта, а во второй области $n_M - 1$ пружинок между атомами второго сорта (матрица). Две пружинки, характеризующие межфазные взаимодействия, связывают атомы сортов 1 и 2. Для описания межфазных взаимодействий используется правило Лоренца-Бертлота [9]:

$$\varepsilon_{12} = \sqrt{\varepsilon_D \varepsilon_M}, \quad \sigma_{12} = (\sigma_D + \sigma_M)/2$$

Сначала находились положения атомов, соответствующие положению равновесия фрагмента при фиксированной длине фрагмента, затем уточнялась равновесная длина ячейки. Жесткость фрагмента находилась после приложения к фрагменту малой деформации ($\pm 10^{-5}$) и использования параболической аппроксимации по трем точкам в окрестности равновесия для выражения энергии через кривизну.

Можно использовать и другой метод, основанный на определении приращения потенциальной энергии фрагмента после нагружения фрагмента перемещениями, приложенными к концам фрагмента с учетом условий периодичности.

Наконец, масштабные параметры для континуальной модели ($\kappa_{D,M}$) определяются в результате сравнения эффективной жесткости 1D композита, найденного с использованием дискретно- атомистической модели с эффективным модулем упругости, полученным в соответствии с формулой (2). Расчеты показали, что приближенно можно считать $\kappa_1 = \kappa_2$.

Предполагается, что подобная процедура будет развита и для двумерной композитной слоистой системы, рассматриваемой в следующем разделе.

III. Описание двумерной оптимизационной модели многослойного материала

Рассматривается плоская модель многослойного материала, в рамках которой могут отличаться типы атомов в различных слоях. Слой состоит из одинаковых атомов (Рис. 1).

Рис. 1. Плоская модель материала

Дополнительно предполагается, что атомы в пределах одного слоя расположены регулярно с постоянным шагом, слои параллельны друг другу, а число атомов бесконечно. Считается, что рассматриваемый фрагмент периодически повторяется, т.е. структура является периодической в поперечном направлении. Поэтому в расчетах используются соответствующие периодические граничные условия.

Введем прямоугольную систему координат, в которой ось абсцисс параллельна слоям. Для целей численного моделирования рассматривается ограниченный по длине горизонтальный фрагмент, задаваемый интервалом [a,b]. Фрагмент должен быть достаточно большим для снижения влияния краевых эффектов. С этой же целью добавляются маргинальные фрагменты длины M слева и справа, $M \ll b-a$. Взаимодействие с атомами из маргинальных фрагментов учитывается при вычислении энергии основного фрагмента, но их энергия не учитывается (Рис. 2).

Рис. 2. Основной и маргинальный фрагменты материала

Модель определяется следующими параметрами: h_i - ордината i -го слоя;

 d_i - абсцисса первого атома основного фрагмента i - го слоя, $a \le d_i \le b$;

 S_i - расстояние между соседними атомами в i -ом слое.

Рассчитываемые вспомогательные величины:

 $n_i = \lfloor (b - d_i) / s_i \rfloor + 1$ - число атомов в основном фрагменте фрагмента *i* -го слоя;

 $l_i = \lfloor (d_i - a + M) / s_i \rfloor$ - число атомов в левом маргинальном фрагменте;

 $r_i = \lfloor (d_i - a + M) / s_i \rfloor$ - число атомов в правом маргинальном фрагменте.

Энергия взаимодействия атомов выбранного фрагмента материала вычисляется следующим образом:

$$E = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \left(\frac{1}{2} \left(\sum_{k=1}^{K} \sum_{l=1}^{n_k} E_{ik}^{jl} - E_{ii}^{jj} \right) + \sum_{k=1}^{K} \sum_{l=1}^{l_k} E_{ik}^{j,-l} + \sum_{k=1}^{K} \sum_{l=1}^{r_k} E_{ik}^{j,n_k+l} \right),$$
(3)

где K - число слоев в многослойной структуре, $E_{ik}^{jl} = v_{ik} \left(\left\| x_{ij} - x_{kl} \right\| \right)$ -энергия взаимодействия атомов с номерами *j* и *l* в слоях с номерами *i* и *k*. Энергия взаимодействия двух атомов рассчитывается с помощью парного потенциала $v_{ik}(q)$ взаимодействия атомов типов, характерных для слоев с номерами *i* и *k*, находящихся на расстоянии *q*. Координаты *j*-го атома, находящегося в слое с номером *i*, вычисляются по формулам $x_{ij}^{(1)} = d_i + js_i, x_{ij}^{(2)} = h_i$.

На первом этапе вычислений определяются равновесные расстояния между атомами и потенциальная энергия всей системы в равновесном состоянии. Далее для определения эффективного модуля упругости рассматриваемого фрагмента задаются малые поперечные либо сдвиговые деформации ±10-5. Определяются равновесные состояния и потенциальная энергия всей системы атомов в деформированном состоянии. Модуль упругости материала (поперечный или сдвиговой) определяется, как кривизна параболы, построенной по трем точкам, для зависимости полной потенциальной энергии системы от деформаций. Полученное значение модуля упругости сравнивается с решением в рамках континуальной модели градиентной теории упругости и проводится идентификация масштабного параметра континуальной модели.

IV. МЕТОДЫ РЕШЕНИЯ ОПТИМИЗАЦИОННОЙ МОДЕЛИ

Рассматриваемая модель требует решение оптимизационной задачи, состоящей в минимизации функции (3) относительно параметров h_i, d_i, s_i , на которые накладываются интервальные ограничения: $h_i \leq h_i \leq \overline{h_i} \;, \qquad d_i \leq d_i \leq \overline{d_i} \;, \qquad \underline{s_i} \leq s_i \leq \overline{s_i} \;.$ Таким образом, данная задача может быть отнесена к классу задач оптимизации с простыми ограничениями параллелепипедного типа. К сожалению, целевая функция (3) не является непрерывной, т.к. число атомов в моделируемом фрагменте и, соответственно, значение энергии, может меняться скачком при изменении параметра S_i .

В решении задач поиска экстремума потенциальной взаимодействующих энергии частиц хорошо зарекомендовали себя различные варианты стохастических методов [10,11]. Как показывает практика расчетов [12], наилучшие результаты дает комбинация той или иной стратегии глобализации и локального поиска. В качестве стратегии глобализации могут выступать такие методы, как метод Монте-Карло, неравномерных метод покрытий, популяционные алгоритмы.

Локальные методы подбираются исходя из специфики задачи. Учитывая отсутствие свойства непрерывности у целевой функции, использование вариантов классических методов первого и второго порядка (метод Ньютона, метод сопряженных градиентов), требующих производных, представляется проблематичным. Более перспективным в рассматриваемом случае будет применение методов нулевого порядка (Хука-Дживса, деформируемого многогранника и т.п.).

В качестве алгоритмической и программной основы для реализации оптимизационных алгоритмов планируется воспользоваться библиотекой BNB-Solver [13], которая была успешно применена для решения подобных задач [14] и других практических задач оптимизации [15].

V. ЗАКЛЮЧЕНИЕ

В работе развивается методика идентификации масштабных параметров градиентных теорий упругости для двумерных материалов, основанная на сравнении результатов континуального И дискретноатомистического моделирования плоских гетерогенных структур. В результате предложена процедура определения дополнительных параметров прикладных градиентных континуальных моделей гетерогенных характеризующих нелокальные эффекты в сред, области контакта фаз двухкомпонентного композита. Дается описание алгоритма, в соответствии с которым дополнительный физический параметр градиентной модели находится через параметры потенциалов, использующихся для описания рассматриваемых их дискретном конкретных структур при В результате атомистическом моделировании. становится возможной полная идентификация всех физических параметров градиентной теории упругости, что позволяет эффективно решать прикладные проблемы оценки процессов деформирования, прочности и разрушения композитных материалов с учетом нелокальных эффектов, используя методы механики деформируемых сред.

Библиография

- [1] Truesdell, C., Noll, W., 1992. The Non-Linear Field Theories of Mechanics. Springer, Berlin
- [2] R. Marangantia, P. Sharma A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies// Journal of the Mechanics and Physics of Solids 55 (2007) 1823–1852.
- [3] Steigmann, D.J., Ogden, R.W., 1999. Elastic surface-substrate interactions. Proc. R. Soc. A 455, 437–474,
- [4] Лурье С.А. Тучкова Н. П. Континуальные модели адгезии для деформируемых твердых тел и сред с наноструктурами. // Композиты и наноструктуры, 2009, 2(2), с. 25-43.
- [5] Lurie S., Volkov-Bogorodsky. D, Zubov V., Tuchkova N. Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites //Computational Materials Science, V. 45, 3, 2009, P. 709-714
- [6] Lurie, S.A., Belov, P.A., Volkov-Bogorodsky, D.B., Tuchkova, N.P., 2003. Nanomechanical modeling of the nanostructures and dispersed composites. Comp. Mater. Sci. 28(3–4), 529-539.
- [7] Lurie, S.A., Belov, P.A., Tuchkova, N. P., 2005. The application of the multiscale models for description of the dispersed composites. Int. J. Comp. Mater. Sci. 36(2), 145-152.
- [8] Лурье С.А., Соляев Ю.О. Метод идентификации параметров градиентных моделей неоднородных структур с использованием дискретно-атомистического моделирования // Вестник ПНИПУ, Механика. 2014. № 3. С. 89-112
- [9] J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids (John Wiley, New York, 1954).

- [10] Leary, Robert H. and Doye, Jonathan P. K., Tetrahedral global minimum for the 98-atom Lennard-Jones cluster // Phys. Rev. E, Vol. 60, № 6, 1999, P. 6320-6322.
- [11] J. A. Northby, Structure and binding of Lennard-Jones clusters: 13<= N <= 147 // Journal of Chemical Physics, Vol. 87(1987), P. 6166-6178.
- [12] Alexander Afanasiev, Igor Oferkin, Mikhail Posypkin, Anton Rubtsov, Alexey Sulimov, Vladimir Sulimov. A Comparative Study of Different Optimization Algorithms for Molecular Docking // Proceedings of the 3rd International Workshop on Science Gateways for Life Sciences, London, United Kingdom, June 8-10, 2011.
- [13] Y. Evtushenko, M. Posypkin, I. Sigal, A framework for parallel largescale global optimization // Computer Science - Research and Development 23(3), pp. 211-215, 2009.
- [14] Посыпкин М.А. Методы и распределенная программная инфраструктура для численного решения задачи поиска молекулярных кластеров с минимальной энергией //Вестник нижегородского университета им. Н.И. Лобачевского № 1. 2010. С. 210-219
- [15] К.К. Абгарян, М. А. Посыпкин, Применение оптимизационных методов для решения задач параметрической идентификации потенциалов межатомного взаимодействия // ЖВМиМФ, том 54, № 12, с. 1994–2001, 2014.

Method of identification of scale parameters of gradient theory of elasticity on the basis of numerical experiments in flat composite structures

S.A. Lurie, M.A. Posypkin, Yu.O. Solyaev

Abstract – In this paper, we develop a method of determining non-classical physical constants of the gradient theory of elasticity of heterogeneous composite structures (scale parameters), based on a comparison of the results of the direct discrete atomistic modeling and simulation results using continuous gradient theory. The principles of this methodology for two-dimensional heterogeneous structures are formulated.

Keywords – gradient models, atomistic simulation, heterogeneous structure, gradient theory.