
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

Abstract—In the end of 2022 in Russian Federation a block

ciphers mode of operation named DEC (Disk Encryption with
Counter) for protection of block-oriented storage devices was
adopted as recommendations for standardization. Due to its
operational properties, it is complicated to use it for system
partition encryption. In modern software for disk encryption,
XTS mode of operation is widely spread. However, properties
of the XTS mode lead to degradation of its cryptographic
qualities. Previously the authors introduced XEH (Xor-
Encrypt-Hash) mode of operation, that mitigates weaknesses of
the XTS mode. This paper describes a block ciphers mode of
operation XEHf (XEH fast), aimed to improve performance of
the XEH mode. Its security is proven in chosen ciphertext
attack setting, and its operational properties are studied.

Keywords—Block ciphers mode of operation, Block-oriented
storage devices, Full disk encryption, Cryptographic protection
of information, Provable security, Symmetric cryptography.

I. INTRODUCTION
Many software solutions for full disk encryption (FDE)

are known: VeraCrypt, Apple FileVault, Microsoft
BitLocker, etc. These solutions are intended to protect data
stored on hard drives from being read by an unauthorized
party (hereinafter referred to as adversary). The adversary
may act inside of controlled zone and have direct access to
data storage device. If the data is stored in encrypted form,
passive adversary gains nothing from viewing the data.

Most of existing solutions for FDE utilize specially
designed cryptographic algorithms such as block ciphers
modes of operation. The most widespread mode is called
XEX-based Tweaked-codebook mode with ciphertext
Stealing (XTS). The XTS mode is described in NIST SP
800-38E “Recommendation for Block Cipher Modes of
Operation: The XTS-AES Mode for Confidentiality on
Storage Devices”. Notwithstanding its widespread use, the
XTS mode is considered insecure, since several attacks on
this mode are known [1][2]. Some of these attacks are
theoretical, they provide an upper bound of the XTS mode
security [2]. Other attacks are practical, e.g. plaintext-
recovery ones, but they require more data to be processed
[1].

Manuscript received November 15, 2023.
G. V. Firsov is with National Research Nuclear University MEPhI,

Moscow, Russian Federation, Security Code LLC, Moscow, Russian
Federation (corresponding author, e-mail: G.Firsov@securitycode.ru).

A. M. Koreneva, PhD is with Financial University under the
Government of the Russian Federation, Moscow, Russian Federation,
Security Code LLC, Moscow, Russian Federation (e-mail:
A.Koreneva@securitycode.ru).

In the Russian Federation, recommendations for
standardization were recently adopted defining a new block
ciphers mode of operation called Disk Encryption With
Counter (DEC) [3]. The DEC mode requires counters
associated with each sector and partition (logical disk) to be
stored [4]. This complicates the mode’s usage for system
partition encryption (the partition intended to store operation
system files). Consider 32 GB disk with 512-byte sectors. At
least 256 MB of additional storage is required to store
counters necessary for encrypting this disk in the DEC mode
with block ciphers standardized in the Russian Federation.
At the same time, the standard size of system EFI
(Extensible Firmware Interface) partition (the partition that
stores data available at boot time) is 100 MB, and extending
this partition could not be performed using standard
applications built into a Windows operating system (OS).

In our previous works a modification of the XTS mode
called XEH (Xor-Encrypt-Hash) is introduced [5][6]. The
aim of the XEH mode is to mitigate its predecessor’s
weaknesses. The XEH mode is proven to be secure in
chosen ciphertext attack (CCA) setting and has up-to-
birthday-bound security. Further, this mode has better
performance compared to Encrypt-Mix-Encrypt approach
given two universal hash functions invocation being faster
than encrypting each block in a sector using a block cipher
[6]. Universal hash functions used in the XEH mode consist
of finite field operations with data blocks represented as
finite field elements. Even though these operations may be
implemented using special processor instructions, the
universal hash functions performance could be improved.

In this paper, we introduce a modification of the XEH
mode called XEHf, which stands for Xor-Encrypt-Hash fast.
The XEHf mode is aimed to improve performance of its
predecessor via using a different universal hash function
after encrypting blocks with a block cipher.

The rest of the paper has the following structure. In
Section II, we introduce the main notation and terms used in
the rest of the paper. Section III contains definition of the
XEHf mode. Section IV discussed security properties for the
proposed mode. In Section V, we compare the XEHf mode
with some existing modes. In Section VI, we summarize
results of our study.

II. PRELIMINARIES
Full disk encryption systems encrypt the entire storage

device space. Regardless of its physical structure the device
is logically split into one or more partitions. Partition is a
“logical disk” that one can observe in a file explorer built
into an operating system. Each partition consists of sectors.
Sector is the smallest chunk of consecutive data that can be

On Improving Performance of One Block
Ciphers Mode of Operation Used for Protection

of Block-Oriented System Storage Devices
Georgy V. Firsov, Alisa M. Koreneva

84

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

read from or written to the disk. All sectors have the same
size (usually 512 or 4096 KB). Each sector has its own
number (we denote it by 𝑆𝑁) that is unique inside a
corresponding partition.

Consider a fixed partition. Since sector numbers are
unique inside the partition, they could be used to
“randomize” encryption, i.e. to make the same data to be
encrypted into different ciphertexts being located in
different sectors. This property could be achieved by using
tweakable encryption schemes. Notion of tweakable
encryption scheme (in regard to block ciphers) is introduced
in [7]. In the current paper, we give an adapted definition. A
tweakable encryption scheme ℰ̃ is a family of functions
𝐸�:𝒦 × 𝒯 × ℳ → 𝒞, where ℳ is a message space, 𝒞 is a
ciphertext space, 𝒦 is a key space, 𝒯 is a tweak space. All
sets 𝒦, ℳ, 𝒞 and 𝒯 are nonempty. Functions in the family
are “indexed” by key. For every 𝐾 ∈ 𝒦 we write 𝐸�𝐾(⋅,⋅) for
𝐸�(𝐾,⋅,⋅), where the function 𝐸� is called encryption function
of scheme ℰ̃. The encryption function is bijective on its last
variable. Corresponding function 𝐸�−1 is called decryption
function of the scheme. The scheme satisfies the correctness
requirement, if the following holds: ∀𝐾 ∈ 𝒦 ∀𝑇 ∈ 𝒯 ∀𝑚 ∈
ℳ:𝐸�𝐾−1 �𝑇,𝐸�𝐾(𝑇,𝑚)� = 𝑚.

An untweakable encryption scheme ℰ or simply
encryption scheme is a family of functions 𝐸:𝒦 × ℳ → 𝒞
“indexed” by key. Partially applied function 𝐸(𝐾,⋅) is
bijective. As before, for every 𝐾 ∈ 𝒦 we write 𝐸𝐾(⋅) for
𝐸(𝐾,⋅). The scheme satisfies the correctness requirement, if
the following equality holds:
∀𝐾 ∈ 𝒦 ∀𝑚 ∈ ℳ:𝐸𝐾−1�𝐸𝐾(𝑚)� = 𝑚.

An untweakable encryption scheme could be regarded as
a tweakable encryption scheme with 𝒯 = {𝜆}, where 𝜆 is
some fixed value, e.g. an empty binary string. That is, the
notion of tweakable encryption scheme generalizes the
notion of untweakable encryption scheme.

Block cipher ℰ is an untweakable encryption scheme,
where ℳ = 𝒞 = 𝑉𝑙, 𝑉𝑙 is a set of binary strings of length
𝑙 ∈ ℕ. Number 𝑙 is called blocksize.

Number of blocks in a sector is denoted by 𝑛. In this
paper, we assume that sector length in bits is multiple of 𝑛,
i.e. sector length in bits equals 𝑛𝑙. Further, the following
inequality holds: 0 < 𝑛 < 2𝑙 .

Let 𝔽 be a finite field: 𝔽 = 𝐺𝐹(2)[𝑥]/𝑝(𝑥), where
𝑝(𝑥) = 𝑥128 + 𝑥7 + 𝑥2 + 𝑥 + 1 for 𝑙 = 128 and 𝑝(𝑥) =
𝑥64 + 𝑥4 + 𝑥3 + 𝑥 + 1 for 𝑙 = 64. We explicitly define
the field for 𝑙 ∈ {64, 128}, because these are blocksizes of
standardized block ciphers from [8]. The field could be
similarly defined for other values of 𝑙 by choosing proper
irreducible polynomial 𝑝(𝑥). The primitive element 𝑥 of the
field 𝔽 is denoted by 𝛼.

Consider an arbitrary set 𝑋. The set of all permutations of

the set 𝑋 is denoted by S(𝑋). We write 𝑥
$
←𝑋 to denote the

process of assigning to the variable 𝑥 a random, uniformly
distributed element from the set 𝑋.

Lemma 1 (Lemma 2 of [6]). Let 𝑋 be an arbitrary set. Let

values 𝑥1, … , 𝑥𝑛 be independent and uniformly distributed
on 𝑋. Then 𝑛-tuple 𝑥 = (𝑥1, … , 𝑥𝑛) is uniformly distributed
on 𝑋𝑛.

Lemma 2 (Lemma 1 of [6]). Let 𝑋 be an arbitrary set. Let
𝜋 be a permutation chosen from S(𝑋) according to some
distribution (not necessary uniform). Let 𝑥 be an element
chosen uniformly from 𝑋 (this choice is independent from
the choice of 𝜋). Then the value 𝜋(𝑥) is uniformly
distributed on 𝑋.

Lemma 3 (adapted Theorem A.1 of [9]). Let 𝑋 be a set
and |𝑋| = 𝑁. Let we uniformly and independently choose 𝑞
elements from 𝑋. Let 𝐴 be an event of at least two chosen
elements being equal, then:

Pr[𝐴] ≤
𝑞(𝑞 − 1)

2𝑁
.

In proposed in this paper XEHf mode, block-wise almost

universal hash functions are used. The following definition
is adapted from [10] and [11]. Let ℱ:𝒦 × 𝒟 → ℛ𝑛 be a
keyed family of functions (“indexed” by key), where 𝒦 is a
key space, 𝒟 and ℛ are arbitrary sets, 𝑛 is a positive integer.
ℱ is said to be (𝜖1, 𝜖2)-block-wise almost universal (BAU)
if for every 𝑥,𝑥′ ∈ 𝒟 and for every 𝑖, 𝑖′ ∈ {1, … ,𝑛} holds:

Pr𝐾�𝑦𝑖 = 𝑦𝑖′
′ � ≤ ϵ1, if 𝑖 ≠ 𝑖′,

Pr𝐾�𝑦𝑖 = 𝑦𝑖′
′ � ≤ ϵ2, otherwise,

where (𝑦1, … ,𝑦𝑛) = ℱ(𝐾, 𝑥), (𝑦1′ , … ,𝑦𝑛′) = ℱ(𝐾, 𝑥′),
(𝑥, 𝑖) ≠ (𝑥′, 𝑖′). Subscript “𝐾” denotes, that probability is
taken over the uniform choice of 𝐾 ∈ 𝒦.
 In the present paper we use RND-fdeCCA-sector notion
from [6] to analyze cryptographic properties of the proposed
XEHf mode. This security notion considers an active
adversary that may encrypt and decrypt any (allowed) piece
of data. In practice, it means that the adversary has direct
access to storage device. Such adversary may write some
data using FDE subsystem interface (as a legitimate user),
read encrypted data directly from the disk and vice versa.

We briefly describe the RND-fdeCCA-sector security
notion below. Let ℰ̃ be a tweakable encryption scheme with
ℳ = 𝒞 = 𝑉𝑛𝑙. In probabilistic experiment RND-fdeCCA-
sector, two parties interact with each other by sending
queries and responding to them. An adversary 𝒜 sends
queries to a challenger 𝐄𝐱𝐩. Each query consists of data and
location of the data on disk (e.g. sector number). The
challenger provides two oracles: encryption and decryption
ones. Encryption oracle encrypts the data from query,
decryption oracle, in turn, decrypts the data. The adversary
makes 𝑞𝑒 ≥ 0 queries to the encryption oracle, and 𝑞𝑑 ≥ 0
queries to the decryption one.

Consider two worlds: real and random. In real world,
encryption and decryption oracles use the scheme ℰ̃ to
process adversary’s requests. Key for the scheme is chosen
once before the first query and remains unchanged during
the experiment. The key is unknown to the adversary. In
random world, the encryption and decryption oracles merely
return uniformly random ciphertext and plaintext
respectively. The adversary’s goal is to distinguish these two
worlds by analyzing responses to its queries. The adversary
returns either 0 or 1 (we write 𝒜 ⇒ 0 or 𝒜 ⇒ 1) for “real”
or “random” worlds respectively.

All plaintexts and ciphertexts have the same length. The
adversary never repeats its queries and never makes
“pointless” queries. By “pointless” we mean such queries
which the adversary already “knows” the answer for. That is
the adversary never queries for decryption of a ciphertext
received from the encryption oracle, and never queries for

85

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

encryption of a plaintext received from the decryption
oracle.

The adversary’s advantage is defined as follows:
𝐀𝐝𝐯ℰ̃

RND−fdeCCA−sector(𝒜) =

= Pr �𝒜𝐸�𝐾,𝐸�𝐾
−1
⇒ 1� − Pr�𝒜$,$ ⇒ 1�,

where superscripts after 𝒜 denote oracles, which it interacts
with.

Let {𝑎1, … , 𝑎𝑠} be a set of restrictions on adversary’s
resources. Let 𝒜(𝑎1, … , 𝑎𝑠) is be set of adversaries which
resources satisfy given restrictions 𝑎1, … , 𝑎𝑠. We write:
𝐀𝐝𝐯ℰ̃

RND−fdeCCA−sector(𝑎1, … , 𝑎𝑠) =
= max

𝒜∈𝒜(𝑎1,…,𝑎𝑠)
𝐀𝐝𝐯ℰ̃

RND−fdeCCA−sector(𝒜).

III. SPECIFICATION OF XEHF MODE
The main difference between the new XEHf mode and its

ancestor the XEH mode is a different block-wise universal
hash function used after encrypting data blocks with a block
cipher.

The XEHf mode uses two block-wise universal functions
𝑓:𝔽 × 𝔽 × 𝔽𝑛 → 𝔽𝑛 and ϕ:𝔽 × 𝔽𝑛 → 𝔽𝑛, that are defined
as follows:
𝑓(𝜏3, 𝜏4,𝒚) = �𝑦1 + 𝑌𝜏3,𝜏4 ,⋯ , 𝑦𝑛−1 + 𝑌𝜏3,𝜏4 ,𝑌𝜏3,𝜏4�,

𝜙(𝜏3,𝒚) = �𝑍𝜏3 , 𝑦2 + 𝑍𝜏3 ,⋯ , 𝑦𝑛 + 𝑍𝜏3�,
(1)

where 𝑦 = (𝑦1, … ,𝑦𝑛), 𝑌𝜏3,𝜏4 = 𝜏4 + ∑ 𝑦𝑗𝜏3
𝑛−𝑗𝑛

𝑗=1 , where
𝑍𝜏3 = ∑ 𝑦𝑗𝜏3

𝑗−1𝑛
𝑗=1 .

In addition, we define the following functions:
𝑔(𝜏2, 𝜏3, 𝜏4,𝒚) = 𝑓(𝜏3, 𝜏4,𝒚) + 𝐚𝜏2 ,
𝜓(𝜏1, 𝜏3,𝒚) = 𝜙(𝜏3,𝒚) + 𝐚𝜏1 , (2)

where 𝐚𝜏𝑖 = (α0𝜏𝑖 ,α1𝜏𝑖 , … ,α𝑛−1𝜏𝑖) for 𝑖 ∈ {1,2}, 𝛼 = 𝑥 is a
primitive element of 𝔽.

For simplicity, we write 𝑓𝜏3,𝜏4(⋅) for 𝑓(𝜏3, 𝜏4,⋅),
𝑔𝜏2,𝜏3,𝜏4(⋅) for 𝑔(𝜏2, 𝜏3, 𝜏4,⋅), 𝜙𝜏3(⋅) for ϕ(𝜏3,⋅) and 𝜓𝜏1,𝜏3(⋅)
for 𝜓(𝜏1, 𝜏3,⋅). For fixed 𝜏𝑖, 𝑖 ∈ {1, … ,4} functions 𝑔𝜏2,𝜏3,𝜏4
and 𝜓𝜏1,𝜏3 are permutations.

Lemma 4. Let 𝔽 be an arbitrary field. Further let 𝜏2, 𝜏3, 𝜏4
be uniformly and independently chosen elements of 𝔽. Then
𝑔 is (1 |𝔽|⁄ , (𝑛 − 1) |𝔽|⁄)-BAU.
We prove Lemma 4 in Appendix A.

Lemma 5 (Lemma 4 of [6]). Let 𝔽 be an arbitrary field.
Further let 𝜏1, 𝜏3 be uniformly and independently chosen
elements of 𝔽. Then 𝜓 is (1 |𝔽|⁄ , (𝑛 − 1) |𝔽|⁄)-BAU.

Let Δ𝑙:𝑉𝑙 → 𝔽 be a function, that maps a binary string

𝑎 = (𝑎0, … , 𝑎𝑙−1) of 𝑉𝑙 to element 𝑎� = ∑ 𝑎𝑖𝑥𝑖𝑙−1
𝑖=0 of 𝔽,

where 𝑎𝑖 ∈ {0, 1} for each index 𝑖. Let ∇𝑙:𝔽 → 𝑉𝑙 be an
inverse function of Δ𝑙 .

Let ℰ be a block cipher with key space 𝒦, blocksize 𝑙 and
encryption function 𝐸. The XEHf mode uses two
independent block cipher keys 𝐾,𝐾′ ∈ 𝒦, and four subkeys
𝜏1, 𝜏2, 𝜏3, 𝜏4 that are derived from a sector number 𝑆𝑁 as
follows:

𝜏1 = Δ𝑙�𝐸𝐾(𝑆𝑁)�,
𝜏2 = Δ𝑙 �𝐸𝐾′�∇(𝜏1)�� ,
𝜏3 = Δ𝑙�𝐸𝐾′(𝑆𝑁)�,
𝜏4 = Δ𝑙 �𝐸𝐾�∇(𝜏3)��.

Let XEHf𝐸𝐾,𝐸𝐾′ be a tweakable encryption scheme
constructed from a block cipher ℰ. Encryption and
decryption functions of the scheme are denoted by 𝐄𝐧𝐜𝐾,𝐾′
and 𝐃𝐞𝐜𝐾,𝐾′ respectively. These functions are shown in Fig.
1.

IV. SECURITY OF XEHF MODE

Let XEHfπ,π′ be a tweakable encryption scheme, where
two uniformly random permutations π,π′ ∈ S(𝑉𝑙) are used
instead of block cipher in the XEHf mode. The permutation
π is used instead of 𝐸𝐾 , and permutation π′ is used instead
of 𝐸𝐾′. The key space of the scheme 𝒦′ is S(𝑉𝑙)2, i.e.
permutations π and π′ are used as a key.

Replacing a block cipher with π and π′ allows us to
analyze combinatorial properties of the XEHf mode without
taking block cipher properties into account. The concrete
security of XEHf mode is summarized in the following
theorem.

Theorem 1. (XEHf security) Let π ∈ S(𝑉𝑙) and π′ ∈ S(𝑉𝑙)
be random independent permutations. Fix positive integers
𝑙,𝑛, 𝑞. Then:

𝐀𝐝𝐯
XEHf π,π′
RND−fdeCCA−sector(𝑞) ≤

2(𝑛 + 2)2𝑞2

2𝑙
,

where 𝑞 = 𝑞𝑒 + 𝑞𝑑.
We prove Theorem 1 in Appendix B.

V. DISCUSSION AND COMPARISON WITH EXISTING
SOLUTIONS

The XEHf mode is compared with the following modes:

Function 𝐄𝐧𝐜𝐾,𝐾′(𝑆𝑁,𝑚1, … ,𝑚𝑛) Function 𝐃𝐞𝐜𝐾,𝐾′(𝑆𝑁, 𝑐1, … , 𝑐𝑛)

𝜏1 ← Δ𝑙�𝐸𝐾(𝑆𝑁)�
𝜏2 ← Δ𝑙 �𝐸𝐾′�∇(𝜏1)��
𝜏3 ← Δ𝑙�𝐸𝐾′(𝑆𝑁)�
𝜏4 ← Δ𝑙 �𝐸𝐾�∇(𝜏3)��

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)�

(𝑐1, … , 𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4
−1 (𝑐𝑐1, … , 𝑐𝑐𝑛)

Derive subkeys

Encrypt

for 𝑖 ← 1 to 𝑛 do
 𝑐𝑐𝑖 ← 𝐸𝐾�∇𝑙(𝑚𝑚𝑖)�

Return result
return �∇𝑙(𝑐1), … ,∇𝑙(𝑐𝑛)�

𝜏1 ← Δ𝑙�𝐸𝐾(𝑆𝑁)�
𝜏2 ← Δ𝑙 �𝐸𝐾′�∇(𝜏1)��
𝜏3 ← Δ𝑙�𝐸𝐾′(𝑆𝑁)�
𝜏4 ← Δ𝑙 �𝐸𝐾�∇(𝜏3)��

(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)�

(𝑚1, … ,𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚𝑚1), … ,Δ𝑙(𝑚𝑚𝑛)�

Derive subkeys

Decrypt

for 𝑖 ← 1 to 𝑛 do
 𝑚𝑚𝑖 ← 𝐸𝐾−1�∇𝑙(𝑐𝑐𝑖)�

Return result
return �∇𝑙(𝑚1), … ,∇𝑙(𝑚𝑛)�

Figure 1. Encryption (left) and decryption (right) under XEHf mode using block cipher ℰ with two independent keys 𝐾,𝐾′ ∈ 𝒦.
Functions 𝐸𝜅 and 𝐸𝜅−1 for 𝜅 ∈ {𝐾,𝐾′} are encryption and decryption functions of the block cipher ℰ on the key 𝜅. 86

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

DEC and XTS, that are standardized modes for block-
oriented storage devices, and XEH, which is the baseline of
the XEHf mode.

The main difference between XEHf and XEH modes is
the use of a different function 𝑔 after encrypting blocks with
a block cipher. For the XEHf mode, this function depends
on three subkeys 𝜏2, 𝜏3 and 𝜏4. For the XEH mode similar
function (we denote it by ℎ instead of 𝑔 to prevent
ambiguity) depends on two subkeys 𝜏2, 𝜏3 and is defined as
follows [6]:

ℎ(𝜏2, 𝜏3,𝒚) = 𝑞(𝜏3,𝒚) + 𝐚𝜏2 ,
𝑞(𝜏3,𝒚) = �𝑦1 + 𝑄𝜏3 ,⋯ ,𝑄𝑛−1 + 𝑄𝜏3 ,𝑄𝜏3�, (3)

where 𝑄𝜏3 = �∑ 𝑦𝑗 ⋅ 𝜏3
𝑛−𝑗𝑛

𝑗=1 � + �∑ 𝑦𝑗 ⋅ 𝔉𝑙(𝑗)𝑛−1
𝑗=1 �, and

𝔉𝑙:ℤ2𝑙 → 𝔽 is a function that maps an element 𝑟 =
∑ 𝑎𝑖2𝑖𝑙−1
𝑖=0 of the ring ℤ2𝑙 to an element 𝑟̃ = ∑ 𝑎𝑖𝑥𝑖𝑙−1

𝑖=0 of the
field 𝔽, 𝑎𝑖 ∈ {0,1} for 𝑖 ∈ {0, … , 𝑙 − 1}.

It is clearly seen that:

𝑄𝜏3 = 𝑦𝑛 + �𝑦𝑗 ⋅ �𝜏3
𝑛−𝑗 + 𝔉𝑙(𝑗)�

𝑛−1

𝑗=1

. (4)

Consider the following matrix:
𝜏3
𝜏3
𝜏32
⋮

𝜏3𝑛−1
�
�

 𝑦𝑛
(𝜏3 + 𝔉𝑙(𝑛 − 1)) ⋅ 𝑦𝑛−1
(𝜏32 + 𝔉𝑙(𝑛 − 2))

(𝜏3𝑛−1 + 𝔉𝑙(1))

⋅
⋮
⋅

𝑦𝑛−2

𝑦1

 (5)

The matrix (5) consists of 𝑛 rows. Each row represents a
step in computing the value of 𝑄𝜏3 . The right column (to the
right of the vertical line) consists of all summands of the
sum (4). The left column represents an auxiliary register.
While moving down the rows of the matrix, the value of this
register is multiplied by 𝜏3, except for the step from the first
row to the second one. Initially, the register contains 𝜏3. We
observe, that computing the value of 𝑄𝜏3 requires 2𝑛 − 3
multiplications and 2𝑛 − 2 additions in the field 𝔽. After
that according to (3), the value of 𝑄𝜏3 is added to each
block, except for the last one. It requires 𝑛 − 1 finite field
additions. Next, we add the value of 𝐚𝜏2 . This step requires
𝑛 finite field additions and 𝑛 − 1 finite field multiplications
by the primitive element 𝛼 = 𝑥.

Next, consider the function 𝑔 used in the XEHf mode. To
compute its value, the value of 𝑓 should be computed first.
According to Horner’s rule, computing the value of 𝑌𝜏3,𝜏4
requires 𝑛 − 1 finite field multiplications and 𝑛 additions.
The value of 𝑌𝜏3,𝜏4 is added to each block, except for the last
one, which requires 𝑛 − 1 finite field additions. Then, the
value of 𝐚𝜏2 is added to the result of the previous step. It
requires 𝑛 finite field additions and 𝑛 − 1 finite field
multiplications by the primitive element 𝛼.

Total number of subkeys and finite field operations
(additions, multiplications and multiplications by primitive
element) required to compute functions 𝑔 and ℎ is shown in
Table I.

TABLE I. TOTAL NUMBER OF SUBKEYS AND FINITE FIELD OPERATIONS
REQUIRED TO COMPUTE FUNCTIONS 𝑔 AND ℎ. NUMBER OF ADDITIONS,
MULTIPLICATIONS AND MULTIPLICATIONS BY PRIMITIVE ELEMENT ARE

DENOTED BY A, M AND MP RESPECTIVELY.
Function Subkeys A M MP

𝑔 3 3𝑛 − 1 𝑛 − 1 𝑛 − 1
ℎ 2 4𝑛 − 3 2𝑛 − 3 𝑛 − 1

From Table I, we observe that the function 𝑔 requires less
multiplications and additions than ℎ, but uses 3 subkeys
instead of 2. Each subkey is produced by invoking a block
cipher encryption function. Therefore, the XEHf mode is
more efficient than the XEH mode, if 𝑛 − 2 multiplications
and 𝑛 − 2 additions in finite field are performed faster than
one invocation of block cipher encryption function.

Similarly to the XEH and XTS modes and in contrast to
the DEC mode, the XEHf mode does not require any
additional data such as counters, initialization vectors, etc.
The DEC mode uses one half-block counter for each
partition and one half-block counter for each sector. These
counters should be stored on a storage device reducing disk
space available to user. Total amount of additional data
required for encryption of 32 GB of data on system disk
with 512-byte sector using standardized block ciphers is
shown in Table II. From Table II, we observe that this
amount exceeds 100 MB, and therefore, the additional data
could not be stored in system EFI partition, since the
standard size of this partition is exactly 100 MB, and it
cannot be extended with built-in Windows OS tools. This
makes the XEHf mode appropriate for encrypting of system
disk.

TABLE II. COMPARISON OF ADDITIONAL DATA AMOUNT FOR THE DEC AND

XEHF MODES REQUIRED FOR ENCRYPTION OF 32 GB SYSTEM DISK WITH
SECTOR SIZE OF 512 BYTES.

Cipher (mode) Blocksize Amount of
additional data

Magma (DEC) 64 bits 256 MB
Magma (XEHf) -

Kuznyechik (DEC) 128 bits 512 MB
Kuznyechik (XEHf) -

Furthermore, performance measurements are performed

for the XTS, XEH and XEHf modes. The DEC mode is
excluded from the performance comparison due to
impossibility of creating equivalent experimental
functioning conditions.

Abovementioned modes are implemented in C
programming language with SSE2 instructions set support.
In performance comparison each mode uses Kuznyechik as
a block cipher [8]. The experiment is conducted on a
computer with 2.6 GHz Intel(R) Core(TM) i7-9750H CPU,
8 Gb of DDR4 RAM, and 64-bit macOS 14.1 operating
system. During the experiment, 512- and 4096-byte sectors
are encrypted and decrypted multiple times, and the average
processing time is taken into account. Each value is
normalized for a corresponding value for XTS mode (thus,
all normalized values for XTS mode are equal to 1). The
results are shown in Table III.

TABLE III. RELATIVE TIME OF ENCRYPTING AND DECRYPTING OF 512- AND

4096-BYTE SECTORS IN XTS, XEH AND XEHF MODES.

Mode
Encryption Decryption

512
bytes

4096
bytes

512
bytes

4096
bytes

XTS 1 1 1 1
XEH 1.078 1.051 1.081 1.065
XEHf 1.055 1.037 1.051 1.044

From Table III, one can see, that performance degradation

relative to XTS mode does not exceed 9% for XEH and 6%
for XEHf. This decrease of performance is substantiated by

87

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

additional computations of 𝑓 and 𝜙. The XEHf mode
performs all operations faster, than its ancestor.

VI. CONCLUSION
In this paper we introduce a new provably secure block

ciphers mode of operation XEHf, which stands for “XEH
fast”, aimed to improve performance of the XEH mode
[5][6].

Cryptographic and operational properties of XEHf mode
are investigated. The mode is proven to be secure against
adaptive adversary in Chosen Ciphertext Attack (CCA)
setting. The mode uses block-wise universal hash functions,
which properties are essential for the mode’s security.

Performance comparison with existing modes is
performed. The XEHf mode runs 3% faster on average
compared to the XEH mode due to more efficient hash
function.

REFERENCES
[1] Isobe, T., & Minematsu, K. (2020). “Plaintext recovery attacks

against XTS beyond collisions” in K. G. Paterson, D. Stebila (eds.),
Selected Areas in Cryptography - SAC 2019, 103–123. Springer,
Cham.

[2] Firsov, G., & Koreneva, A. (2022). On One Block Cipher Mode of
Operation Used to Protect Data on Block-Oriented Storage Devices.
Modern Information Technologies and IT- Education, 18(3), 691–
701.

[3] R 1323565.1.042-2022. Information technology. Cryptographic
protection of information. Block ciphers mode of operation designed
to protect of data storage medium with a block-oriented structure.
(2022). Russian National Bureau of Standards.

[4] Bogdanov, D., & Nozdrunov, V. (2021). Some properties of one
mode of operation of block ciphers. In 10th Workshop on Current
Trends in Cryptology (CTCrypt 2021). Pre-proceedings (pp. 12–17).

[5] Firsov, G., & Koreneva, A. (2023). On one block cipher mode of
operation for protection of block-oriented storage devices. Applied
Discrete Mathematics. Supplement, 16(1), 52–56.

[6] Firsov, G., & Koreneva, A. (2024). On improved security bounds of
one block ciphers mode of operation for protection of block-oriented
system storage devices. Journal of Computer Virology and Hacking
Techniques.

[7] Liskov, M., Rivest, R. L., & Wagner, D. (2010). Tweakable block
ciphers. Journal of Cryptology, 24(3), 588–613.

[8] GOST 34.12-2018. Information technology. Cryptographic protection
of information. Block ciphers. (2018). Russian National Bureau of
Standards.

[9] Bellare, M., & Rogaway, P. (2005). Introduction to Modern
Cryptography.

[10] Halevi, S. (2007). “Invertible Universal Hashing and the TET
Encryption Mode” in Menezes, A. (ed), Advances in Cryptology -
CRYPTO 2007. CRYPTO 2007. Lecture Notes in Computer Science.
4622, 412–429. Springer, Berlin, Heidelberg.

[11] Sarkar, P. (2009). Efficient tweakable enciphering schemes from
(block-wise) universal hash functions. IEEE Transactions on
Information Theory, 55(10), 4749–4760.

88

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

APPENDIX A. THE PROOF OF LEMMA 4
Proof The proof uses the same idea as proof of Lemma 4 of
[6]. Fix some (𝑦1 , … ,𝑦𝑛) ∈ 𝔽𝑛 and (𝑦1′ , … ,𝑦𝑛′) ∈ 𝔽𝑛.
Further let (𝑧1, … , 𝑧𝑛) = 𝑔𝜏2,𝜏3,𝜏4(𝑦1, … ,𝑦𝑛) and
(𝑧1′ , … , 𝑧𝑛′) = 𝑔𝜏2,𝜏3,𝜏4(𝑦1′ , … ,𝑦𝑛′).
 Case 𝑖 ≠ 𝑖′. Without loss of generality, we assume 𝑖 < 𝑖′.
First, consider 𝑖′ < 𝑛. We have:

𝑧𝑖 − 𝑧𝑖′
′ = 𝜏2 ⋅ �𝛼𝑖−1 − 𝛼𝑖′−1� + 𝑅1, (6)

where 𝑅1 = �𝑦𝑖 + 𝑌𝜏3,𝜏4� − �𝑦𝑖′ + 𝑌𝜏3,𝜏4
′ �. From (6)

immediately follows that event 𝑧𝑖 = 𝑧𝑖′
′ is equivalent to the

event 𝜏2 = 𝑅1 ⋅ �𝛼𝑖
′−1 − 𝛼𝑖−1�

−1
. Since the right part of the

equation is independent from 𝜏2, which is chosen uniformly,
the probability of the last event equals 1 |𝔽|⁄ .
 Next, consider 𝑖′ = 𝑛. We have:

𝑧𝑖 − 𝑧𝑖′
′ = 𝜏2 ⋅ �𝛼𝑖−1 − 𝛼𝑖′−1� + 𝑅2,

where 𝑅2 = �𝑦𝑖 + 𝑌𝜏3,𝜏4� − 𝑌𝜏3,𝜏4
′ . As before, 𝑅2 is

independent from 𝜏2. Using similar idea we conclude, that
the probability of 𝑧𝑖 and 𝑧𝑖′

′ being equal given 𝑖′ = 𝑛 equals
1 |𝔽|⁄ . Hence:

Pr𝜏2,𝜏3,𝜏4�𝑧𝑖 = 𝑧𝑖′
′ � ≤

1
|𝔽| , 𝑖 ≠ 𝑖′. (7)

Case 𝑖 = 𝑖′. In this case, (𝑦1, … ,𝑦𝑛) ≠ (𝑦1′ , … ,𝑦𝑛′) always
holds. First, suppose 𝑖 < 𝑛. Then:

𝑧𝑖 − 𝑧𝑖′
′ = �𝑦𝑖 + 𝑌𝜏3,𝜏4� − �𝑦𝑖′ + 𝑌𝜏3,𝜏4

′ �.
From (1) and (2), we have: 𝑦𝑖 + 𝑌𝜏3,𝜏4 = 𝑅3 +

∑ 𝑦𝑗𝜏3𝑛−1𝑛−1
𝑗=1 , where 𝑅3 = 𝑦𝑖 + 𝜏4 + 𝑦𝑛. Similarly we have

𝑦𝑖′ + 𝑌𝜏3,𝜏4
′ = 𝑅3′ + ∑ 𝑦𝑗′𝜏3𝑛−1𝑛−1

𝑗=1 , 𝑅3′ = 𝑦𝑖′ + 𝜏4 + 𝑦𝑛′ . Event
𝑧𝑖 = 𝑧𝑖′

′ is equivalent to the event:

0 = (𝑅3 − 𝑅3′) + ��𝑦𝑗 − 𝑦𝑗′�𝜏3
𝑛−𝑗

𝑛−1

𝑗=1

. (8)

There exists at least one non-zero coefficient of
polynomial (8). Therefore, the equality (8) holds if and only
if 𝜏3 is a root of the polynomial.

Degree of the polynomial (8) does not exceed 𝑛 − 1, and
hence, there exist no more than 𝑛 − 1 roots. The polynomial
coefficients are all independent from 𝜏3, which is chosen
uniformly. Therefore, the probability of 𝑧𝑖 and 𝑧𝑖′

′ being
equal given 𝑖 = 𝑖′ ∧ 𝑖 < 𝑛 does not exceed (𝑛 − 1) |𝔽|⁄ .

Similar argument shows similar bound for case 𝑖 = 𝑛.
Hence:

Pr𝜏2,𝜏3,𝜏4�𝑧𝑖 = 𝑧𝑖′
′ � ≤

𝑛 − 1
|𝔽| , 𝑖 = 𝑖′. (9)

From (7) and (9), we conclude that 𝑔 is � 1
|𝔽|

, 𝑛−1
|𝔽|
�-BAU

by definition. This completes the proof.

APPENDIX B. THE PROOF OF THEOREM 1
Let 𝒜 be an adversary. We write “𝒜[𝐺𝐴𝑀𝐸] ⇒ 1” to

denote that adversary 𝒜 returned 1 in security game
(experiment) named “GAME”. We write “𝐺𝐴𝑀𝐸: 𝑏𝑎𝑑 = 1”
to denote that the “bad” flag equals 1 in the end of security
game “GAME”.

Proof This proof of the XEHf mode security is based on
game-substitution argument. The following four games are
introduced:
• Game XEHf. In this game the adversary interacts with a

challenger, that uses XEHfπ,π′ encryption scheme to
process requests. Permutations π and π′ are built via

“lazy sampling” technique, i.e. whenever the value of
π(𝑥) is required, we choose uniformly an “unused”
value and define π(𝑥) to equal this value. The same
steps are performed, whenever the value of π−1(𝑦) is
required. The permutation π′ is built in the similar way.

• Game RND1. This game differs from the previous one
in the way of building π and π′ functions. In this game,
we do not check if a newly chosen value is “unused”.
Hence, π and π′ are not necessary permutations.

• Game RND2. In this game, the challenger generates just
random binary strings of proper length as responses to
the adversary’s queries. After handling all queries, the
challenger checks if there is a collision in either domain
or range of π and/or π′ functions.

• Game NON (for “noninteractive”). In this game, we
consider stronger condition when the adversary sends
both plaintext and ciphertext in each query. This game’s
purpose is to upper bound the probability of a collision
in either domain or range of π and π′ functions.

We describe the algorithm of “lazy sampling” in more
detail. Using this algorithm, we build π and π′ permutations
in games XEHf and RND1. Since π and π′ are build the
same way, we describe this algorithm once.

Let 𝜔 ∈ {π,π′}. Let 𝐃𝜔 and 𝐑𝜔 be domain and range of
permutation 𝜔 respectively. These sets are used to track the
values, for which the permutation is defined. Both sets are
initially empty.

Whenever the value of 𝜔(𝑥) is required, an algorithm
𝐒𝐦𝐩𝜔 (“Smp” stands for “sample”) is invoked.
Corresponding algorithm 𝐒𝐦𝐩𝜔−1 exists for sampling 𝜔−1.
These algorithms are shown in Fig. B.1. For game XEHf,
we preserve the shaded statements, and for game RND1, we
do not.

We use the “bad” flag, which could be either 0 or 1.
Initially this flag is set to 0 and could be modified during the
game under certain conditions in algorithms 𝐒𝐦𝐩𝜔 and
𝐒𝐦𝐩𝜔−1 .

Algorithm 𝐒𝐦𝐩𝜔(𝑥) Algorithm 𝐒𝐦𝐩𝜔−1(𝑦)
Choose a value

𝑦
$
← 𝑉𝑙

Perform checks
if 𝑦 ∈ 𝐑𝜔 then
 𝑏𝑎𝑑 ← 1

 𝑦
$
← 𝑉𝑙 ∖ 𝐑𝜔

if 𝑥 ∈ 𝐃𝜔 then
 𝑏𝑎𝑑 ← 1
 𝑦 ← 𝜔(𝑥)
Save value
𝜔(𝑥) ← 𝑦
𝐃𝜔 ← 𝐃𝜔 ∪ {𝑥}
𝐑𝜔 ← 𝐑𝜔 ∪ {𝑦}
Return result
return 𝑦

Choose a value

𝑥
$
← 𝑉𝑙

Perform checks
if 𝑥 ∈ 𝐃𝜔 then
 𝑏𝑎𝑑 ← 1

 𝑥
$
←𝑉𝑙 ∖ 𝐃𝜔

if 𝑦 ∈ 𝐑𝜔 then
 𝑏𝑎𝑑 ← 1
 𝑥 ← 𝜔−1(𝑦)
Save value
𝜔(𝑥) ← 𝑦
𝐃𝜔 ← 𝐃𝜔 ∪ {𝑥}
𝐑𝜔 ← 𝐑𝜔 ∪ {𝑦}
Return result
return 𝑥

Figure B.1. Algorithms 𝑺𝒎𝒑𝜔 and 𝑺𝒎𝒑𝜔−1 for 𝜔 ∈ {𝜋,𝜋′}. We
preserve shaded statements for game XEHf and omit them for
game RND1.

89

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

In all games we never redefine subkeys. Let 𝐒 ⊆ 𝑉𝑙 × ℕ
be a set of pairs that consist of a sector number and a query
number, which the sector number was processed for the first
time on. Let 𝐓 ⊆ 𝔽4 × ℕ be a set of corresponding subkeys.
Sets 𝐒 and 𝐓 are related to each other: if (𝑆𝑁, 𝑗) ∈ 𝐒, and
𝜏1, 𝜏2, 𝜏3, 𝜏4 are computed using sector number 𝑆𝑁, then
(𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝑗) ∈ 𝐓.

Game XEHf. The challenger’s encryption and decryption

oracles use encryption and decryption functions of the
scheme XEHfπ,π′ respectively. In more details, the
encryption and decryption oracles invoke algorithms
𝐑𝐞𝐬𝐩𝐄𝐧𝐜 and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜 respectively. To track currently
handled query sequential number, these algorithms maintain
an internal counter 𝑐𝑛𝑡. To handle a sector number, these
algorithms invoke algorithm 𝐓𝐰𝐤. The algorithm 𝐓𝐰𝐤 is
shown in Fig. B.2, algorithms 𝐑𝐞𝐬𝐩𝐄𝐧𝐜 and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜 are
shown in Fig. B.3.

Algorithm Twk(𝑆𝑁, 𝑗)
if ∃𝑘: 𝑘 < 𝑗 ∧ (𝑆𝑁, 𝑗) ∈ 𝐒 then
 𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4 s. t. (𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4, 𝑘) ∈ 𝐓
else
 𝜏1 ← Δ𝑙�𝐒𝐦𝐩π(𝑆𝑁)�
 𝜏2 ← Δ𝑙 �𝐒𝐦𝐩π′�∇𝑙(𝜏1)��
 𝜏3 ← Δ𝑙�𝐒𝐦𝐩π′(𝑆𝑁)�
 𝜏4 ← Δ𝑙 �𝐒𝐦𝐩π�∇𝑙(𝜏3)��
 𝐒 ← 𝐒 ∪ {(𝑆𝑁, 𝑗)}
 𝐓 ← 𝐓 ∪ {(𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝑗)}
return 𝜏1, 𝜏2, 𝜏3, 𝜏4
Figure B.2. Algorithm Twk for games XEHf and RND1.

Game RND1. The only difference from the previous

game is definition of algorithms 𝐒𝐦𝐩𝜔 and 𝐒𝐦𝐩𝜔−1 for
𝜔 ∈ {𝜋,𝜋′}. The shaded statements in Fig. B.1 are omitted.
Hence, 𝜋 and 𝜋′ are not necessary permutations.

Note, that games XEHf and RND1 are identical until the
“bad” flag is set to 1. Therefore, we have:
Pr[𝒜[𝑋𝐸𝐻𝑓] ⇒ 1] − Pr[𝒜[𝑅𝑁𝐷1] ⇒ 1] ≤

≤ Pr[𝑅𝑁𝐷1: 𝑏𝑎𝑑 = 1].

Game RND2. We change the structure of a game. In this
game, the challenger responds on every query with a
random uniform binary string. Each string is chosen
independently. After processing all queries, challenger
checks if there exist a collision in either domain or range of
𝜋 and/or 𝜋′. If such collision exists, then the “bad” flag is
set to 1.
 More precisely, we modify algorithms 𝐓𝐰𝐤, 𝐑𝐞𝐬𝐩𝐄𝐧𝐜
and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜. Hereinafter 𝐃𝜔 and 𝐑𝜔 are in principle
multisets. The algorithm 𝐓𝐰𝐤 does not invoke 𝐒𝐦𝐩𝜔
anymore. Instead, it uniformly chooses subkeys and directly
modifies 𝐃𝜔 and 𝐑𝜔. Algorithms 𝐑𝐞𝐬𝐩𝐄𝐧𝐜 and 𝐑𝐞𝐬𝐩𝐃𝐞𝐜
are shown in Fig. B.4. Algorithm 𝐓𝐰𝐤 is shown in Fig. B.5.

After responding on the last adversary’s query, the “bad”
flag is set to 1 if there is a collision in at least one of the sets
𝐃𝜋, 𝐑𝜋, 𝐃𝜋′ and 𝐑𝜋′ .

The adversary in RND2 game receives uniformly random
𝑛-tuples of elements from 𝑉𝑙. In RND1 game, encryption
and decryption oracles uniformly and independently choose
values 𝑐𝑐𝑘 and 𝑚𝑚𝑘, 𝑘 ∈ {1, … ,𝑛} on each query. Applying
Lemma 1 and then Lemma 2 (both 𝑔𝜏2,𝜏3,𝜏4 and 𝜓𝜏1,𝜏3 are
permutations for every 𝜏1, 𝜏2, 𝜏3, 𝜏4), we conclude that
games RND1 and RND2 are indistinguishable by the
adversary 𝒜, because the adversary receives uniformly
random binary strings in both games. Therefore, we have:

Pr[𝒜[𝑅𝑁𝐷1] ⇒ 1] = Pr[𝒜[𝑅𝑁𝐷2] ⇒ 1],
Pr[𝑅𝑁𝐷1: 𝑏𝑎𝑑 = 1] = Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1].

Algorithm Twk(𝑆𝑁, 𝑗)
if ∃𝑘: 𝑘 < 𝑗 ∧ (𝑆𝑁, 𝑗) ∈ 𝐒 then
 𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4 s. t. (𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4, 𝑘) ∈ 𝐓
else
 for 𝑗 ← 1 to 4 do

 𝜏̂𝑗
$
← 𝑉𝑙

 𝜏𝑗 ← Δ𝑙�𝜏̂𝑗�
 𝐒 ← 𝐒 ∪ {(𝑆𝑁, 𝑗)}
 𝐓 ← 𝐓 ∪ {(𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝑗)}
 𝐃𝜋 ← 𝐃𝜋 ∪ {𝑆𝑁, 𝜏̂3}
 𝐑𝜋 ← 𝐑𝜋 ∪ {𝜏̂1, 𝜏̂4}
 𝐃𝜋′ ← 𝐃𝜋′ ∪ {𝑆𝑁, 𝜏̂1}
 𝐑𝜋′ ← 𝐑𝜋′ ∪ {𝜏̂2, 𝜏̂3}
return 𝜏1, 𝜏2, 𝜏3, 𝜏4
Figure B.5. Algorithm Twk for game RND2.

Algorithm 𝐑𝐞𝐬𝐩𝐄𝐧𝐜(𝑆𝑁,𝐦) Function 𝐑𝐞𝐬𝐩𝐃𝐞𝐜(𝑆𝑁, 𝐜)

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡)
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)�

(𝑐1, … , 𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4
−1 (𝑐𝑐1, … , 𝑐𝑐𝑛)

Process sector number

Encrypt

for 𝑖 ← 1 to 𝑛 do
 𝑐𝑐𝑖 ← 𝐒𝐦𝐩𝜋�∇𝑙(𝑚𝑚𝑖)�

Return result
return �∇𝑙(𝑐1), … ,∇𝑙(𝑐𝑛)�

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡)
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1

(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)�

(𝑚1, … ,𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚𝑚1), … ,Δ𝑙(𝑚𝑚𝑛)�

Process sector number

Decrypt

for 𝑖 ← 1 to 𝑛 do
 𝑚𝑚𝑖 ← 𝐒𝐦𝐩𝜋−1�∇𝑙(𝑐𝑐𝑖)�

Return result
return �∇𝑙(𝑚1), … ,∇𝑙(𝑚𝑛)�

Figure B.3. Algorithms 𝑹𝒆𝒔𝒑𝑬𝒏𝒄 and 𝑹𝒆𝒔𝒑𝑫𝒆𝒄 for games XEHf and RND1. 90

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

 In game RND2, the adversary interacts with two random
oracles, since these oracles respond with uniformly and
independently chosen random binary strings. Hence:

Pr[𝒜[𝑅𝑁𝐷2] ⇒ 1] = Pr�𝒜$,$ ⇒ 1�.
 We have the following upper bound on the adversary’s
advantage:
𝐀𝐝𝐯

XEHf π,π′
RND−fdeCCA−sector(𝒜) =

= Pr �𝒜𝐸�𝐾,𝐸�𝐾
−1
⇒ 1� − Pr�𝒜$,$ ⇒ 1� =

= Pr[𝒜[𝑋𝐸𝐻𝑓] ⇒ 1] − Pr[𝒜[𝑅𝑁𝐷2] ⇒ 1] =
= Pr[𝒜[𝑋𝐸𝐻𝑓] ⇒ 1] − Pr[𝒜[𝑅𝑁𝐷1] ⇒ 1] ≤
≤ Pr[𝑅𝑁𝐷1: 𝑏𝑎𝑑 = 1] =
= Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1].

(10)

Game NON. In this game, we consider stronger

condition. The adversary sends both plaintext and ciphertext
in each query. More formally, it makes 𝑞 = 𝑞𝑒 + 𝑞𝑑 queries.
The 𝑗-th query has the following form: �𝑆𝑁𝑗 ,𝐦𝑗 , 𝐜𝑗 , 𝑡𝑗�,
where 𝑆𝑁𝑗 is a sector number, 𝐦𝑗 is an 𝑛-block message
(plaintext), 𝐜𝑗 is an 𝑛-block ciphertext, 𝑡𝑗 is either 0 or 1
denoting encryption or decryption query respectively. We
denote 𝑖-th block of 𝐦𝑗 (𝐜𝑗) by 𝑚𝑗,𝑖 (𝑐𝑗,𝑖) for 𝑖 ∈ {1, … ,𝑛}.
Oracles perform the same actions as in previous game,
except for response generation, since response is provided
by adversary.

The adversary’s queries are such that they maximize the
probability of the “bad” flag being set and are not pointless.
The adversary never makes the same query twice.

Now we could get rid of the concrete adversary and find
an upper bound on the value of 𝐀𝐝𝐯

XEHf π,π′
RND−fdeCCA−sector(𝑞)

via bounding the probability Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1].

Collision analysis. Let 𝐶𝑜𝑙𝑙𝑋 be an event of a collision in

multiset 𝑋 for 𝑋 ∈ {𝐃𝜋,𝐑𝜋 ,𝐃𝜋′ ,𝐑𝜋′}. By inclusion-
exclusion principle we have:
Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1] ≤ Pr�𝐶𝑜𝑙𝑙𝐃𝜋� +

 + Pr�𝐶𝑜𝑙𝑙 𝐑𝜋� +
 + Pr �𝐶𝑜𝑙𝑙𝐃𝜋′� +

 + Pr �𝐶𝑜𝑙𝑙𝐑𝜋′�.

(11)

Consider 𝑗-th query. Let �𝑚𝑚𝑗,1, … ,𝑚𝑚𝑗,𝑛� =
𝜓𝜏1,𝑗,𝜏3,𝑗 �Δ𝑙�𝑚𝑗,1�, … ,Δ𝑙�𝑚𝑗,𝑛��, �𝑐𝑐𝑗,1, … , 𝑐𝑐𝑗,𝑛� =

𝑔𝜏2,𝑗,𝜏3,𝑗,𝜏4,𝑗 �Δ𝑙�𝑐𝑗,1�, … ,Δ𝑙�𝑐𝑗,𝑛��, where 𝜏1,𝑗, 𝜏2,𝑗, 𝜏3,𝑗, 𝜏4,𝑗
are subkeys for the 𝑗-th query.

First, consider the multiset 𝐑𝜋. This multiset consists of
the following values: ∇𝑙�𝜏1,𝑗�, ∇𝑙�𝜏4,𝑗�, ∇𝑙�𝑐𝑐𝑗,1�, …,
∇𝑙�𝑐𝑐𝑗,𝑛� for every 𝑗 ∈ {1, … , 𝑞}.

Let 𝐶𝑜𝑙𝑙𝜏,𝑔 be an event that there is at least one pair (𝑖, 𝑗)
such that 𝑆𝑁𝑖 ≠ 𝑆𝑁𝑗 and �𝜏2,𝑖, 𝜏3,𝑖 , 𝜏4,𝑖� = �𝜏2,𝑗, 𝜏3,𝑗 , 𝜏4,𝑗�.
From law of total probability, we have:

Pr�𝐶𝑜𝑙𝑙 𝐑𝜋� ≤ Pr�𝐶𝑜𝑙𝑙𝜏,𝑔� + Pr�𝐶𝑜𝑙𝑙 𝐑𝜋|𝐶𝑜𝑙𝑙𝜏,𝑔����������, (12)

where event 𝐶𝑜𝑙𝑙𝜏,𝑔��������� is complement of 𝐶𝑜𝑙𝑙𝜏,𝑔.
First, consider the event 𝐶𝑜𝑙𝑙𝜏,𝑔. There are at most

�𝑞2� ≤ 𝑞2/2 pairs of different sector numbers. Consider a
pair (𝑖, 𝑗) such that 𝑆𝑁𝑖 ≠ 𝑆𝑁𝑗. The probability of
�𝜏2,𝑖 , 𝜏3,𝑖 , 𝜏4,𝑖� and �𝜏2,𝑗, 𝜏3,𝑗 , 𝜏4,𝑗� being equal is 2−3𝑙,
because all subkeys are chosen uniformly and
independently. Hence:

Pr�𝐶𝑜𝑙𝑙𝜏,𝑔� ≤
𝑞2

2 ⋅ 23𝑙
. (13)

Next, we assume that the event 𝐶𝑜𝑙𝑙𝜏,𝑔��������� occurs, i.e. all
subkeys are different for different sector numbers. Let 𝑝 ≤ 𝑞
be the total number of different sector numbers occurred
among adversary’s queries. We write all these sector
numbers in some order (the specific order is not important in
this context): (𝑆𝑁1, … , 𝑆𝑁𝑝), where superscript denote
sequence numbers in particular order.

We rewrite all values of 𝑐𝑐𝑗,1, …, 𝑐𝑐𝑗,𝑛 into 𝑝 matrices.
Each such matrix contains values computed for queries with
the same sector number. These matrices are of the following
form:

𝒞𝒞𝑡 = �
𝑐𝑐𝑘1,1 ⋯ 𝑐𝑐𝑘1,𝑛
⋮ ⋱ ⋮

𝑐𝑐𝑘𝑞𝑡 ,1 ⋯ 𝑐𝑐𝑘𝑞𝑡 ,𝑛
�, (14)

where 𝑡 ∈ {1, … , 𝑝}, and �𝑘1, … , 𝑘𝑞𝑡� ⊆ {1, … , 𝑞} are
numbers of queries that contain sector number 𝑆𝑁𝑡, i.e.
𝑆𝑁𝑘1 = ⋯ = 𝑆𝑁𝑘𝑞𝑡 = 𝑆𝑁𝑡. Note that ∑ 𝑞𝑡

𝑝
𝑡=1 = 𝑞.

 Now we bound the probability of a collision in columns
of matrices (14). There are 𝑛 columns in 𝑡-th matrix, in each
column there are �𝑞𝑡2 � elements. Therefore, there are at most

𝑛 ⋅ �𝑞𝑡2 � different pairs of elements in columns of 𝑡-th
matrix. By Lemma 4, the probability of collision in such
pair does not exceed 𝑛−1

2𝑙
. Therefore, we have the following

upper bound on probability of collision among such pairs:

Algorithm 𝐑𝐞𝐬𝐩𝐄𝐧𝐜(𝑆𝑁,𝐦) Function 𝐑𝐞𝐬𝐩𝐃𝐞𝐜(𝑆𝑁, 𝐜)

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡)
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1

(𝑐1, … , 𝑐𝑛)
$
←𝑉𝑙𝑛

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)�
(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)�
𝐃𝜋 ← 𝐃𝜋 ∪ {∇𝑙(𝑚𝑚1), … ,∇𝑙(𝑚𝑚𝑛)}
𝐑𝜋 ← 𝐑𝜋 ∪ {∇𝑙(𝑐𝑐1), … ,∇𝑙(𝑐𝑐𝑛)}

Process sector number

“Encrypt”

Update multisets

Return result
return (𝑐1, … , 𝑐𝑛)

𝜏1, 𝜏2, 𝜏3, 𝜏4 ← 𝐓𝐰𝐤(𝑆𝑁, 𝑐𝑛𝑡)
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1

(𝑚1, … ,𝑚𝑛)
$
←𝑉𝑙𝑛

(𝑚𝑚1, … ,𝑚𝑚𝑛) ← 𝜓𝜏1,𝜏3�Δ𝑙(𝑚1), … ,Δ𝑙(𝑚𝑛)�
(𝑐𝑐1, … , 𝑐𝑐𝑛) ← 𝑔𝜏2,𝜏3,𝜏4�Δ𝑙(𝑐1), … ,Δ𝑙(𝑐𝑛)�
𝐃𝜋 ← 𝐃𝜋 ∪ {∇𝑙(𝑚𝑚1), … ,∇𝑙(𝑚𝑚𝑛)}
𝐑𝜋 ← 𝐑𝜋 ∪ {∇𝑙(𝑐𝑐1), … ,∇𝑙(𝑐𝑐𝑛)}

Process sector number

“Decrypt”

Update multisets

Return result
return (𝑚1, … ,𝑚𝑛)

Figure B.4. Algorithms 𝑹𝒆𝒔𝒑𝑬𝒏𝒄 and 𝑹𝒆𝒔𝒑𝑫𝒆𝒄 for game RND2.

91

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

�
𝑛(𝑛 − 1) ⋅ �𝑞𝑡2 �

2𝑙

𝑝

𝑡=1

≤�
𝑞𝑡2𝑛(𝑛 − 1)

2 ⋅ 2𝑙

𝑝

𝑡=1

≤

 ≤
𝑛(𝑛 − 1)

2 ⋅ 2𝑙
��𝑞𝑡2

𝑝

𝑡=1

�

2

=

 =
1
2
⋅
𝑛(𝑛 − 1)𝑞2

2𝑙
.

The number of remaining pairs does not exceed �|𝐑𝜋|
2
� ≤

|𝐑𝜋|2/2. Probability of a collision in such pair is not
greater, than 1/2𝑙. Note that |𝐑𝜋| ≤ (𝑛 + 2)𝑞. Hence, the
probability of collision among these pairs is less or equal to
(𝑛 + 2)2𝑞2/(2 ⋅ 2𝑙).

The probability of collision in 𝐑𝜋 given 𝐶𝑜𝑙𝑙𝜏,𝑔��������� is
bounded as follows:
Pr�𝐶𝑜𝑙𝑙 𝐑𝜋|𝐶𝑜𝑙𝑙𝜏,𝑔���������� ≤

≤
1
2
�
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
�.

(15)

From (12) given (13) and (15), we have:
Pr�𝐶𝑜𝑙𝑙 𝐑𝜋� ≤

≤
1
2
�
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+
𝑞2

23𝑙
�.

Similar analysis shows the following upper bound for
Pr�𝐶𝑜𝑙𝑙𝐃𝜋�. The only difference is that we apply Lemma 5
instead of Lemma 4, and instead of the event 𝐶𝑜𝑙𝑙𝜏,𝑔, we
consider an event 𝐶𝑜𝑙𝑙𝜏,𝜓 of existence of at least on pair
(𝑖, 𝑗) such that 𝑆𝑁𝑖 ≠ 𝑆𝑁𝑗 and �𝜏1,𝑖 , 𝜏3,𝑖� = �𝜏1,𝑗 , 𝜏3,𝑗�:
Pr�𝐶𝑜𝑙𝑙 𝐃𝜋� ≤

≤
1
2
�
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+
𝑞2

22𝑙
�.

Next, consider the multiset 𝐑𝜋′ . It consists of at most 2𝑞
values. By Lemma 3, we have the following upper bound on
probability of collision is this multiset:

Pr �𝐶𝑜𝑙𝑙 𝐑𝜋′� =
1
2
⋅

2𝑞(2𝑞 − 1)
2𝑙

<
2𝑞2

2𝑙
.

Similar analysis shows the same upper bound for
Pr �𝐶𝑜𝑙𝑙𝐃𝜋′�.

Given abovementioned upper bounds on summands in
(11), we have:
Pr[𝑅𝑁𝐷2: 𝑏𝑎𝑑 = 1] ≤

≤
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+

𝑞2

2 ⋅ 23𝑙
+

 +
𝑞2

2 ⋅ 22𝑙
+

4𝑞2

2𝑙
≤

≤
𝑛(𝑛 − 1)𝑞2

2𝑙
+

(𝑛 + 2)2𝑞2

2𝑙
+

𝑞2

8 ⋅ 2𝑙
+

 +
𝑞2

4 ⋅ 2𝑙
+

4𝑞2

2𝑙
=

=
𝑞2

2𝑙
�𝑛(𝑛 − 1) + (𝑛 + 2)2 +

35
8
� ≤

≤
2(𝑛 + 2)2𝑞2

2𝑙
.

Hence, advantage of an adversary, that makes 𝑞 queries in
total, has the following upper bound:

𝐀𝐝𝐯
XEHf π,π′
RND−fdeCCA−sector(𝑞) ≤

2(𝑛 + 2)2𝑞2

2𝑙
.

This completes the proof.

92

	I. INTRODUCTION
	II. Preliminaries
	III. Specification of XEHf mode
	IV. Security of XEHf mode
	V. Discussion and comparison with existing solutions
	VI. Conclusion
	References
	Appendix A. The proof of Lemma 4
	Appendix B. The proof of Theorem 1

