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Abstract—In the end of 2022 in Russian Federation a block 

ciphers mode of operation named DEC (Disk Encryption with 
Counter) for protection of block-oriented storage devices was 
adopted as recommendations for standardization. Due to its 
operational properties, it is complicated to use it for system 
partition encryption. In modern software for disk encryption, 
XTS mode of operation is widely spread. However, properties 
of the XTS mode lead to degradation of its cryptographic 
qualities. Previously the authors introduced XEH (Xor-
Encrypt-Hash) mode of operation, that mitigates weaknesses of 
the XTS mode. This paper describes a block ciphers mode of 
operation XEHf (XEH fast), aimed to improve performance of 
the XEH mode. Its security is proven in chosen ciphertext 
attack setting, and its operational properties are studied. 
 

Keywords—Block ciphers mode of operation, Block-oriented 
storage devices, Full disk encryption, Cryptographic protection 
of information, Provable security, Symmetric cryptography. 

I. INTRODUCTION 
Many software solutions for full disk encryption (FDE) 

are known: VeraCrypt, Apple FileVault, Microsoft 
BitLocker, etc. These solutions are intended to protect data 
stored on hard drives from being read by an unauthorized 
party (hereinafter referred to as adversary). The adversary 
may act inside of controlled zone and have direct access to 
data storage device. If the data is stored in encrypted form, 
passive adversary gains nothing from viewing the data. 

Most of existing solutions for FDE utilize specially 
designed cryptographic algorithms such as block ciphers 
modes of operation. The most widespread mode is called 
XEX-based Tweaked-codebook mode with ciphertext 
Stealing (XTS). The XTS mode is described in NIST SP 
800-38E “Recommendation for Block Cipher Modes of 
Operation: The XTS-AES Mode for Confidentiality on 
Storage Devices”. Notwithstanding its widespread use, the 
XTS mode is considered insecure, since several attacks on 
this mode are known [1][2]. Some of these attacks are 
theoretical, they provide an upper bound of the XTS mode 
security [2]. Other attacks are practical, e.g. plaintext-
recovery ones, but they require more data to be processed 
[1]. 
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In the Russian Federation, recommendations for 
standardization were recently adopted defining a new block 
ciphers mode of operation called Disk Encryption With 
Counter (DEC) [3]. The DEC mode requires counters 
associated with each sector and partition (logical disk) to be 
stored [4]. This complicates the mode’s usage for system 
partition encryption (the partition intended to store operation 
system files). Consider 32 GB disk with 512-byte sectors. At 
least 256 MB of additional storage is required to store 
counters necessary for encrypting this disk in the DEC mode 
with block ciphers standardized in the Russian Federation. 
At the same time, the standard size of system EFI 
(Extensible Firmware Interface) partition (the partition that 
stores data available at boot time) is 100 MB, and extending 
this partition could not be performed using standard 
applications built into a Windows operating system (OS). 

In our previous works a modification of the XTS mode 
called XEH (Xor-Encrypt-Hash) is introduced [5][6]. The 
aim of the XEH mode is to mitigate its predecessor’s 
weaknesses. The XEH mode is proven to be secure in 
chosen ciphertext attack (CCA) setting and has up-to-
birthday-bound security. Further, this mode has better 
performance compared to Encrypt-Mix-Encrypt approach 
given two universal hash functions invocation being faster 
than encrypting each block in a sector using a block cipher 
[6]. Universal hash functions used in the XEH mode consist 
of finite field operations with data blocks represented as 
finite field elements. Even though these operations may be 
implemented using special processor instructions, the 
universal hash functions performance could be improved. 

In this paper, we introduce a modification of the XEH 
mode called XEHf, which stands for Xor-Encrypt-Hash fast. 
The XEHf mode is aimed to improve performance of its 
predecessor via using a different universal hash function 
after encrypting blocks with a block cipher. 

The rest of the paper has the following structure. In 
Section II, we introduce the main notation and terms used in 
the rest of the paper. Section III contains definition of the 
XEHf mode. Section IV discussed security properties for the 
proposed mode. In Section V, we compare the XEHf mode 
with some existing modes. In Section VI, we summarize 
results of our study. 

II. PRELIMINARIES 
Full disk encryption systems encrypt the entire storage 

device space. Regardless of its physical structure the device 
is logically split into one or more partitions. Partition is a 
“logical disk” that one can observe in a file explorer built 
into an operating system. Each partition consists of sectors. 
Sector is the smallest chunk of consecutive data that can be 
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read from or written to the disk. All sectors have the same 
size (usually 512 or 4096 KB). Each sector has its own 
number (we denote it by 𝑆𝑁) that is unique inside a 
corresponding partition. 

Consider a fixed partition. Since sector numbers are 
unique inside the partition, they could be used to 
“randomize” encryption, i.e. to make the same data to be 
encrypted into different ciphertexts being located in 
different sectors. This property could be achieved by using 
tweakable encryption schemes. Notion of tweakable 
encryption scheme (in regard to block ciphers) is introduced 
in [7]. In the current paper, we give an adapted definition. A 
tweakable encryption scheme ℰ̃ is a family of functions 
𝐸�:𝒦 × 𝒯 × ℳ → 𝒞, where ℳ is a message space, 𝒞 is a 
ciphertext space, 𝒦 is a key space, 𝒯 is a tweak space. All 
sets 𝒦, ℳ, 𝒞 and 𝒯 are nonempty. Functions in the family 
are “indexed” by key. For every 𝐾 ∈ 𝒦 we write 𝐸�𝐾(⋅,⋅) for 
𝐸�(𝐾,⋅,⋅), where the function 𝐸�  is called encryption function 
of scheme ℰ̃. The encryption function is bijective on its last 
variable. Corresponding function 𝐸�−1 is called decryption 
function of the scheme. The scheme satisfies the correctness 
requirement, if the following holds: ∀𝐾 ∈ 𝒦 ∀𝑇 ∈ 𝒯 ∀𝑚 ∈
ℳ:𝐸�𝐾−1 �𝑇,𝐸�𝐾(𝑇,𝑚)� = 𝑚.    

An untweakable encryption scheme ℰ or simply 
encryption scheme is a family of functions 𝐸:𝒦 × ℳ → 𝒞 
“indexed” by key. Partially applied function 𝐸(𝐾,⋅) is 
bijective. As before, for every 𝐾 ∈ 𝒦 we write 𝐸𝐾(⋅) for 
𝐸(𝐾,⋅). The scheme satisfies the correctness requirement, if 
the following equality holds: 
∀𝐾 ∈ 𝒦 ∀𝑚 ∈ ℳ:𝐸𝐾−1�𝐸𝐾(𝑚)� = 𝑚.  

An untweakable encryption scheme could be regarded as 
a tweakable encryption scheme with 𝒯 = {𝜆}, where 𝜆 is 
some fixed value, e.g. an empty binary string. That is, the 
notion of tweakable encryption scheme generalizes the 
notion of untweakable encryption scheme. 

Block cipher ℰ is an untweakable encryption scheme, 
where ℳ = 𝒞 = 𝑉𝑙, 𝑉𝑙 is a set of binary strings of length 
𝑙 ∈ ℕ. Number 𝑙 is called blocksize. 

Number of blocks in a sector is denoted by 𝑛. In this 
paper, we assume that sector length in bits is multiple of 𝑛, 
i.e. sector length in bits equals 𝑛𝑙. Further, the following 
inequality holds: 0 < 𝑛 < 2𝑙 . 

Let 𝔽 be a finite field: 𝔽 = 𝐺𝐹(2)[𝑥]/𝑝(𝑥), where 
𝑝(𝑥) = 𝑥128 + 𝑥7 + 𝑥2 + 𝑥 + 1 for 𝑙 =  128 and 𝑝(𝑥) =
𝑥64 + 𝑥4 + 𝑥3 + 𝑥 + 1 for 𝑙 =  64. We explicitly define 
the field for 𝑙 ∈ {64, 128}, because these are blocksizes of 
standardized block ciphers from [8]. The field could be 
similarly defined for other values of 𝑙 by choosing proper 
irreducible polynomial 𝑝(𝑥). The primitive element 𝑥 of the 
field 𝔽 is denoted by 𝛼. 

Consider an arbitrary set 𝑋. The set of all permutations of 

the set 𝑋 is denoted by S(𝑋). We write 𝑥
$
←𝑋 to denote the 

process of assigning to the variable 𝑥 a random, uniformly 
distributed element from the set 𝑋. 

 
Lemma 1 (Lemma 2 of [6]). Let 𝑋 be an arbitrary set. Let 

values 𝑥1, … , 𝑥𝑛 be independent and uniformly distributed 
on 𝑋. Then 𝑛-tuple 𝑥 = (𝑥1, … , 𝑥𝑛) is uniformly distributed 
on 𝑋𝑛. 

 

Lemma 2 (Lemma 1 of [6]). Let 𝑋 be an arbitrary set. Let 
𝜋 be a permutation chosen from S(𝑋) according to some 
distribution (not necessary uniform). Let 𝑥 be an element 
chosen uniformly from 𝑋 (this choice is independent from 
the choice of 𝜋). Then the value 𝜋(𝑥) is uniformly 
distributed on 𝑋. 

Lemma 3 (adapted Theorem A.1 of [9]). Let 𝑋 be a set 
and |𝑋| = 𝑁. Let we uniformly and independently choose 𝑞 
elements from 𝑋. Let 𝐴 be an event of at least two chosen 
elements being equal, then: 

Pr[𝐴] ≤
𝑞(𝑞 − 1)

2𝑁
. 

 
In proposed in this paper XEHf mode, block-wise almost 

universal hash functions are used. The following definition 
is adapted from [10] and [11]. Let ℱ:𝒦 × 𝒟 → ℛ𝑛 be a 
keyed family of functions (“indexed” by key), where 𝒦 is a 
key space, 𝒟 and ℛ are arbitrary sets, 𝑛 is a positive integer. 
ℱ is said to be (𝜖1, 𝜖2)-block-wise almost universal (BAU) 
if for every 𝑥,𝑥′ ∈ 𝒟 and for every 𝑖, 𝑖′ ∈ {1, … ,𝑛} holds: 

Pr𝐾�𝑦𝑖 = 𝑦𝑖′
′ � ≤ ϵ1, if 𝑖 ≠ 𝑖′, 

Pr𝐾�𝑦𝑖 = 𝑦𝑖′
′ � ≤ ϵ2, otherwise, 

where (𝑦1, … ,𝑦𝑛) = ℱ(𝐾, 𝑥), (𝑦1′ , … ,𝑦𝑛′ ) = ℱ(𝐾, 𝑥′), 
(𝑥, 𝑖) ≠ (𝑥′, 𝑖′). Subscript “𝐾” denotes, that probability is 
taken over the uniform choice of 𝐾 ∈ 𝒦. 
 In the present paper we use RND-fdeCCA-sector notion 
from [6] to analyze cryptographic properties of the proposed 
XEHf mode. This security notion considers an active 
adversary that may encrypt and decrypt any (allowed) piece 
of data. In practice, it means that the adversary has direct 
access to storage device. Such adversary may write some 
data using FDE subsystem interface (as a legitimate user), 
read encrypted data directly from the disk and vice versa. 

We briefly describe the RND-fdeCCA-sector security 
notion below. Let ℰ̃ be a tweakable encryption scheme with 
ℳ = 𝒞 = 𝑉𝑛𝑙. In probabilistic experiment RND-fdeCCA-
sector, two parties interact with each other by sending 
queries and responding to them. An adversary 𝒜 sends 
queries to a challenger 𝐄𝐱𝐩. Each query consists of data and 
location of the data on disk (e.g. sector number). The 
challenger provides two oracles: encryption and decryption 
ones. Encryption oracle encrypts the data from query, 
decryption oracle, in turn, decrypts the data. The adversary 
makes 𝑞𝑒 ≥ 0 queries to the encryption oracle, and 𝑞𝑑 ≥ 0 
queries to the decryption one. 

Consider two worlds: real and random. In real world, 
encryption and decryption oracles use the scheme ℰ̃ to 
process adversary’s requests. Key for the scheme is chosen 
once before the first query and remains unchanged during 
the experiment. The key is unknown to the adversary. In 
random world, the encryption and decryption oracles merely 
return uniformly random ciphertext and plaintext 
respectively. The adversary’s goal is to distinguish these two 
worlds by analyzing responses to its queries. The adversary 
returns either 0 or 1 (we write 𝒜 ⇒ 0 or 𝒜 ⇒ 1) for “real” 
or “random” worlds respectively. 

All plaintexts and ciphertexts have the same length. The 
adversary never repeats its queries and never makes 
“pointless” queries. By “pointless” we mean such queries 
which the adversary already “knows” the answer for. That is 
the adversary never queries for decryption of a ciphertext 
received from the encryption oracle, and never queries for 
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encryption of a plaintext received from the decryption 
oracle.  

The adversary’s advantage is defined as follows: 
𝐀𝐝𝐯ℰ̃

RND−fdeCCA−sector(𝒜) = 

= Pr �𝒜𝐸�𝐾,𝐸�𝐾
−1
⇒ 1� − Pr�𝒜$,$ ⇒ 1�, 

where superscripts after 𝒜 denote oracles, which it interacts 
with. 

Let {𝑎1, … , 𝑎𝑠} be a set of restrictions on adversary’s 
resources. Let 𝒜(𝑎1, … , 𝑎𝑠) is be set of adversaries which 
resources satisfy given restrictions 𝑎1, … , 𝑎𝑠. We write: 
𝐀𝐝𝐯ℰ̃

RND−fdeCCA−sector(𝑎1, … , 𝑎𝑠) = 
= max

𝒜∈𝒜(𝑎1,…,𝑎𝑠)
𝐀𝐝𝐯ℰ̃

RND−fdeCCA−sector(𝒜). 

III. SPECIFICATION OF XEHF MODE 
The main difference between the new XEHf mode and its 

ancestor the XEH mode is a different block-wise universal 
hash function used after encrypting data blocks with a block 
cipher. 

The XEHf mode uses two block-wise universal functions 
𝑓:𝔽 × 𝔽 × 𝔽𝑛 → 𝔽𝑛 and ϕ:𝔽 × 𝔽𝑛 → 𝔽𝑛, that are defined 
as follows: 
𝑓(𝜏3, 𝜏4,𝒚) = �𝑦1 + 𝑌𝜏3,𝜏4 ,⋯ , 𝑦𝑛−1 + 𝑌𝜏3,𝜏4 ,𝑌𝜏3,𝜏4�, 

𝜙(𝜏3,𝒚) = �𝑍𝜏3 , 𝑦2 + 𝑍𝜏3 ,⋯ , 𝑦𝑛 + 𝑍𝜏3�, 
(1) 

where 𝑦 = (𝑦1, … ,𝑦𝑛), 𝑌𝜏3,𝜏4 = 𝜏4 + ∑ 𝑦𝑗𝜏3
𝑛−𝑗𝑛

𝑗=1 , where 
𝑍𝜏3 = ∑ 𝑦𝑗𝜏3

𝑗−1𝑛
𝑗=1 . 

In addition, we define the following functions: 
𝑔(𝜏2, 𝜏3, 𝜏4,𝒚) = 𝑓(𝜏3, 𝜏4,𝒚) + 𝐚𝜏2 , 
𝜓(𝜏1, 𝜏3,𝒚) = 𝜙(𝜏3,𝒚) + 𝐚𝜏1 , (2) 

where 𝐚𝜏𝑖 = (α0𝜏𝑖 ,α1𝜏𝑖 , … ,α𝑛−1𝜏𝑖) for 𝑖 ∈ {1,2}, 𝛼 = 𝑥 is a 
primitive element of 𝔽. 

For simplicity, we write 𝑓𝜏3,𝜏4(⋅) for 𝑓(𝜏3, 𝜏4,⋅), 
𝑔𝜏2,𝜏3,𝜏4(⋅) for 𝑔(𝜏2, 𝜏3, 𝜏4,⋅), 𝜙𝜏3(⋅) for ϕ(𝜏3,⋅) and 𝜓𝜏1,𝜏3(⋅) 
for 𝜓(𝜏1, 𝜏3,⋅). For fixed 𝜏𝑖, 𝑖 ∈ {1, … ,4} functions 𝑔𝜏2,𝜏3,𝜏4  
and 𝜓𝜏1,𝜏3  are permutations. 
 
Lemma 4. Let 𝔽 be an arbitrary field. Further let 𝜏2, 𝜏3, 𝜏4 
be uniformly and independently chosen elements of 𝔽. Then 
𝑔 is (1 |𝔽|⁄ , (𝑛 − 1) |𝔽|⁄ )-BAU. 
We prove Lemma 4 in Appendix A. 
 
Lemma 5 (Lemma 4 of [6]). Let 𝔽 be an arbitrary field. 
Further let 𝜏1, 𝜏3 be uniformly and independently chosen 
elements of 𝔽. Then 𝜓 is (1 |𝔽|⁄ , (𝑛 − 1) |𝔽|⁄ )-BAU. 

 
Let Δ𝑙:𝑉𝑙 → 𝔽 be a function, that maps a binary string 

𝑎 = (𝑎0, … , 𝑎𝑙−1) of 𝑉𝑙 to element 𝑎� = ∑ 𝑎𝑖𝑥𝑖𝑙−1
𝑖=0  of 𝔽, 

where 𝑎𝑖 ∈ {0, 1} for each index 𝑖. Let ∇𝑙:𝔽 → 𝑉𝑙  be an 
inverse function of Δ𝑙 . 

Let ℰ be a block cipher with key space 𝒦, blocksize 𝑙 and 
encryption function 𝐸. The XEHf mode uses two 
independent block cipher keys 𝐾,𝐾′ ∈ 𝒦, and four subkeys 
𝜏1, 𝜏2, 𝜏3, 𝜏4 that are derived from a sector number 𝑆𝑁 as 
follows: 

𝜏1 = Δ𝑙�𝐸𝐾(𝑆𝑁)�, 
𝜏2 = Δ𝑙 �𝐸𝐾′�∇(𝜏1)�� , 
𝜏3 = Δ𝑙�𝐸𝐾′(𝑆𝑁)�, 
𝜏4 = Δ𝑙 �𝐸𝐾�∇(𝜏3)��. 

Let XEHf𝐸𝐾,𝐸𝐾′  be a tweakable encryption scheme 
constructed from a block cipher ℰ. Encryption and 
decryption functions of the scheme are denoted by 𝐄𝐧𝐜𝐾,𝐾′ 
and 𝐃𝐞𝐜𝐾,𝐾′ respectively. These functions are shown in Fig. 
1. 

IV.  SECURITY OF XEHF MODE 

Let XEHfπ,π′ be a tweakable encryption scheme, where 
two uniformly random permutations π,π′ ∈ S(𝑉𝑙) are used 
instead of block cipher in the XEHf mode. The permutation 
π is used instead of 𝐸𝐾 , and permutation π′ is used instead 
of 𝐸𝐾′. The key space of the scheme 𝒦′ is S(𝑉𝑙)2, i.e. 
permutations π and π′ are used as a key. 

Replacing a block cipher with π and π′ allows us to 
analyze combinatorial properties of the XEHf mode without 
taking block cipher properties into account. The concrete 
security of XEHf mode is summarized in the following 
theorem. 
 
Theorem 1. (XEHf security) Let π ∈ S(𝑉𝑙) and π′ ∈ S(𝑉𝑙) 
be random independent permutations. Fix positive integers 
𝑙,𝑛, 𝑞. Then: 

𝐀𝐝𝐯
XEHf π,π′
RND−fdeCCA−sector(𝑞) ≤

2(𝑛 + 2)2𝑞2

2𝑙
, 

where 𝑞 = 𝑞𝑒 + 𝑞𝑑. 
We prove Theorem 1 in Appendix B.  

V. DISCUSSION AND COMPARISON WITH EXISTING 
SOLUTIONS 

The XEHf mode is compared with the following modes: 

Function 𝐄𝐧𝐜𝐾,𝐾′(𝑆𝑁,𝑚1, … ,𝑚𝑛) Function 𝐃𝐞𝐜𝐾,𝐾′(𝑆𝑁, 𝑐1, … , 𝑐𝑛) 

𝜏1 ← Δ𝑙�𝐸𝐾(𝑆𝑁)� 
𝜏2 ← Δ𝑙 �𝐸𝐾′�∇(𝜏1)�� 
𝜏3 ← Δ𝑙�𝐸𝐾′(𝑆𝑁)� 
𝜏4 ← Δ𝑙 �𝐸𝐾�∇(𝜏3)�� 

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)� 

(𝑐1, … , 𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4
−1 (𝑐𝑐1, … , 𝑐𝑐𝑛) 

Derive subkeys 

Encrypt 

for 𝑖 ← 1 to 𝑛 do 
 𝑐𝑐𝑖 ← 𝐸𝐾�∇𝑙(𝑚𝑚𝑖)� 

Return result 
return �∇𝑙(𝑐1), … ,∇𝑙(𝑐𝑛)� 

𝜏1 ← Δ𝑙�𝐸𝐾(𝑆𝑁)� 
𝜏2 ← Δ𝑙 �𝐸𝐾′�∇(𝜏1)�� 
𝜏3 ← Δ𝑙�𝐸𝐾′(𝑆𝑁)� 
𝜏4 ← Δ𝑙 �𝐸𝐾�∇(𝜏3)�� 

(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)� 

(𝑚1, … ,𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚𝑚1), … ,Δ𝑙(𝑚𝑚𝑛)� 

Derive subkeys 

Decrypt 

for 𝑖 ← 1 to 𝑛 do 
 𝑚𝑚𝑖 ← 𝐸𝐾−1�∇𝑙(𝑐𝑐𝑖)� 

Return result 
return �∇𝑙(𝑚1), … ,∇𝑙(𝑚𝑛)� 

Figure 1. Encryption (left) and decryption (right) under XEHf mode using block cipher ℰ with two independent keys 𝐾,𝐾′ ∈ 𝒦. 
Functions 𝐸𝜅 and 𝐸𝜅−1 for 𝜅 ∈ {𝐾,𝐾′} are encryption and decryption functions of the block cipher ℰ on the key 𝜅. 86 
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DEC and XTS, that are standardized modes for block-
oriented storage devices, and XEH, which is the baseline of 
the XEHf mode.  

The main difference between XEHf and XEH modes is 
the use of a different function 𝑔 after encrypting blocks with 
a block cipher. For the XEHf mode, this function depends 
on three subkeys 𝜏2, 𝜏3 and 𝜏4. For the XEH mode similar 
function (we denote it by ℎ instead of 𝑔 to prevent 
ambiguity) depends on two subkeys 𝜏2, 𝜏3 and is defined as 
follows [6]: 

ℎ(𝜏2, 𝜏3,𝒚) = 𝑞(𝜏3,𝒚) + 𝐚𝜏2 , 
𝑞(𝜏3,𝒚) = �𝑦1 + 𝑄𝜏3 ,⋯ ,𝑄𝑛−1 + 𝑄𝜏3 ,𝑄𝜏3�, (3) 

where 𝑄𝜏3 = �∑ 𝑦𝑗 ⋅ 𝜏3
𝑛−𝑗𝑛

𝑗=1 � + �∑ 𝑦𝑗 ⋅ 𝔉𝑙(𝑗)𝑛−1
𝑗=1 �, and 

𝔉𝑙:ℤ2𝑙 → 𝔽 is a function that maps an element 𝑟 =
∑ 𝑎𝑖2𝑖𝑙−1
𝑖=0  of the ring ℤ2𝑙 to an element 𝑟̃ = ∑ 𝑎𝑖𝑥𝑖𝑙−1

𝑖=0  of the 
field 𝔽, 𝑎𝑖 ∈ {0,1} for 𝑖 ∈ {0, … , 𝑙 − 1}. 

It is clearly seen that: 

𝑄𝜏3 = 𝑦𝑛 + �𝑦𝑗 ⋅ �𝜏3
𝑛−𝑗 + 𝔉𝑙(𝑗)�

𝑛−1

𝑗=1

. (4) 

Consider the following matrix: 
𝜏3
𝜏3
𝜏32
⋮

𝜏3𝑛−1
�
�

  𝑦𝑛
(𝜏3 + 𝔉𝑙(𝑛 − 1)) ⋅ 𝑦𝑛−1
(𝜏32 + 𝔉𝑙(𝑛 − 2))

 
(𝜏3𝑛−1 + 𝔉𝑙(1))

⋅
⋮
⋅

𝑦𝑛−2
 
𝑦1

 (5) 

The matrix (5) consists of 𝑛 rows. Each row represents a 
step in computing the value of 𝑄𝜏3 . The right column (to the 
right of the vertical line) consists of all summands of the 
sum (4). The left column represents an auxiliary register. 
While moving down the rows of the matrix, the value of this 
register is multiplied by 𝜏3, except for the step from the first 
row to the second one. Initially, the register contains 𝜏3. We 
observe, that computing the value of 𝑄𝜏3  requires 2𝑛 − 3 
multiplications and 2𝑛 − 2 additions in the field 𝔽. After 
that according to (3), the value of 𝑄𝜏3  is added to each 
block, except for the last one. It requires 𝑛 − 1 finite field 
additions. Next, we add the value of 𝐚𝜏2 . This step requires 
𝑛 finite field additions and 𝑛 − 1 finite field multiplications 
by the primitive element 𝛼 = 𝑥. 

Next, consider the function 𝑔 used in the XEHf mode. To 
compute its value, the value of 𝑓 should be computed first. 
According to Horner’s rule, computing the value of 𝑌𝜏3,𝜏4  
requires 𝑛 − 1 finite field multiplications and 𝑛 additions. 
The value of 𝑌𝜏3,𝜏4  is added to each block, except for the last 
one, which requires 𝑛 − 1 finite field additions. Then, the 
value of 𝐚𝜏2  is added to the result of the previous step. It 
requires 𝑛 finite field additions and 𝑛 − 1 finite field 
multiplications by the primitive element 𝛼. 

Total number of subkeys and finite field operations 
(additions, multiplications and multiplications by primitive 
element) required to compute functions 𝑔 and ℎ is shown in 
Table I. 

 
TABLE I. TOTAL NUMBER OF SUBKEYS AND FINITE FIELD OPERATIONS 
REQUIRED TO COMPUTE FUNCTIONS 𝑔 AND ℎ. NUMBER OF ADDITIONS, 
MULTIPLICATIONS AND MULTIPLICATIONS BY PRIMITIVE ELEMENT ARE 

DENOTED BY A, M AND MP RESPECTIVELY. 
Function Subkeys A M MP 

𝑔 3 3𝑛 − 1 𝑛 − 1 𝑛 − 1 
ℎ 2 4𝑛 − 3 2𝑛 − 3 𝑛 − 1 

 

From Table I, we observe that the function 𝑔 requires less 
multiplications and additions than ℎ, but uses 3 subkeys 
instead of 2. Each subkey is produced by invoking a block 
cipher encryption function. Therefore, the XEHf mode is 
more efficient than the XEH mode, if 𝑛 − 2 multiplications 
and 𝑛 − 2 additions in finite field are performed faster than 
one invocation of block cipher encryption function. 

Similarly to the XEH and XTS modes and in contrast to 
the DEC mode, the XEHf mode does not require any 
additional data such as counters, initialization vectors, etc. 
The DEC mode uses one half-block counter for each 
partition and one half-block counter for each sector. These 
counters should be stored on a storage device reducing disk 
space available to user. Total amount of additional data 
required for encryption of 32 GB of data on system disk 
with 512-byte sector using standardized block ciphers is 
shown in Table II. From Table II, we observe that this 
amount exceeds 100 MB, and therefore, the additional data 
could not be stored in system EFI partition, since the 
standard size of this partition is exactly 100 MB, and it 
cannot be extended with built-in Windows OS tools. This 
makes the XEHf mode appropriate for encrypting of system 
disk.  

 
TABLE II. COMPARISON OF ADDITIONAL DATA AMOUNT FOR THE DEC AND 

XEHF MODES REQUIRED FOR ENCRYPTION OF 32 GB SYSTEM DISK WITH 
SECTOR SIZE OF 512 BYTES. 

Cipher (mode) Blocksize Amount of 
additional data 

Magma (DEC) 64 bits 256 MB 
Magma (XEHf) - 

Kuznyechik (DEC) 128 bits 512 MB 
Kuznyechik (XEHf) - 

 
Furthermore, performance measurements are performed 

for the XTS, XEH and XEHf modes. The DEC mode is 
excluded from the performance comparison due to 
impossibility of creating equivalent experimental 
functioning conditions.  

Abovementioned modes are implemented in C 
programming language with SSE2 instructions set support. 
In performance comparison each mode uses Kuznyechik as 
a block cipher [8]. The experiment is conducted on a 
computer with 2.6 GHz Intel(R) Core(TM) i7-9750H CPU, 
8 Gb of DDR4 RAM, and 64-bit macOS 14.1 operating 
system. During the experiment, 512- and 4096-byte sectors 
are encrypted and decrypted multiple times, and the average 
processing time is taken into account. Each value is 
normalized for a corresponding value for XTS mode (thus, 
all normalized values for XTS mode are equal to 1). The 
results are shown in Table III. 
 
TABLE III. RELATIVE TIME OF ENCRYPTING AND DECRYPTING OF 512- AND 

4096-BYTE SECTORS IN XTS, XEH AND XEHF MODES. 

Mode 
Encryption Decryption 

512 
bytes 

4096 
bytes 

512 
bytes 

4096 
bytes 

XTS 1 1 1 1 
XEH 1.078 1.051 1.081 1.065 
XEHf 1.055 1.037 1.051 1.044 

 
From Table III, one can see, that performance degradation 

relative to XTS mode does not exceed 9% for XEH and 6% 
for XEHf. This decrease of performance is substantiated by 
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additional computations of 𝑓 and 𝜙. The XEHf mode 
performs all operations faster, than its ancestor. 

VI. CONCLUSION 
In this paper we introduce a new provably secure block 

ciphers mode of operation XEHf, which stands for “XEH 
fast”, aimed to improve performance of the XEH mode 
[5][6].  

Cryptographic and operational properties of XEHf mode 
are investigated. The mode is proven to be secure against 
adaptive adversary in Chosen Ciphertext Attack (CCA) 
setting. The mode uses block-wise universal hash functions, 
which properties are essential for the mode’s security. 

Performance comparison with existing modes is 
performed. The XEHf mode runs 3% faster on average 
compared to the XEH mode due to more efficient hash 
function. 

REFERENCES 
[1] Isobe, T., & Minematsu, K. (2020). “Plaintext recovery attacks 

against XTS beyond collisions” in K. G. Paterson, D. Stebila (eds.), 
Selected Areas in Cryptography - SAC 2019, 103–123. Springer, 
Cham. 

[2] Firsov, G., & Koreneva, A. (2022). On One Block Cipher Mode of 
Operation Used to Protect Data on Block-Oriented Storage Devices. 
Modern Information Technologies and IT- Education, 18(3), 691–
701. 

[3] R 1323565.1.042-2022. Information technology. Cryptographic 
protection of information. Block ciphers mode of operation designed 
to protect of data storage medium with a block-oriented structure. 
(2022). Russian National Bureau of Standards. 

[4] Bogdanov, D., & Nozdrunov, V. (2021). Some properties of one 
mode of operation of block ciphers. In 10th Workshop on Current 
Trends in Cryptology (CTCrypt 2021). Pre-proceedings (pp. 12–17). 

[5] Firsov, G., & Koreneva, A. (2023). On one block cipher mode of 
operation for protection of block-oriented storage devices. Applied 
Discrete Mathematics. Supplement, 16(1), 52–56. 

[6] Firsov, G., & Koreneva, A. (2024). On improved security bounds of 
one block ciphers mode of operation for protection of block-oriented 
system storage devices. Journal of Computer Virology and Hacking 
Techniques. 

[7] Liskov, M., Rivest, R. L., & Wagner, D. (2010). Tweakable block 
ciphers. Journal of Cryptology, 24(3), 588–613. 

[8] GOST 34.12-2018. Information technology. Cryptographic protection 
of information. Block ciphers. (2018). Russian National Bureau of 
Standards. 

[9] Bellare, M., & Rogaway, P. (2005). Introduction to Modern 
Cryptography. 

[10] Halevi, S. (2007). “Invertible Universal Hashing and the TET 
Encryption Mode” in Menezes, A. (ed), Advances in Cryptology - 
CRYPTO 2007. CRYPTO 2007. Lecture Notes in Computer Science. 
4622, 412–429. Springer, Berlin, Heidelberg. 

[11] Sarkar, P. (2009). Efficient tweakable enciphering schemes from 
(block-wise) universal hash functions. IEEE Transactions on 
Information Theory, 55(10), 4749–4760. 

  

88 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024 
 
 

APPENDIX A. THE PROOF OF LEMMA 4 
Proof The proof uses the same idea as proof of Lemma 4 of 
[6]. Fix some (𝑦1 , … ,𝑦𝑛) ∈ 𝔽𝑛 and (𝑦1′ , … ,𝑦𝑛′ ) ∈ 𝔽𝑛. 
Further let (𝑧1, … , 𝑧𝑛) = 𝑔𝜏2,𝜏3,𝜏4(𝑦1, … ,𝑦𝑛) and 
(𝑧1′ , … , 𝑧𝑛′ ) = 𝑔𝜏2,𝜏3,𝜏4(𝑦1′ , … ,𝑦𝑛′). 
 Case 𝑖 ≠ 𝑖′. Without loss of generality, we assume 𝑖 < 𝑖′. 
First, consider 𝑖′ < 𝑛. We have: 

𝑧𝑖 − 𝑧𝑖′
′ = 𝜏2 ⋅ �𝛼𝑖−1 − 𝛼𝑖′−1� + 𝑅1, (6) 

where 𝑅1 = �𝑦𝑖 + 𝑌𝜏3,𝜏4� − �𝑦𝑖′ + 𝑌𝜏3,𝜏4
′ �. From (6) 

immediately follows that event 𝑧𝑖 = 𝑧𝑖′
′  is equivalent to the 

event 𝜏2 = 𝑅1 ⋅ �𝛼𝑖
′−1 − 𝛼𝑖−1�

−1
. Since the right part of the 

equation is independent from 𝜏2, which is chosen uniformly, 
the probability of the last event equals 1 |𝔽|⁄ . 
 Next, consider 𝑖′ = 𝑛. We have: 

𝑧𝑖 − 𝑧𝑖′
′ = 𝜏2 ⋅ �𝛼𝑖−1 − 𝛼𝑖′−1� + 𝑅2, 

where 𝑅2 = �𝑦𝑖 + 𝑌𝜏3,𝜏4� − 𝑌𝜏3,𝜏4
′ . As before, 𝑅2 is 

independent from 𝜏2. Using similar idea we conclude, that 
the probability of 𝑧𝑖 and 𝑧𝑖′

′  being equal given 𝑖′ = 𝑛 equals 
1 |𝔽|⁄ . Hence: 

Pr𝜏2,𝜏3,𝜏4�𝑧𝑖 = 𝑧𝑖′
′ � ≤

1
|𝔽| , 𝑖 ≠ 𝑖′. (7) 

Case 𝑖 = 𝑖′. In this case, (𝑦1, … ,𝑦𝑛) ≠ (𝑦1′ , … ,𝑦𝑛′) always 
holds. First, suppose 𝑖 < 𝑛. Then: 

𝑧𝑖 − 𝑧𝑖′
′ = �𝑦𝑖 + 𝑌𝜏3,𝜏4� − �𝑦𝑖′ + 𝑌𝜏3,𝜏4

′ �. 
From (1) and (2), we have: 𝑦𝑖 + 𝑌𝜏3,𝜏4 = 𝑅3 +

∑ 𝑦𝑗𝜏3𝑛−1𝑛−1
𝑗=1 , where 𝑅3 = 𝑦𝑖 + 𝜏4 + 𝑦𝑛. Similarly we have 

𝑦𝑖′ + 𝑌𝜏3,𝜏4
′ = 𝑅3′ + ∑ 𝑦𝑗′𝜏3𝑛−1𝑛−1

𝑗=1 , 𝑅3′ = 𝑦𝑖′ + 𝜏4 + 𝑦𝑛′ . Event 
𝑧𝑖 = 𝑧𝑖′

′  is equivalent to the event: 

0 = (𝑅3 − 𝑅3′ ) + ��𝑦𝑗 − 𝑦𝑗′�𝜏3
𝑛−𝑗

𝑛−1

𝑗=1

. (8) 

There exists at least one non-zero coefficient of 
polynomial (8). Therefore, the equality (8) holds if and only 
if 𝜏3 is a root of the polynomial. 

Degree of the polynomial (8) does not exceed 𝑛 − 1, and 
hence, there exist no more than 𝑛 − 1 roots. The polynomial 
coefficients are all independent from 𝜏3, which is chosen 
uniformly. Therefore, the probability of 𝑧𝑖 and 𝑧𝑖′

′  being 
equal given 𝑖 = 𝑖′ ∧ 𝑖 < 𝑛 does not exceed (𝑛 − 1) |𝔽|⁄ . 

Similar argument shows similar bound for case 𝑖 = 𝑛. 
Hence: 

Pr𝜏2,𝜏3,𝜏4�𝑧𝑖 = 𝑧𝑖′
′ � ≤

𝑛 − 1
|𝔽| , 𝑖 = 𝑖′. (9) 

From (7) and (9), we conclude that 𝑔 is � 1
|𝔽|

, 𝑛−1
|𝔽|
�-BAU 

by definition. This completes the proof. 

APPENDIX B. THE PROOF OF THEOREM 1 
Let 𝒜 be an adversary. We write “𝒜[𝐺𝐴𝑀𝐸] ⇒ 1” to 

denote that adversary 𝒜 returned 1 in security game 
(experiment) named “GAME”. We write “𝐺𝐴𝑀𝐸: 𝑏𝑎𝑑 = 1” 
to denote that the “bad” flag equals 1 in the end of security 
game “GAME”. 

Proof This proof of the XEHf mode security is based on 
game-substitution argument. The following four games are 
introduced: 
• Game XEHf. In this game the adversary interacts with a 

challenger, that uses XEHfπ,π′  encryption scheme to 
process requests. Permutations π and π′ are built via 

“lazy sampling” technique, i.e. whenever the value of 
π(𝑥) is required, we choose uniformly an “unused” 
value and define π(𝑥) to equal this value. The same 
steps are performed, whenever the value of π−1(𝑦) is 
required. The permutation π′ is built in the similar way. 

• Game RND1. This game differs from the previous one 
in the way of building π and π′ functions. In this game, 
we do not check if a newly chosen value is “unused”. 
Hence, π and π′ are not necessary permutations. 

• Game RND2. In this game, the challenger generates just 
random binary strings of proper length as responses to 
the adversary’s queries. After handling all queries, the 
challenger checks if there is a collision in either domain 
or range of π and/or π′ functions. 

• Game NON (for “noninteractive”). In this game, we 
consider stronger condition when the adversary sends 
both plaintext and ciphertext in each query. This game’s 
purpose is to upper bound the probability of a collision 
in either domain or range of π and π′ functions. 

We describe the algorithm of “lazy sampling” in more 
detail. Using this algorithm, we build π and π′ permutations 
in games XEHf and RND1. Since π and π′ are build the 
same way, we describe this algorithm once.  

Let 𝜔 ∈ {π,π′}. Let 𝐃𝜔 and 𝐑𝜔 be domain and range of 
permutation 𝜔 respectively. These sets  are used to track the 
values, for which the permutation is defined. Both sets are 
initially empty. 

Whenever the value of 𝜔(𝑥) is required, an algorithm 
𝐒𝐦𝐩𝜔 (“Smp” stands for “sample”) is invoked. 
Corresponding algorithm 𝐒𝐦𝐩𝜔−1  exists for sampling 𝜔−1. 
These algorithms are shown in Fig. B.1. For game XEHf, 
we preserve the shaded statements, and for game RND1, we 
do not. 

We use the “bad” flag, which could be either 0 or 1. 
Initially this flag is set to 0 and could be modified during the 
game under certain conditions in algorithms 𝐒𝐦𝐩𝜔 and 
𝐒𝐦𝐩𝜔−1 . 

 
 

 
Algorithm 𝐒𝐦𝐩𝜔(𝑥) Algorithm 𝐒𝐦𝐩𝜔−1(𝑦) 
Choose a value 

𝑦
$
← 𝑉𝑙 

Perform checks 
if 𝑦 ∈ 𝐑𝜔 then 
 𝑏𝑎𝑑 ← 1 

 𝑦
$
← 𝑉𝑙 ∖ 𝐑𝜔 

if 𝑥 ∈ 𝐃𝜔 then 
 𝑏𝑎𝑑 ← 1 
 𝑦 ← 𝜔(𝑥) 
Save value 
𝜔(𝑥) ← 𝑦 
𝐃𝜔 ← 𝐃𝜔 ∪ {𝑥} 
𝐑𝜔 ← 𝐑𝜔 ∪ {𝑦} 
Return result 
return 𝑦 

Choose a value 

𝑥
$
← 𝑉𝑙 

Perform checks 
if 𝑥 ∈ 𝐃𝜔 then 
 𝑏𝑎𝑑 ← 1 

 𝑥
$
←𝑉𝑙 ∖ 𝐃𝜔 

if 𝑦 ∈ 𝐑𝜔 then 
 𝑏𝑎𝑑 ← 1 
 𝑥 ← 𝜔−1(𝑦) 
Save value 
𝜔(𝑥) ← 𝑦 
𝐃𝜔 ← 𝐃𝜔 ∪ {𝑥} 
𝐑𝜔 ← 𝐑𝜔 ∪ {𝑦} 
Return result 
return 𝑥 

Figure B.1. Algorithms 𝑺𝒎𝒑𝜔 and 𝑺𝒎𝒑𝜔−1 for 𝜔 ∈ {𝜋,𝜋′}. We 
preserve shaded statements for game XEHf and omit them for 
game RND1. 
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In all games we never redefine subkeys. Let 𝐒 ⊆ 𝑉𝑙 × ℕ 
be a set of pairs that consist of a sector number and a query 
number, which the sector number was processed for the first 
time on. Let 𝐓 ⊆ 𝔽4 × ℕ be a set of corresponding subkeys. 
Sets 𝐒 and 𝐓 are related to each other: if (𝑆𝑁, 𝑗) ∈ 𝐒, and 
𝜏1, 𝜏2, 𝜏3, 𝜏4 are computed using sector number 𝑆𝑁, then 
(𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝑗) ∈ 𝐓. 

 
Game XEHf. The challenger’s encryption and decryption 

oracles use encryption and decryption functions of the 
scheme XEHfπ,π′  respectively. In more details, the 
encryption and decryption oracles invoke algorithms 
𝐑𝐞𝐬𝐩𝐄𝐧𝐜 and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜 respectively. To track currently 
handled query sequential number, these algorithms maintain 
an internal counter 𝑐𝑛𝑡. To handle a sector number, these 
algorithms invoke algorithm 𝐓𝐰𝐤. The algorithm 𝐓𝐰𝐤 is 
shown in Fig. B.2, algorithms 𝐑𝐞𝐬𝐩𝐄𝐧𝐜 and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜 are 
shown in Fig. B.3. 

 
Algorithm Twk(𝑆𝑁, 𝑗) 
if ∃𝑘: 𝑘 < 𝑗 ∧ (𝑆𝑁, 𝑗) ∈ 𝐒 then 
 𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4 s. t. (𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4, 𝑘) ∈ 𝐓 
else 
 𝜏1 ← Δ𝑙�𝐒𝐦𝐩π(𝑆𝑁)� 
 𝜏2 ← Δ𝑙 �𝐒𝐦𝐩π′�∇𝑙(𝜏1)�� 
 𝜏3 ← Δ𝑙�𝐒𝐦𝐩π′(𝑆𝑁)� 
 𝜏4 ← Δ𝑙 �𝐒𝐦𝐩π�∇𝑙(𝜏3)�� 
 𝐒 ← 𝐒 ∪ {(𝑆𝑁, 𝑗)} 
 𝐓 ← 𝐓 ∪ {(𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝑗)} 
return 𝜏1, 𝜏2, 𝜏3, 𝜏4 
Figure B.2. Algorithm Twk for games XEHf and RND1. 

 
Game RND1. The only difference from the previous 

game is definition of algorithms 𝐒𝐦𝐩𝜔 and 𝐒𝐦𝐩𝜔−1 for 
𝜔 ∈ {𝜋,𝜋′}. The shaded statements in Fig. B.1 are omitted. 
Hence, 𝜋 and 𝜋′ are not necessary permutations. 

Note, that games XEHf and RND1 are identical until the 
“bad” flag is set to 1. Therefore, we have: 
Pr[𝒜[𝑋𝐸𝐻𝑓] ⇒ 1] − Pr[𝒜[𝑅𝑁𝐷1] ⇒ 1] ≤ 

≤ Pr[𝑅𝑁𝐷1: 𝑏𝑎𝑑 = 1]. 
  

Game RND2. We change the structure of a game. In this 
game, the challenger responds on every query with a 
random uniform binary string. Each string is chosen 
independently. After processing all queries, challenger 
checks if there exist a collision in either domain or range of 
𝜋 and/or 𝜋′. If such collision exists, then the “bad” flag is 
set to 1. 
 More precisely, we modify algorithms 𝐓𝐰𝐤, 𝐑𝐞𝐬𝐩𝐄𝐧𝐜 
and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜. Hereinafter 𝐃𝜔 and 𝐑𝜔 are in principle 
multisets. The algorithm 𝐓𝐰𝐤 does not invoke 𝐒𝐦𝐩𝜔 
anymore. Instead, it uniformly chooses subkeys and directly 
modifies 𝐃𝜔 and 𝐑𝜔. Algorithms 𝐑𝐞𝐬𝐩𝐄𝐧𝐜 and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜 
are shown in Fig. B.4. Algorithm 𝐓𝐰𝐤 is shown in Fig. B.5.  

After responding on the last adversary’s query, the “bad” 
flag is set to 1 if there is a collision in at least one of the sets 
𝐃𝜋, 𝐑𝜋, 𝐃𝜋′  and 𝐑𝜋′ . 

The adversary in RND2 game receives uniformly random 
𝑛-tuples of elements from 𝑉𝑙. In RND1 game, encryption 
and decryption oracles uniformly and independently choose 
values 𝑐𝑐𝑘 and 𝑚𝑚𝑘, 𝑘 ∈ {1, … ,𝑛} on each query. Applying 
Lemma 1 and then Lemma 2 (both 𝑔𝜏2,𝜏3,𝜏4  and 𝜓𝜏1,𝜏3  are 
permutations for every 𝜏1, 𝜏2, 𝜏3, 𝜏4), we conclude that 
games RND1 and RND2 are indistinguishable by the 
adversary 𝒜, because the adversary receives uniformly 
random binary strings in both games. Therefore, we have: 

Pr[𝒜[𝑅𝑁𝐷1] ⇒ 1] = Pr[𝒜[𝑅𝑁𝐷2] ⇒ 1], 
Pr[𝑅𝑁𝐷1: 𝑏𝑎𝑑 = 1] = Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1]. 

 
Algorithm Twk(𝑆𝑁, 𝑗) 
if ∃𝑘: 𝑘 < 𝑗 ∧ (𝑆𝑁, 𝑗) ∈ 𝐒 then 
 𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4 s. t. (𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4, 𝑘) ∈ 𝐓 
else 
 for 𝑗 ← 1 to 4 do 

  𝜏̂𝑗
$
← 𝑉𝑙  

  𝜏𝑗 ← Δ𝑙�𝜏̂𝑗� 
 𝐒 ← 𝐒 ∪ {(𝑆𝑁, 𝑗)} 
 𝐓 ← 𝐓 ∪ {(𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝑗)} 
 𝐃𝜋 ← 𝐃𝜋 ∪ {𝑆𝑁, 𝜏̂3} 
 𝐑𝜋 ← 𝐑𝜋 ∪ {𝜏̂1, 𝜏̂4} 
 𝐃𝜋′ ← 𝐃𝜋′ ∪ {𝑆𝑁, 𝜏̂1} 
 𝐑𝜋′ ← 𝐑𝜋′ ∪ {𝜏̂2, 𝜏̂3} 
return 𝜏1, 𝜏2, 𝜏3, 𝜏4 
Figure B.5. Algorithm Twk for game RND2. 

Algorithm 𝐑𝐞𝐬𝐩𝐄𝐧𝐜(𝑆𝑁,𝐦) Function 𝐑𝐞𝐬𝐩𝐃𝐞𝐜(𝑆𝑁, 𝐜) 

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡) 
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1 

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)� 

(𝑐1, … , 𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4
−1 (𝑐𝑐1, … , 𝑐𝑐𝑛) 

Process sector number 

Encrypt 

for 𝑖 ← 1 to 𝑛 do 
 𝑐𝑐𝑖 ← 𝐒𝐦𝐩𝜋�∇𝑙(𝑚𝑚𝑖)� 

Return result 
return �∇𝑙(𝑐1), … ,∇𝑙(𝑐𝑛)� 

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡) 
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1 

(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)� 

(𝑚1, … ,𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚𝑚1), … ,Δ𝑙(𝑚𝑚𝑛)� 

Process sector number 

Decrypt 

for 𝑖 ← 1 to 𝑛 do 
 𝑚𝑚𝑖 ← 𝐒𝐦𝐩𝜋−1�∇𝑙(𝑐𝑐𝑖)� 

Return result 
return �∇𝑙(𝑚1), … ,∇𝑙(𝑚𝑛)� 

Figure B.3. Algorithms 𝑹𝒆𝒔𝒑𝑬𝒏𝒄 and 𝑹𝒆𝒔𝒑𝑫𝒆𝒄 for games XEHf and RND1. 90 
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 In game RND2, the adversary interacts with two random 
oracles, since these oracles respond with uniformly and 
independently chosen random binary strings. Hence: 

Pr[𝒜[𝑅𝑁𝐷2] ⇒ 1] = Pr�𝒜$,$ ⇒ 1�. 
 We have the following upper bound on the adversary’s 
advantage: 
𝐀𝐝𝐯

XEHf π,π′
RND−fdeCCA−sector(𝒜) = 

= Pr �𝒜𝐸�𝐾,𝐸�𝐾
−1
⇒ 1� − Pr�𝒜$,$ ⇒ 1� = 

= Pr[𝒜[𝑋𝐸𝐻𝑓] ⇒ 1] − Pr[𝒜[𝑅𝑁𝐷2] ⇒ 1] = 
= Pr[𝒜[𝑋𝐸𝐻𝑓] ⇒ 1] − Pr[𝒜[𝑅𝑁𝐷1] ⇒ 1] ≤ 
≤ Pr[𝑅𝑁𝐷1: 𝑏𝑎𝑑 = 1] = 
= Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1]. 

(10) 

 
Game NON. In this game, we consider stronger 

condition. The adversary sends both plaintext and ciphertext 
in each query. More formally, it makes 𝑞 = 𝑞𝑒 + 𝑞𝑑 queries. 
The 𝑗-th query has the following form: �𝑆𝑁𝑗 ,𝐦𝑗 , 𝐜𝑗 , 𝑡𝑗�, 
where 𝑆𝑁𝑗 is a sector number, 𝐦𝑗 is an 𝑛-block message 
(plaintext), 𝐜𝑗 is an 𝑛-block ciphertext, 𝑡𝑗 is either 0 or 1 
denoting encryption or decryption query respectively. We 
denote 𝑖-th block of 𝐦𝑗 (𝐜𝑗) by 𝑚𝑗,𝑖 (𝑐𝑗,𝑖) for 𝑖 ∈ {1, … ,𝑛}. 
Oracles perform the same actions as in previous game, 
except for response generation, since response is provided 
by adversary. 

The adversary’s queries are such that they maximize the 
probability of the “bad” flag being set and are not pointless. 
The adversary never makes the same query twice. 

Now we could get rid of the concrete adversary and find 
an upper bound on the value of 𝐀𝐝𝐯

XEHf π,π′
RND−fdeCCA−sector(𝑞) 

via bounding the probability Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1]. 
 
Collision analysis. Let 𝐶𝑜𝑙𝑙𝑋 be an event of a collision in 

multiset 𝑋 for 𝑋 ∈ {𝐃𝜋,𝐑𝜋 ,𝐃𝜋′ ,𝐑𝜋′}. By inclusion-
exclusion principle we have: 
Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1] ≤ Pr�𝐶𝑜𝑙𝑙𝐃𝜋� + 

                + Pr�𝐶𝑜𝑙𝑙 𝐑𝜋� + 
                + Pr �𝐶𝑜𝑙𝑙𝐃𝜋′� + 

                + Pr �𝐶𝑜𝑙𝑙𝐑𝜋′�. 

(11) 

Consider 𝑗-th query. Let �𝑚𝑚𝑗,1, … ,𝑚𝑚𝑗,𝑛� =
𝜓𝜏1,𝑗,𝜏3,𝑗 �Δ𝑙�𝑚𝑗,1�, … ,Δ𝑙�𝑚𝑗,𝑛��, �𝑐𝑐𝑗,1, … , 𝑐𝑐𝑗,𝑛� =

𝑔𝜏2,𝑗,𝜏3,𝑗,𝜏4,𝑗 �Δ𝑙�𝑐𝑗,1�, … ,Δ𝑙�𝑐𝑗,𝑛��, where 𝜏1,𝑗, 𝜏2,𝑗, 𝜏3,𝑗, 𝜏4,𝑗 
are subkeys for the 𝑗-th query. 

First, consider the multiset 𝐑𝜋. This multiset consists of 
the following values: ∇𝑙�𝜏1,𝑗�, ∇𝑙�𝜏4,𝑗�, ∇𝑙�𝑐𝑐𝑗,1�, …, 
∇𝑙�𝑐𝑐𝑗,𝑛� for every 𝑗 ∈ {1, … , 𝑞}. 

Let 𝐶𝑜𝑙𝑙𝜏,𝑔 be an event that there is at least one pair (𝑖, 𝑗) 
such that 𝑆𝑁𝑖 ≠ 𝑆𝑁𝑗 and �𝜏2,𝑖, 𝜏3,𝑖 , 𝜏4,𝑖� = �𝜏2,𝑗, 𝜏3,𝑗 , 𝜏4,𝑗�. 
From law of total probability, we have: 

Pr�𝐶𝑜𝑙𝑙 𝐑𝜋� ≤ Pr�𝐶𝑜𝑙𝑙𝜏,𝑔� + Pr�𝐶𝑜𝑙𝑙 𝐑𝜋|𝐶𝑜𝑙𝑙𝜏,𝑔����������, (12) 

where event 𝐶𝑜𝑙𝑙𝜏,𝑔��������� is complement of 𝐶𝑜𝑙𝑙𝜏,𝑔. 
First, consider the event 𝐶𝑜𝑙𝑙𝜏,𝑔. There are at most 

�𝑞2� ≤ 𝑞2/2 pairs of different sector numbers. Consider a 
pair (𝑖, 𝑗) such that 𝑆𝑁𝑖 ≠ 𝑆𝑁𝑗. The probability of 
�𝜏2,𝑖 , 𝜏3,𝑖 , 𝜏4,𝑖� and �𝜏2,𝑗, 𝜏3,𝑗 , 𝜏4,𝑗� being equal is 2−3𝑙, 
because all subkeys are chosen uniformly and 
independently. Hence: 

Pr�𝐶𝑜𝑙𝑙𝜏,𝑔� ≤
𝑞2

2 ⋅ 23𝑙
. (13) 

Next, we assume that the event 𝐶𝑜𝑙𝑙𝜏,𝑔��������� occurs, i.e. all 
subkeys are different for different sector numbers. Let 𝑝 ≤ 𝑞 
be the total number of different sector numbers occurred 
among adversary’s queries. We write all these sector 
numbers in some order (the specific order is not important in 
this context): (𝑆𝑁1, … , 𝑆𝑁𝑝), where superscript denote 
sequence numbers in particular order. 

We rewrite all values of 𝑐𝑐𝑗,1, …, 𝑐𝑐𝑗,𝑛 into 𝑝 matrices. 
Each such matrix contains values computed for queries with 
the same sector number. These matrices are of the following 
form: 

𝒞𝒞𝑡 = �
𝑐𝑐𝑘1,1 ⋯ 𝑐𝑐𝑘1,𝑛
⋮ ⋱ ⋮

𝑐𝑐𝑘𝑞𝑡 ,1 ⋯ 𝑐𝑐𝑘𝑞𝑡 ,𝑛
�, (14) 

where 𝑡 ∈ {1, … , 𝑝}, and �𝑘1, … , 𝑘𝑞𝑡� ⊆ {1, … , 𝑞} are 
numbers of queries that contain sector number 𝑆𝑁𝑡, i.e. 
𝑆𝑁𝑘1 = ⋯ = 𝑆𝑁𝑘𝑞𝑡 = 𝑆𝑁𝑡. Note that ∑ 𝑞𝑡

𝑝
𝑡=1 = 𝑞. 

 Now we bound the probability of a collision in columns 
of matrices (14). There are 𝑛 columns in 𝑡-th matrix, in each 
column there are �𝑞𝑡2 � elements. Therefore, there are at most 

𝑛 ⋅ �𝑞𝑡2 � different pairs of elements in columns of 𝑡-th 
matrix. By Lemma 4, the probability of collision in such 
pair does not exceed 𝑛−1

2𝑙
. Therefore, we have the following 

upper bound on probability of collision among such pairs: 

Algorithm 𝐑𝐞𝐬𝐩𝐄𝐧𝐜(𝑆𝑁,𝐦) Function 𝐑𝐞𝐬𝐩𝐃𝐞𝐜(𝑆𝑁, 𝐜) 

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡) 
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1 

(𝑐1, … , 𝑐𝑛)
$
←𝑉𝑙𝑛 

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)� 
(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)� 
𝐃𝜋 ← 𝐃𝜋 ∪ {∇𝑙(𝑚𝑚1), … ,∇𝑙(𝑚𝑚𝑛)} 
𝐑𝜋 ← 𝐑𝜋 ∪ {∇𝑙(𝑐𝑐1), … ,∇𝑙(𝑐𝑐𝑛)} 

Process sector number 

“Encrypt” 

Update multisets 

Return result 
return (𝑐1, … , 𝑐𝑛) 

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡) 
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1 

(𝑚1, … ,𝑚𝑛)
$
←𝑉𝑙𝑛 

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)� 
(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)� 
𝐃𝜋 ← 𝐃𝜋 ∪ {∇𝑙(𝑚𝑚1), … ,∇𝑙(𝑚𝑚𝑛)} 
𝐑𝜋 ← 𝐑𝜋 ∪ {∇𝑙(𝑐𝑐1), … ,∇𝑙(𝑐𝑐𝑛)} 

Process sector number 

“Decrypt” 

Update multisets 

Return result 
return (𝑚1, … ,𝑚𝑛) 

Figure B.4. Algorithms 𝑹𝒆𝒔𝒑𝑬𝒏𝒄 and 𝑹𝒆𝒔𝒑𝑫𝒆𝒄 for game RND2. 
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�
𝑛(𝑛 − 1) ⋅ �𝑞𝑡2 �

2𝑙

𝑝

𝑡=1

≤�
𝑞𝑡2𝑛(𝑛 − 1)

2 ⋅ 2𝑙

𝑝

𝑡=1

≤ 

              ≤
𝑛(𝑛 − 1)

2 ⋅ 2𝑙
��𝑞𝑡2

𝑝

𝑡=1

�

2

= 

              =
1
2
⋅
𝑛(𝑛 − 1)𝑞2

2𝑙
. 

The number of remaining pairs does not exceed �|𝐑𝜋|
2
� ≤

|𝐑𝜋|2/2. Probability of a collision in such pair is not 
greater, than 1/2𝑙. Note that |𝐑𝜋| ≤ (𝑛 + 2)𝑞. Hence, the 
probability of collision among these pairs is less or equal to 
(𝑛 + 2)2𝑞2/(2 ⋅ 2𝑙). 

The probability of collision in 𝐑𝜋 given 𝐶𝑜𝑙𝑙𝜏,𝑔��������� is 
bounded as follows: 
Pr�𝐶𝑜𝑙𝑙 𝐑𝜋|𝐶𝑜𝑙𝑙𝜏,𝑔���������� ≤ 

≤
1
2
�
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
�. 

(15) 

From (12) given (13) and (15), we have: 
Pr�𝐶𝑜𝑙𝑙 𝐑𝜋� ≤ 

≤
1
2
�
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+
𝑞2

23𝑙
�. 

Similar analysis shows the following upper bound for 
Pr�𝐶𝑜𝑙𝑙𝐃𝜋�. The only difference is that we apply Lemma 5 
instead of Lemma 4, and instead of the event 𝐶𝑜𝑙𝑙𝜏,𝑔, we 
consider an event 𝐶𝑜𝑙𝑙𝜏,𝜓 of existence of at least on pair 
(𝑖, 𝑗) such that 𝑆𝑁𝑖 ≠ 𝑆𝑁𝑗 and �𝜏1,𝑖 , 𝜏3,𝑖� = �𝜏1,𝑗 , 𝜏3,𝑗�: 
Pr�𝐶𝑜𝑙𝑙 𝐃𝜋� ≤ 

≤
1
2
�
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+
𝑞2

22𝑙
�. 

Next, consider the multiset 𝐑𝜋′ . It consists of at most 2𝑞 
values. By Lemma 3, we have the following upper bound on 
probability of collision is this multiset: 

Pr �𝐶𝑜𝑙𝑙 𝐑𝜋′� =
1
2
⋅

2𝑞(2𝑞 − 1)
2𝑙

<
2𝑞2

2𝑙
. 

Similar analysis shows the same upper bound for 
Pr �𝐶𝑜𝑙𝑙𝐃𝜋′�. 

Given abovementioned upper bounds on summands in 
(11), we have: 
Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1] ≤ 

≤
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+

𝑞2

2 ⋅ 23𝑙
+ 

        +
𝑞2

2 ⋅ 22𝑙
+

4𝑞2

2𝑙
≤ 

≤
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+

𝑞2

8 ⋅ 2𝑙
+ 

        +
𝑞2

4 ⋅ 2𝑙
+

4𝑞2

2𝑙
= 

=
𝑞2

2𝑙
�𝑛(𝑛 − 1) + (𝑛 + 2)2 +

35
8
� ≤ 

≤
2(𝑛 + 2)2𝑞2

2𝑙
. 

Hence, advantage of an adversary, that makes 𝑞 queries in 
total, has  the following upper bound: 

𝐀𝐝𝐯
XEHf π,π′
RND−fdeCCA−sector(𝑞) ≤

2(𝑛 + 2)2𝑞2

2𝑙
. 

This completes the proof. 
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