
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 6, 2015

 21

Abstract— As soon as most of the modern applications are

deployed on the web, JavaScript has become a mainstream

programming environment. JavaScript applications nowadays

should support heavyweight web applications. We can mention

here online games, graphics, media management, and even data

mining. In the same time, processors on computing devices

(including mobile terminals) are getting more and more

elaborated. For example, it is common to see heterogeneous

processors, comprised of both CPUs and GPUs almost

everywhere. It creates a natural demand to parallelism in the

programming tools. In this paper, we provide a survey of

parallel programming models in JavaScript.

Keywords—JavaScript, concurrency, parallel execution,

threads.

I. INTRODUCTION

JavaScript has been around more than 20 years and

nowadays is one of the most popular web development

languages. It has the ability to deliver rich, dynamic web

content as well as being relatively lightweight and easy to

use [1]. JavaScript applications nowadays should support

heavyweight web applications. We can mention here online

games, graphics, media management, and even data mining.

In the same time, processors on computing devices

(including mobile terminals) are getting more and more

elaborated. For example, it is common to see heterogeneous

processors, comprised of both CPUs and GPUs almost

everywhere. It creates a natural demand to parallelism in the

programming tools. And JavaScript is not an excuse.

In this paper, we would like to survey concurrency

patterns in JavaScript. We would like to cover the basic

elements like Web Workers, as well as various frameworks

for parallel execution in JavaScript. By our opinion,

frameworks are extremely important for JavaScript. At the

first hand, JavaScript itself has got a long story of

frameworks development and deployment. On the other side,

frameworks can seriously decrease development time. And

time to market is one of the most important characteristics

for any development tool [2]. JavaScript frameworks could

be especially useful for some vertical markets. As the first

example, we should mention here mobile development. And

adding parallelism to JavaScript via frameworks could be

the simplest way for adding concurrency to JavaScript.

The rest of the paper is organized as follows. In Section II

we describe Web Workers. The Section III is devoted to

Manuscript received May 20, 2015.

D.Namiot is senior scientist at Lomonosov Moscow State University (e-

mail: dnamiot@gmail.com).

V.Sukhomlin is professor at Lomonosov Moscow State University (e-

mail: sukhomlin@mail.ru).

WebCL. And is section IV we discuss the various

frameworks.

II. WEB WORKERS

Originally, AJAX approach [3] introduced asynchronous

computation for JavaScript. AJAX introduced asynchronous

HTTP request. Of course, any HTTP requests can invoke

some JavaScript code. The requested page can simply

contain JavaScript code. Web Workers [4] are the next

natural step in this direction. A web worker is a JavaScript

running in the background, without affecting the

performance of the page. At this moment, Web workers are

the only widely adopted support for parallel computation

in JavaScript. In general, Web workers bring actor style [5]

threads to the web.

As per Mozilla manual [6], Web Workers provide a

simple means for web content to run scripts in background

threads. The worker thread can perform tasks without

interfering with the user interface. In addition, they can

perform input/output using XMLHttpRequest (AJAX with

some limitations). Once created, a worker can send messages

to the JavaScript code that created it by posting messages to

an event handler specified by that code (and vice versa.).

This message exchange is borrowed from actors.

A worker is an object created using a constructor that runs

a named JavaScript file.

var myWorker = new Worker("worker.js");

So, the whole JavaScript file is a code offloading unit.

This file contains the code that will run in the worker thread.

Web workers run in another global context that is different

from the current window. Thus, using the window shortcut to

get the current global scope (instead of self) within a Worker

will return an error.

There are two types of workers: shared and dedicated. A

dedicated worker is only accessible from the script that first

spawned it, whereas a shared worker can be accessed from

multiple scripts. We can run any code inside the worker

thread, with some exceptions. For example, it is not possible

to directly manipulate the DOM from inside a worker, but,

for example, we can use WebSockets and data storage

mechanisms.

Data is sent between workers and the main thread via a

system of messages — both sides send their messages using

the postMessage() method, and respond to messages via the

onmessage event handler (the message is contained within

the Message event's data attribute.) The data is copied rather

than shared. It is very important remarks. Data is copied and

their size in the modern applications could be huge. So,

starting a worker is costly just due to data copying process.

JavaScript Concurrency Models

Dmitry Namiot, Vladimir Sukhomlin

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 6, 2015

 22

Posting message:

myWorker.postMessage(data);

Receiving message:

onmessage = function(e) {

 console.log('Message received from

main script');

 var workerResult = 'Result: ' +

(e.data[0] * e.data[1]);

 console.log('Posting message back to

main script');

 postMessage(workerResult);

While Web workers achieve their design goal of

offloading long-running computations to background

threads, they are not suitable for the development of parallel

scalable compute intense workloads due to high cost of

communication and low level of abstraction [7].

III. WEBCL

In this section, we would like to discuss WebCL [8].

WebCL is JavaScript binding to OpenCL [9], which allows

web applications to leverage heterogeneous parallel

computing resources such as multi-core CPU and GPU [10].

It enables significant acceleration of compute and visual-

intensive web applications such as image/video

processing, advanced physics, gaming, augmented reality,

etc.

Fig. 1 WebCL model

OpenCL (and so, WebCL) follows to this model:

• A Host contains one or more Compute Devices. A Host

has its own memory.

• Each Compute Device (e.g. CPU, GPU, DSP) is

composed of one or more compute units (e.g. cores). Each

Compute Device has its own memory.

• Each Compute Unit is divided in one or more

Processing Elements (e.g. hardware threads). Each

processing element has its own memory.

The Host here is a device onto which the WebCL program

(JavaScript code with WebCL API calls) is executed. It is

illustrated in Figure 1.

Depending on the implementation, WebCL operations

may be running concurrently with JavaScript. There is more

complex memory management model than in Web workers.

In particular, it may be possible for the application to modify

any data array while it's being asynchronously copied

to/from a WebCL memory. But to avoid corrupting the

contents of either buffer, applications should not modify data

that has been assigned for asynchronous read/write until the

relevant WebCL command queue has finished.

IV. CONCURRENT FRAMEWORKS

In this section, we would like to discuss several JavaScript

concurrent frameworks.

 The goal of Intel Labs' River Trail project, also known as

Parallel JavaScript, is to enable data parallelism in web

applications [11]. River Trail gently extends JavaScript with

simple deterministic data-parallel constructs that are

translated at runtime into a low-level hardware abstraction

layer. By leveraging multiple CPU cores and vector

instructions, River Trail programs can achieve significant

speedup over sequential JavaScript. Actually, there is The

Parallel JavaScript draft API specification (ECMA) differs

from the River Trail implementation in a number of ways

and is the API currently being considered for standardization

by the ECMA TC39 committee [12].

 The central component of River Trail is the ParallelArray

type. ParallelArray objects are essentially ordered

collections of scalar values. ParallelArray objects can

represent multi-dimensional collections of scalars. All

ParallelArray objects have a shape that succinctly describes

the dimensionality and size of the object. ParallelArrays are

immutable once they are created. ParallelArrays are

manipulated by invoking methods on them, which produce

and return new ParallelArray objects.

 ParallelArray objects could be created with the

constructors and come with several methods to manipulate

them. These methods typically produce a new ParallelArray

object (except the reduce method, which produces a scalar

value) [13]. River Trail uses several well-known in the

parallel programming world methods. For example, the map

method expects a function as its first argument that, given a

single value, produces a new value as its result. River Trail

calls such functions elemental functions, since they are used

to produce the elements of a ParallelArray object. The map

method computes a new ParallelArray object from an

existing ParallelArray object by applying the provided

elemental function to each element of the source array and

storing the result in the corresponding position in the result

array. For example:

var source = new

ParallelArray([1,2,3,4,5]);

var plusOne = source.map(function

inc(v) { return v+1; });

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 6, 2015

 23

Here, we define a new ParallelArray object source that

contains the numbers 1 to 5. We then call the map method of

our source array with the function inc() that returns its

argument, incremented by one. Thus, plusOne contains the

values 2 to 6. Also, note that plusOne has the same shape as

the original array source. The map method is shape-

preserving.

The reduce method implements another important parallel

pattern: reduction operations. This reduction operation

reduces the elements in an array to a single result. A

classical example to start with is computing the sum of all

elements of an array:

var source = new

ParallelArray([1,2,3,4,5]);

var sum = source.reduce(function

plus(a,b) {

 return a+b; });

As the example shows, the reduce method expects as its

first argument an elemental function that, given two values

as arguments, produces a new value as its result. In our

example, we use plus, which adds two values, as the

elemental function. A reduction over plus then defines the

sum operation. Note here that the reduction may be

computed in any order. In particular, this means that the

elemental function has to be commutative and associative to

ensure deterministic results.

Other basic functions are combine, filter, scatter and scan.

Of course, the map-reduce paradigm is familiar to

developers, involved into big data processing (e.g.,

Hadoop).

In general this specification looks very solid and could be

a good foundation to the various extensions.

The above-mentioned Web workers provide thread-like

programming construct, but with shared-nothing semantics.

In addition, the data communication cost between parallel

contexts (workers) is extremely high in JavaScript. Low

communication bandwidth with no shared memory support

significantly increases the overhead of distributing input data

to and merging the kernel output from multiple parallel

contexts. High communication latency degrades the

effectiveness of the work dispatching loop. To address

these challenges, JAWS [14] introduces JavaScript

framework for efficient CPU-GPU work sharing for data-

parallel workloads. JAWS framework provides an efficient

online work partitioning algorithm without requiring offline

training runs. To efficiently merge the output chunks from

both devices, JAWS supports JavaScript-level shared arrays

between Web Workers, hence eliminating extra copy

overhead.

JAWS implements a task scheduler, which partitions the

kernel input into chunks and distributes them to a multicore

CPU (running a JavaScript kernel on multiple Web

Workers) and a GPU (running a WebCL kernel) for

concurrent execution. A chunk is formed by taking a

contiguous subset of the flattened input data [15], specified

by a pair of array indices pointing to the first and last

elements of the subset, as we focus on array-based data

parallel workloads. To effectively communicate input and

output data between workers by references, instead of

values, JAWS allocates shared arrays accessible by all

workers (including one worker managing GPU execution).

The scheduler needs to send only pairs of array indices

instead of sending the entire data. The scheduler

dynamically adapts the chunk size for each device to

minimize the overhead of the work dispatching loop. Once

execution of a chunk is finished on a computing device, the

device writes the produced output chunk into the shared

output buffer and signals the task scheduler to fetch a new

task. This process continues until the task queue becomes

empty

WorkerJS [16] library provides some kind of

“middleware” for Web workers. WorkerJS makes it very

easy to push functions from the main Javascript thread into

the scope of a Worker by converting the web worker

message passing interface into an RPC style interface.

WorkerJS makes it very easy to pull Worker functionality

back out into the main Javascript thread, exposing Worker

functionality as RPC functions on an object. WorkerJS

allows easy clustering of many Workers - all the Workers in

a cluster appear as a single object, invoking a function on the

cluster will send the request to every Worker in the cluster

and the callback will fire when every Worker in the cluster

has finished.

Parallel Closures [17] uses immutable data structures (like

RiverTrail above). It proposes two small changes to the

common model for lightweight task frameworks. The

proposed changes make it possible to statically guarantee a

deterministic result with only minimal added complexity.

The only requirement is the ability to declare transitive read-

only pointers, which is itself a commonly requested and

useful feature even in sequential code. The first proposed

change is to prevent parent and child tasks from executing

concurrently. Typically, in the parallel systems, forked tasks

can potentially run in parallel with their creator. In Parallel

Closures, however, multiple child tasks are accumulated and

then forked-and-joined in one atomic action. This prevents

the parent task from racing with its children. The second

proposed change is to specify the body of a child task using

a parallel closure. As with traditional closures, a parallel

closure is a block of code which can access variables from

its surrounding environment. In a novel twist on traditional

closures, however, parallel closures are only granted read-

only access to the data which they inherit from their

environment. This change means that two parallel closures

can safely execute in parallel with one another, as any data

that is shared between them is read-only. JavaScript

implementation is available on Github [18].

V. CONCLUSION

In this short paper, we provide a survey for some JavaScript

concurrency models. As the Web programming with

JavaScript continues evolving, the lack of parallelism in

JavaScript would eventually correspond to a serious

technological barrier. By our opinion, JavaScript

frameworks could be an easiest (fastest) way for adding

parallel programming models to JavaScript.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 6, 2015

 24

ACKNOWLEDGMENT

We would like to thank Samsung Research Center in

Moscow for the inspiration of this research.

REFERENCES

[1] Is JavaScript The Primary Programming Language For The

Enterprise? http://www.codeinstitute.net/javascript-primary-

programming-language-enterprise/ Retrieved: May, 2015.

[2] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On software standards

for smart cities: API or DPI." ITU Kaleidoscope Academic

Conference: Living in a converged world-Impossible without

standards?, Proceedings of the 2014. IEEE, 2014.

[3] Garrett, Jesse James. "Ajax: A new approach to web applications."

(2005): 1-6.

[4] Herhut, S., Hudson, R. L., Shpeisman, T., & Sreeram, J. (2012, June).

Parallel programming for the web. In Proceedings of the 4th USENIX

conference on Hot Topics in Parallelism, HotPar (Vol. 12, p. 1).

[5] Agha, G., & Callsen, C. J. (1993). ActorSpace: an open distributed

programming paradigm (Vol. 28, No. 7, pp. 23-32). ACM.

[6] Using Web Workers https://developer.mozilla.org/en-

US/docs/Web/API/Web_Workers_API/Using_web_workers

Retriewed: May, 2015

[7] Herhut, Stephan, et al. "Parallel programming for the web."

Proceedings of the 4th USENIX conference on Hot Topics in

Parallelism, HotPar. Vol. 12. 2012.

[8] Aarnio, T., and M. Bourges-Sevenier. "WebCL working draft."

Khronos WebCL Working Group (2012).

[9] Stone, John E., David Gohara, and Guochun Shi. "OpenCL: A

parallel programming standard for heterogeneous computing

systems." Computing in science & engineering 12.1-3 (2010): 66-73.

[10] Jeon, W., Brutch, T., & Gibbs, S. (2012). WebCL for hardware-

accelerated web applications. In TIZEN Developer Conference May

(pp. 7-9).

[11] RiverTrail https://github.com/IntelLabs/RiverTrail Retrieved: May,

2015

[12] ECMA TC39 http://www.ecma-international.org/memento/TC39.htm

[13] RiverTrail tutorial http://intellabs.github.io/RiverTrail/tutorial/

[14] Piao, X., Kim, C., Oh, Y., Li, H., Kim, J., Kim, H., & Lee, J. W.

(2015, January). JAWS: a JavaScript framework for adaptive CPU-

GPU work sharing. In Proceedings of the 20th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (pp.

251-252). ACM.

[15] P. Pandit and R. Govindarajan. Fluidic Kernels: Cooperative

Execution of OpenCL Programs on Multiple Heterogeneous Devices.

In CGO, 2014

[16] WorkerJS http://hungrygeek.holidayextras.co.uk/WorkerJS/

Retrieved: May, 2015

[17] Matsakis, Nicholas D. "Parallel closures: a new twist on an old idea."

Proceedings of the 4th USENIX conference on Hot Topics in

Parallelism. USENIX Association, 2012.

[18] Parallel Closures in JavaScript https://github.com/mozilla/pjs

Retrieved: May, 2015

