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Exact solution of the three-state generalized
double-chain Potts model

P. V. Khrapov, G. A. Skvortsov

Abstract — An exact analytical solution of generalized
three-state  double-chain Potts model with multi-spin
interactions which are invariant under cyclic shift of all spin
values is obtained. The partition function in a finite cyclically
closed strip of length L, as well as the free energy, internal
energy, entropy and heat capacity in thermodynamic limit are
calculated using transfer-matrix method. Partial magnetization
and susceptibility are suggested as the generalization of usual
physical characteristics of a system.

Proposed model can be interpreted as a generalized version
of standard Potts model (which has Hamiltonian expressed
through Kronecker symbols) and clock model (with
Hamiltonian expressed through cosines). Considering a
particular example of the model with plenty of forces, model's
ground states are found, figures of its thermodynamic
characteristics and discussed their behaviour at low
temperature are shown.

Keywords — Potts model, Ising model, lattice, Hamiltonian,
transfer-matrix, exact solution, partition function, free energy,
internal energy, heat capacity, magnetization, susceptibility.

1. INTRODUCTION

Lattice spin models, which originally appeared to explain
ferromagnetic phenomena, have now been successfully used
to study collective behavior in general [1]. For instance, in [2]
21-state Potts model was used to study the protein folding
process. Generalized Potts models with large number of
states appear in many areas, including physics (site
percolation in the lattice gas [3]), biology (polymer gelation
[4], studying a cancerous tumor [5]), algebra, computer
science, sociology, medicine and so on (see [6], [7]).

An important role in the development of the phase
transitions theory was played by exact analytical solutions
obtained for a few number of lattice spin models. Important
technical improvement in the mathematical apparatus of
lattice spin models was made in 1941 [8], when the Ising
model was formulated on matrix language and therefore
calculation of a partition function was reduced to the search
of transfer-matrix's eigenvalues.

The Ising model is the Potts model with two states. In 1944

L. Onsager [9] obtained an analytical solution of the Ising
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model with nearest-neighbors (i.e. with two coupling
constants: horizontal J, and vertical J, ones) on

two-dimensional square lattice. Phase transition temperature
of this model was first discovered by Kramers and Wannier

B (€X—1)(e"—1) =2, where K =0 | = v
T kT

and Potts, generalizing the formula above, showed, that the

Potts model has a phase transition at (e* —1)(e" —1) =q,
where (] is the number of states [10].

There is a variety of Potts models: standard, generalized,
clock, Ashkin-Teller, etc. Exact solutions were obtained for
3-state and 4-state single-chain Potts models with
nearest-neighbors [11], for special cases of 6-state [13] and
12-state [12] models. In [14] an exact analytical solution for
double-chain Potts model with 10 forces in a unit cell and
arbitrary integer  was obtained. In [15] disorder solutions

for generalized Potts model were calculated.

Potts model can be investigated using graph theory
methods (see [16], [17]), usually with the help of Tutte
polynomials. In 1972 Fortuin and Kasteleyn [18] showed the
relationship between Potts model and Tutte polynomials and
introduced the random cluster model which generalizes Potts
model on arbitrary positive non-integer Q. In [27], [29] Potts

models with different boundary conditions were considered,
in [28] some exact results on Potts model with external field
were obtained. In [23] authors derived an exact solution of

gauge Z, Potts model on square and triangular lattices.

Cluster properties and bound states of the Yang-Mills model
with compact Abelian gauge group were studied in [19].

Recently, papers have appeared in which the Ising and

Potts models are investigated experimentally: using
non-equilibrium quantum condensates [21], simulator of
quantum computer [22].
Potts model can be investigated on one-, two-, and
three-dimensional lattices: square, triangular, kagome,
body-centered cubic, Bethe and honeycomb ones [31]. There
are works in which authors calculate zeros of partition
function ([24], [26]), correlation functions [20], investigate
ground states [34] and so on.

Potts model is used in many fields, moreover, researchers
often need non-standard Potts models with quite specific
Hamiltonians (see [6], p. 53). That is why obtaining an exact
solution for wide class of Hamiltonians is an important
problem.

In this paper, three-state double-chain Potts model with
cyclic boundary conditions is considered. An exact analytical

solution of this model in a finite strip of length L is obtained
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using transfer-matrix method and analytical expressions for
its physical characteristics in thermodynamic limit are
derived using Cardano formula (see section and [38]).

In section Il the model is introduced, its Hamiltonian is
formulated through Kronecker symbols, and main results are
listed. Some generalization of Potts model's characteristics
such as the partial magnetization and susceptibility are
presented. These generalized characteristics allow to
represent the mean value of an arbitrary random function of
the spin variable (¢(c)), where o is some spin of the

lattice, as well as the covariances of such functions in the
form of their linear combinations.

In section 111 the clock version of the original Hamiltonian
is introduced.

In section IV an example of model given being analyzed in
detail: plots of free energy, entropy, heat capacity, internal
energy and partial susceptibility are shown, a table of ground
states is provided.

Section V contains proof of theorem 1.

In Appendix the Cardano formula for solving an equation
of the third degree is discussed.

Il. GENERALIZED POTTS MODEL WITH MULTI-SPIN
INTERACTIONS INVARIANT UNDER CYCLIC SHIFT OF ALL SPIN
VALUES

to ty

Fig. 1. Lattice L. ,only two-site couplings of the model

2L
are displayed. Transfer-matrix @ propagates from left to

right.
Consider cyclically closed double-chain Potts model in a
finite strip of legth L : on the lattice L, :

L, ={t’ |i=01...,L-Lt/=t},j=01}. Each
point tij contains a particle. The state of the particle is
determined by the value of the spin
aij eX={01,...,9-1},0€ X tet and the
Hamiltonian of L, has the form:

L-1

HL(O-):ZH (O-io’o'il;o'i(il'o-ilﬂ)’
-0

1)

0 1
i+1’ti+1

Elementary Hamiltonian H of a cell Q :{tio,til,t
takes the form:

H(oly)=H (o7 0ii0001s) =

3
- Z J!’1v/42v#350'0v/11+0'1vﬂ2+52x/13+0'3 + Z hﬂzé‘#vai
{11y 153X ueX

@) *

_ 0 _ _ . 1 _ _ 0 _
where o, = 07,0, = 07,0, =0},,,03 =0y,

1, if a, =a(modq),r=12,...s,1=1..
0, . o = .
L 0, otherwise.
Seaa denotes the Kronecker symbol and the last term of
Hamiltonian (2) corresponds to the external field
h={h,.h,h}.

Note that in further transformations, the Boltzmann
constant kB is set equal to unity, while temperature T and

interactions' constants J will be measured in
Hy o H

the same units as is usually done in the theory of
low-dimensional systems.

Let us introduce the transfer-matrix ® with matrix
elements

(0,,0,|09]0,,0,) :eXp[H (0'0,0'1;02,0'3)/T]
and such a structure (see Figure 2):

0 1 2 o,

O[X[2[0]1[2[0[1]2 [,
0
o1
2
0
1 [T
2
0
2 (1
2
g1 (%0

Fig. 2. The structure of the transfer-matrix ®
_HL(U)
Then the partition function Z, = z e T canbe

oeXCL
L
represented as Z, = Tr(@ )
Let g =3 and the external field is equal to zero, i.e. spins

O'} take three values 0,1,2 and ﬁ:ﬁ Then Hamiltonian
(2) is invariant under cyclic shift of all spin values:

HGi+1 j+Lk+L1+D) =H(, j:k,1), 3)
wherein addition is performed in [ .
Corresponding transfer-matrix takes the form:

ad e f g h i j k

I b mn o p g r s

t uc v wxy z A

Ay z ¢t ux v w 4
®=k i j e a d h f ¢

s g r mi1l b pno

o pn r s q b ml

w x v z Ay u c t

g h f j k i d e a

Due to condition (3) transfer-matrix ® (4) commutes with
the permutation matrix LL, :
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(5)

O O O O O o o o
O B O O O O O O
P O O O O O o o
O O O O O O O
O O O O O O O k-
O O O O O O +—» O
O O P O O O O o
O O O O B O O O
O O O O O O O

1 0000O0O0O0CTO

This circumstance allows us to find all its eigenvalues.
Theorem 1
Partition function of considered model in a cyclically closed

finite strip of length L can be presented as:

27i 4ri
VA —zz/lk,whereE {Le3 ,e3}is the set of
ceE k=1
cubic roots of 1, A, are eigenvalues of matrices:
a+ge+ke® d+hs+ie® e+ fe+je’
0, =| l+oe+se® b+pe+qe® m+ns+re? | (6)
t+we+As® U+Xs+ye® CH+Ve+ze’

The principal (single largest real) eigenvalue of the matrix
®1 determined from its secular equation, can be expressed

in radicals (see section VII) and coincides with the prinicipal
eigenvalue of the transfer-matrix ©. Furthermore,

T =2y k=1,2,3.

Main model's thermodynamic characteristics in a strip of

length L can be expressed through its partition function
[39]:
e Free energy is equal to:

f(1)=—Inz,(T),

where N = 2L - the number of lattice's sites.
e Internal energy is equal to:

o (f(T)

u =-T?—(—2).
(M) 6T( T )
e Entropy is expressed as:

0

S(T)=——1(T),

(M)=——1(T)

e Heat capacity is:

0 o (f(T) , 0% (f(T)
c(T)=—u(M)=-2T —\———)-T
(M=—rum)=-21 () -1 (--).
Definition 1
L1 1
Let random variable M, be M, = 2 Z;@llo_ij.
i=0 j=
Definition 2
Partial magnetization m, and partial susceptibility

X 1., OF double-chain Potts model are determined as:

m, = I|m—<M )

L-w 2L
Z :||m<Mﬂ0Mﬂl>_<M/‘o><MM>:
orkh " Lo 2LT

cov(M , M )
2LT

These quantities can be calculated by derivation of free
energy:

L—w

_ o . -
m,(h,T)=-——1F(h,T)
‘ oh,
o° —~
Xiows =7 T(0,T)
s ah#oahﬂl

Theorem 2 (Main theorem)
For generalized double-chain three-state Potts models with
Hamiltonian (1) - (2) and zero external field h =0 in

thermodynamic limit (i.e. at L — oo) free energy, internal
energy, entropy, heat capacity, partial magnetizations and

susceptibilities can be expressed through A, (T), i.e. the
principal eigenvalue of matrix G, :
() =T ln(ﬂm;(r» |
12 0 In(Z(T)) ))
M =T s
1 max (T)
S(M)y==\In(A__ (T
() =5 (In(Aye (7)) + ﬁmm aT ).
2
C(T) — 2Ti In(ﬂ’max(T)) +T2 8 > In(/’i’max(T))
oT 2 oT 2
m (h T)‘ 1 j’max(h’T)| =—,
"2 zmaxcr) Ghﬂ L. 3
T A0 (R,T)
Zﬂoﬂi ‘h { ( -

M ah oh,

1 Mmax(ﬁ,T)aﬂ,max(h,T))
Ao (@) oh, oh,

h=0

where partial derivatives of A__ (h,T) has the form:

max

2\ da,
(N T) _ 0N, ™ | -
N Y e
n=0
0% A (N.T) -1 [29: o%a,
o, oh, Z (0108, a0 \iEah, hﬂl

max Z(n 1) n+l /’Lr:ax
n=0

max |:§ (n 1) n+1 ﬂ“r:ax
/10

n=0 /41
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oA (8)

e (3 (+2)(+Da, A" )
1 n=0

A. Commentary

In this paper, thermodynamic characteristics were found
only at zero external field. It is clear that in this case (see (3))

+

. - 1
partial magnetizations m =—, because m, =m_ and
H 3 My H2

2
> m, =1
u=0

Formulae (7), (8) are obtained by taking the derivative of

9
the transfer-matrix's ® secular equation: Zan/ln =0
n=0

with respect to hy. In a similar way, one can differentiate

secular equation with respect to T and obtain analogous
formulae for entropy, internal energy and heat capacity as is
done in [40].

I1l. GENERALIZED CLOCK POTTS MODEL AT ( =3

Let us rewrite the elementary Hamiltonian (2) with zero

external field h =0 in the form of generalized clock Potts
model's Hamiltonian:

H(oy,0,;0,.0;) :—[Al cos(%[(cr1 —0'0))+ A cos(z?”(a2 —ao)j+

A cos(z?ﬂ(o3 —00))+ A, cos(z?ﬂ(o3 —01))+ A cos(%z(o2 —al)j+

ASCOS(%T(O’S—02)j+,5&sin(2?ﬁ(al—cro)]+Azsin(%[(crz—oo)]ﬁ—
~ . (27 2z 27
Agsin ?(03—02) + B, cos ?(0'0+O'1+0'2) + B, cos ?(0'0+0'1+0'3) +
27 27 = . (27
BSCOS(?(O'O+O'2+O'3)j+ BACOS(?(O'1+O'2+O'3)j+ BISIn(?(O'OJrO'IJr%))
- . (2r ~ . (27 s . (27
+B25|n[?(0'0+01+63)]+B3S|n{?(0'0+o’2+0'3))+Bdsln[?(0'1+0'2+0'3)J
27 27
+C, cos ?(o-o—o-ﬁo-z—aa) +C, cos ?(o-o—o-l—o-ﬁaa) +
27 < . (27
CacOS(T(UO+O'1—O'2—0'3)]+C4+C15In(?(o'0—0'1+0'2—0'3)J+

C, sin(z?ﬂ(ao -0,-0, +0'3)]+C~3 Sin(z?” (o0y+0,—0, —03))] )
Hamiltonian (9) is equivalent to the original one (2) with

h=0 , as both of them cover all functions on X * (where
X ={0,1,2}) which are invariant under cyclic shift of all

spin values. That is why results of section Il are valid for such
clock models. The main advantage of clock version of
Hamiltonian is that in this form double, triple and quadruple
interactions are extracted.

Fig. 3. Step of the transfer-matrix ® , only two-site
couplings are displayed.
It should be marked that in further calculations constant C,

is set equal to zero, moreover, transfer-matrix ® ,
propagating from left to right, will cover two-site interaction

of 0, and O in the next step (see Figure 3), that is why we
put A=A =C,=0

IV. EXAMPLES OF PHYSICAL CHARACTERISTICS

In order to prevent increasing the number of parameters,
constants of double, triple and quadruple forces are usually
set equal to each other (see [27], [32]). Let us put in

Hamiltonian [9]: A = A, A =Ai=1...,5
B,=B,B,=8,j=1..4C=CC =Ck=123
We will change only double interactions:

A=A=r,re[-11]]

B=0,C=0.1,B8=02,C=03.

Let us show the free energy graph of this model:

and set

2.0¢ X -0.5
1.5/¢ -1.0

Free energy

0.5
) / g \\
“ 15 / 0.1 \
T=0.12 \
T=0.14
/ T=0.16
2 T=0.18
/ T=0.2 \
T=0.22 \
25 T=0.24
T=0.26 \
T=0.28
T=0.3
3
1 -08 06 -04 02 0 02 04 06 08 1
r
Free energy
-1.6 T
e 1 ==1
1.8 H
— —_
p— ] —_—
N ——— L
——
—_— —_—
2.2 S
e —— — =0
- r=-0.
24 \ —r=08 ||
2.6 \
2.8

o
o
n
-
-
n
~

25

Fig. 4. Plots of free energy, r e[-1,1], T €[-0.1;,2.1]

The most interesting is model's behavior at low temperature,

ie.at T —»0+. Itisobviousthat lim f(r,T)= limu(r,T).
T—-0+ T—0+

In addition (see table 2), one can easily show thatat T — 0+

after replacing the matrix's @1 secular equation coefficients

by equivalent infinitely large ones 4 will satisfy:

2u, 6u,

AP-e TA-e T =0 at re(-oor,),
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_6u, _6ug
A-e T —eT =0 at re(r;r),
_2u, _bu;
A-e T2-e T =0 at re(r,;x),
where U, i=1,...,4 denote the limits of internal energy at

T — 0+ (see subsection IV.A).

A. Structure of ground states

Transfer-matrix (4) can be interpreted as a weight matrix
of some directed graph with 9 vertices. Obviously, the ground
state (i.e. the state with minimal energy per spin) must be
periodic, since the number of vertices is finite, and therefore

the initial vertex must be repeated at some step L <9.

However, the number of paths of length L starting and
ending at the same vertex is finite, hence there exists a path
(and its corresponding spin configuration ¢ ) with minimal

energy per spin; HL(U)_)min. Thus, the search of ground
2L

states can be reduced to the search of a minimum mean

weight cycle in a directed graph. It is clear that such a cycle

can be started from any of its elements (compare, for

instance, spin configurations at € (I’l; r, )). Moreover (see

(3)), states derived from ground ones by cyclic shift of all
spin values are also ground states. That is why only one of
them is presented (see table 2):

2.0
Tis—

Internal energy

-0.5

ARRAN

-1.5

=075
r=0.7

f r=-1
/ r=-0.95

r=-0.9
//’/ oa |

r=-0.65 [+
r=0.6
r=-0.55
=05

-2.5

T
1.5 2 2.5
T

Fig. 5. Plots of internal energy, r e[-1,1], T €[-0.1;2.1]

o
=3
«
N

Table 1. Color designation.

Color o ] O
State 0 1 2

Table 2. Ground states.

Value of r Configuration o of ground state

3(7-1343)
re|—oh=——+—=
10(11\E+3)

re(r;o)

Also ground states at I; are ignored to avoid making the table

2 more cumbersome.
As internal energy is the average of Hamiltonian per spin,

we obtain that |im u(r, T) :M herewith configuration
T—0+ ! 2L !

o can be found in table 2:

Jim u(r.T) =

3(7-1343)

10(1143+3)

~-0.211]

1 1
ul=(ﬁ+aj”m(3ﬁ—5)vfei—w;ff

u, =6—1()(5(J§+3)r —15J§+3), refrr, =M ~-0,023]

20(+/3+3)
1 o 33(1-48)
u, =@(—10(x@+3)r—33\@+9), relr,;r, =W= 0.096]
u4:75—2r—%, re[r,; o]

(10)
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Limit of internal energy at T—0

2
— \ Us
a

V4 \\

B /

/ AN

N

-2.5 \

-3

Internal energy

\
_1 / \

5 -15 / =01
T=0.12 \
/ T=0.14
/ T=0.16 \
2

- T=0.18
/ T=0.2 \
T=0.22 \
s T=0.24
T=0.26 \
T=0.28

T=0.3
T

-3

-0.2

Fig. 6. Plots of internal energy in low-temperature region and its limitat T =0, r e[-1,1]

One can plot this function (10) and compare it with the plot of
internal energy at low temperature (see Figure 6).

B. Entropy

InN’

At low temperature entropy g ~ , where L- length

of double chain, N’— number of configurations with

minimal energy (i.e. configurations that surviveat T — 0+)

and therefore the limit |im S(r,T) is equal to zero
T—-0+

everywhere, except of three frustration points I;, since the

number of ground states at other points is finite (see table 2).
At the first and third frustration points, the limit is equal to

half of the logarithm of equation's A°—A%-1=0
maximum root, that is

fim S(r,T) _;ln(;w;(&/@Jr 29) +§/%(29—3\@) +1D ~0.1911

atr=r,i=13.

At the second frustration point
. 1
lim S(r,, T)==In2~0.1155
T—0+ 6
One can see it on the plot (see Figure 7):
Entropy
1
0.9 o ™ 1:221 H
/ \ T=0.41
0.8

C T/ \ T
T \

AN L\
] \
I S

0
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Entropy
0.8
0.7
0.6 T=0.1 [
T=0.12
0.5 T=0.14 | |
’ T=0.16
T=0.18
»n 0.4 T=0.2
T=0.22
T=0.24
0.3 T=0.26 |
T=0.28
0.2 T=0.3 | |
0.1
0
-1 -0.8 0.8 1
r
Entropy
1.2
1
0.8
a r=-1
g o6 r=-0.95 ||
s r=-0.9
r=-0.85
04 r=-0.8 | |
’ r=-0.75
r=-0.7
r=-0.65
0.2 r=-0.6 ||
r=-0.55
r=-0.5
0

2.5

Fig. 7. Plots of entropy, r € [-1,1], T €[0.1;2.1]
Clearly TIim S(r,T)=In3~1,099 , because at high

L . . ..
temperature all 9~ configurations have similar energy.
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Fig. 8. Plot of entropy, r e[-1,1], T €[0.1;2.1]

Let us show the plot of heat capacity. In the
low-temperature region (9) one can see three sharp minima at
frustration points:

2.0
]

Heat capacity

0.8

0.7 IA

0.6 T=0.1 [
T=0.12

05 T=0.14 | |

: T=0.16
T=0.18

© 04 T=0.2 H

T=0.22
T=0.24

0.3 T=0.26 |
T=0.28

0.2 / ¥ T=0.3 | |

0.1 /

0 I M

-1 -0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
r

Heat capacity
1.4 T

—=-1

r=-0.95

0.8

7

7

[0}
N
N
[0}

1.2 H r=-0.9 PN
- N\
r=-0.85
=
r=-0.65
r=-0.6
© r=-0.55
MI/ANN
Wy
0M
.
Fig. 9. Plots of heat capacity, r € [-1;1],T [0.1;2.1]
As for partial susceptibilities, we should note that

r=-0.75 | /
r=-0.7 \
0.6 r=-0.5
0 0.5 1 1.
X >0, however X, With gz#v  can be negative.

Mark that in the low-temperature region y,, suffers jumps
at frustration points (see Figure 10):

Susceptibility

25
2 /
15 I /
1 ’/ —
£ os / %
3 —— T |
2 o /_ T=01 | |
8 T=0.14
a — T=0.18
P —— j T=0.22] |
— =0.
T=0.26
1 / 1203 ||
e T=0.34
-1.5 T=0.38 |
T=0.42
2 —/ T=0.46 [
T=0.5
25 :

-0.5 -04 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
r

Susceptibility

0.5
0 \
[— r=-0.5
——— =045
05— r=-0.4 [
z —— =035
3 =03
e -1 r=-0.25 |
(]
o r=-0.2
b
> —r=0.15
(%}

15 r=-0.1 ||
r=-0.05
r=0

-2
-2.5
0 0.5 1 1.5 2 2.5

T

Fig. 10. Plots of y,,, r €[-0.5;0.5], T €[0.1,2.1]

V. PROOF OF THEOREMS

It is known that
eigensubspaces of

AB=BA= AV, CV,,

where V, — eigensubspace of matrix B . Indeed, if

commuting matrices conserve
each other [36]:

AB=BA and X is an eigenvector of matrix B ,
corresponding to eigenvalue A, then vector AX is also an

eigenvector of B, corresponding to eigenvalue A . In other
words, eigensubspaces of one operator must be invariant
subspaces of another one.

Let us formulate famous result from linear algebra: if

linear space V can be decomposed into a direct sum of
invariant subspaces of © : V ~WDYD.. , then
40
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spectrum of @ is equal to the union of spectra of ®'s
restrictions to its invariant subspaces:

(©) =@l Jo @)U~ -

eigenvectors of ® belongs to its invariant subspace, this

means that search for generalized eigenvectors vectors of ®
can be performed not on the whole space, but on invariant
subspaces, which are easy to find, because they are
eigensubspaces of permutation matrix L ( see (11)).
Finally, we obtain the form of the generalized eigenvectors:

V1

Since generalized

VZ
V3

v,
&v,
&v,
£V,
&%,

A
where & is a cubic root of 1. Hence (according to the
Perron-Frobenius theorem, the eigenvector of matrix with
positive elements corresponding to the principle eigenvalue
have positive coordinates) the principal eigenvalue of the

transfer-matrix ® coincides with the one of ©,.

A. The form of the eigenvectors

Permutation matrices permute the components of a vector.
This fact allows us to find eigenvectors of these matrices
[35]. A permutation can be represented as a product of
non-intersecting cycles. Let a permutation consist of only one

cycle, for instance, (123) . Then vectors of the form

(1,5,52)T . where =31 . are

corresponding to the eigenvalue &. When permutation is a
product of several cycles one can easily find eigenvectors in a
similar manner.

For example, matrix L, (5) corresponds to permutation

(159)(267)(348)
corresponding to eigenvalue A, have the following form:
(1,0,0,0,¢,0,0,0,&%)"
(0,1,0,0,0,£,6%,0,0)" tA=¢
(0,0,1,£,0,0,0,5%,0)"

eigenvectors

Eigenvectors of matrix L ,

(11)

VI. CONCLUSION

In this paper, the new type of Potts model is introduced,
which generalizes clock and standard models. In the clock
interpretation, this model has 24 forces in a unit cell: 10
double, 8 triple and 6 quadruple ones. Suggested model
covers all double-chain three-state Potts models with
multi-site interactions which are invariant under cyclic shift
of all spin values. An exact analytical solution of this model
is obtained, formulae for its physical characteristics are
given. Using the commutation of the transfer-matrix ® with
permutation matrix, the search of 9x 9 matrix's spectrum is

reduced to the search of spectra of three matrices 3x 3 with
some specific structure. Also some generalized
characteristics such as partial magnetization and
susceptibility are introduced. An example of the model is

analyzed in detail: showed its ground states' structure and
behavior at low temperature.

VIIl. APPENDIX

A. The Cardano formula

To solve cubic equation x> +ax? +bx+c =0 at first one
. _— a -
need (with the help of substitution x+§ =y ) to eliminate

monomial ax’ and get y3:—py—q . Then if in

(d+e)®=3de(d +e)+d>+€°, put d+e=y , we
obtain a system:

—q:d3+e3<_) ,
—p =3de _ P e
27

—q=d*+¢é°

The last system can be easily solved. Let the pair of numbers
(d,.€,) be its solution. Then (d,&%,€,), (dye,€,6%)
are also its solutions ( & is some complex cubic root of 1).

Eventually, we get the Cardano formula:

3 2 3 2
y:#_L [s +#_ﬂ_ [s
2 27 4 2 27 4
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TouHOE pereHne ABYXIENOYEYHON
0000meHHon mojenu IloTrca ¢ Tpems

COCTOAHUAMMUA
I1. B. Xpanos, I'. A. CxBop1ioB

Annomayusn — oayueno TOYHOE peleHune
ABYXIENOYEYHOH  NHKJIMYECKH 3aMKHYTOH  peleTo4Hoil
o0o0menHoii  momean  Ilorrca ¢ MyJbTHCIIHHOBBIMH

B3aHMO/IeliCTBUSIMH CO CIIMHOM, IPMHUMAIOLIUM TPU 3HAYEHUS
M NPOU3BOJBHBIM raMMJIbTOHHAHOM,  HMHBAPUAHTHBIM
OTHOCHTEJIbHO IUKJIHYECKOr0 CABUIa BCeX 3HAYEHWH CIIMHOB.
B nosioce KoHeuHOI ATUMHBI HAlileHA CTATUCTUYECKAs CyMMa U
cpoboaHass JHeprua. B  TepmoauHamuueckoM Impenaelie
MoJy4eHbl Tak:Ke M JApyrue ¢Qu3HUecKHe XapPaKTePUCTHKHU
MoO/leJIM: BHYTPEHHsISI JHEPrusi, SHTPONUS H TeII0eMKOCTb.
Onpeaesiensl M HaiileHbl NapUUAIbHbIE HAMATHUYEHHOCTH U

napuuvajbHble BOCIIPUMMYMBOCTH, Kak 0000menne
HAMAarHH4e¢HHOCTH u BOCIIPUUMYHUBOCTH. Pe3ym,TaT1,1
MOJIy4€HbI KaKk AJist MojeJieit Cc raMmujaibTOHUAHAMH,

BbIPA’KEHHBIMH 4epe3 cuMBOJbI KpoHekepa, Tak u s
0000IIEHHBIX MoJeJeld ¢ ramuabToHuManamu Tthuna clock.
I[MoapodHO paccMOTpeH nmpumMep co BceMH 24 mapaMeTpaMu
B3aUMO/IeiiCTBUSI BCEeX BO3MOMKHBLIX THIOB, TPHBeEIEHBI
rpagpuku  TePpMOAMHAMHYECKUX XApPaKTEPUCTUK, HaligeHa
CTPYKTYPa OCHOBHBIX COCTOSIHHIf IPH HEKOTOPBHIX KOHCTAHTAX
B3aUMOJeHCTBUA.

Knwouesvie cnoea — wmoaenn Ilorrca, moaenn MH3uura,
pellerka, raMWwIbTOHHAH, TpaHcdep-MaTpuNa, TOYHOE
pellleHHe, CTATHCTHYeCKasi CyMMma, CBOOOXHAsI JHepPrus,

BHYTPEHHSISI JHEpPrusi, TeMJI0eMKOCTb, HAMATHHYE€HHOCTb,
BOCIPHUMYHBOCTb.
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