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Abstract— This article discusses the problem of blocking 

nodes in road networks and percolation thresholds for the 
transport infrastructure of a modern metropolis. For 
metropolitan networks, the values of percolation thresholds are 
calculated and displayed, considering the different density of 
connections between network nodes. Further, it is shown that 
the dependence of the values of the percolation thresholds on 
the network’s density can be described by functional 
dependencies with a high degree of correlation.  

The obtained results can be used to assess the reliability of 
transport infrastructure and to check the increase in the 
capacity of selected sections of the road network. 

Further, the article discusses obtaining a description of road 
infrastructure from open sources (obtaining data from 
OpenStreetMap using the SUMO - Simulation of Urban 
MObility package), after which it is possible to build a graph of 
the road network and determine its percolation properties. For 
the constructed nodes of the graph described a model of the 
stochastic dynamics of blocking a single road lane in the 
transport network. 

The threshold value L of number of cars that can be placed 
in the lane (based on the length of the road lane) is used as 
constraints and the incoming and outgoing flows of cars are 
also determined as income parameters of a model. The 
constructed model allows us to obtain the predicted blocking 
time of a road network line, for a given probability of such 
blocking, where the probability of blocking a single road 
network line is taken from the percolation properties of this 
network discussed earlier. 

The resulting blocking times of road network nodes make it 
possible to build an algorithm for controlling traffic light 
regulation. 

 
Keywords—percolation theory, road networks, roads 

modelling. 
 

I. INTRODUCTION 

The management of a city's road network is an important 
task, as it contributes to economic growth and the 
development of the urban environment. In today's world, 
increasing attention is being paid to ecological issues, which 
requires improving the efficiency of transport and transport 
management. This includes effective planning and managing 
of road infrastructure that helps regulate traffic, reduce 
congestion, and reduce travel times. In most cases, there is a 
shortage of roads space, leading to congestion on roads and, 
consequently, loss of time, economic problems, and 
increased emissions of harmful substances. 
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II. RELEVANCE OF THE STUDY 
The modern transport network is a complex dynamic 

system, with many road users (cars and trucks, personal 
transport such as scooters and bicycles), with many 
components of the road network (roads, dedicated roads, toll 
roads, roads with time-varying characteristics, complex road 
junctions, dynamically controlled traffic lights and ordinary 
(uncontrolled) traffic lights, barriers) and with the 
perspective of appearing on city streets completely 
Autonomous transport [1], that kind of systems are 
becoming more complex from year to year. 

Currently, many scientific works are devoted to the 
problems of urban transport networks, route optimization 
and traffic management. Some of the most common topics 
of modern research are presented in fig. 1. Researchers 
develop and apply tools to simulate congestion and transport 
networks and to predict the behavior of road users to 
improve the quality and quantity of road networks. 

Fig. 1 shows the main directions of modern research, such 
as:  

• Descriptions of the cities of tomorrow. 

• Construction of intelligent transport systems. 

• Application of multi-agent systems for traffic 
management. 

• Using different genetic algorithms to optimize the 
operation of the urban transport network. 

• Construction of optimal algorithms for the selection of 
a route and the conduct of linear planning with the 
assignment of a route. 

• Application of various recurrent neural networks to 
predict urban traffic flows. 

 

Fig. 1. Basic approaches to transport network modeling 

In addition to all the efforts made, we notice that with the 
growth of cities, with the advent of the concept of a smart 
city, the city of tomorrow and with the expansion of road 
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networks – the logistical tasks in the urban environment are 
also becoming more complicated. Despite the abundance of 
proposed solutions on the roads, congestion is still observed, 
which leads to significant economic (man-hours), 
environmental (excess emissions into the atmosphere) and 
many other problems (inefficient use of transport 
infrastructure, for example). 

III. PROBLEM STATEMENT 
Significant indicators of the density of motor vehicles per 

unit area of all available roads lead to the inevitable 
emergence of large accumulations of cars on certain 
elements of the road transport network (intersections and 
roads), i.e., the occurrence of congestion (traffic jams). The 
bulk of all studies of transport traffic, its analysis and 
development of management models are aimed at solving 
the problem at the local level, while not affecting the 
transport infrastructure of the city. 

The road and transport network of modern megacities has 
a very large, complex, and extensive structure (see, for 
example, fig. 2. When modeling traffic, it is necessary to 
consider the dynamics of changes in traffic congestion 
(daily change in the intensity of flows) and the fact that all 
elements of the transport network graph (nodes and edges) 
have different characteristics (capacity). 

 
Fig. 2. Fragment of modern transport infrastructure (SUMO) 

If we go the way of creating a detailed model of the 
transport network graph with a detailed description of the 
attributes of all elements (the number of lanes on the roads, 
their length, the number of directions at intersections, etc.), 
which is required for local management of intersections, 
then such a model will be extremely complex and difficult 
to implement for practical application. From the point of 
view of labor intensity and applicability, it is more 
acceptable to create a percolation model of the city's 
transport network. In such a model it is possible to ensure 
the overall operability of the structure, even though 
individual elements may be blocked due to the formation of 
traffic jams. In this case, by ensuring operability and 
availability, we will understand that between any two 
arbitrary nodes of the network, there is at least one free path 
from unblocked elements of the road network. 

IV. PERCOLATION IN ROAD NETWORKS 
In the percolation theory for networks with different 

structures (regular, random), the solution of nodes problem 
and the links problem are studied in previous papers [2–5]. 

When we are solving the links problem, determine the 
proportion of links that need to be broken so that the 
network splits into at least two unrelated parts (or vice versa, 
the share of conductive links when conduction occurs). In 
the node problem, the proportion of blocked nodes is 
determined, in which case the network will break up into 
unrelated clusters within which links are preserved (or vice 
versa, the proportion of conductive nodes when conduction 
occurs). The proportion of unblocked nodes (in the node 
problem solving task) or unbroken links (in the links 
problem solving task) in which conduction occurs between 
two arbitrarily selected network nodes is called the 
percolation (flow) threshold. For the same structure, the 
values of the percolation thresholds for the links problem 
and the node task have different values. Note that, when a 
node is blocked, all its links are blocked, and when links are 
blocked, only one connection between neighboring nodes is 
blocked. 

The using of the concept of blocked node shares or 
blocked links shares is equivalent to the concept of the 
probability of finding a randomly selected node (or link) 
behind a blocked state. Therefore, it can be assumed that the 
value of the percolation threshold determines the probability 
of passing through the road network, even though some part 
of its nodes (or links) can be blocked (excluded), i.e., the 
average probability of blocking a single node (or link) is set.  

Reaching the percolation threshold in the network 
corresponds to a cluster (for example, blocked streets) in 
which there are connections between any of its arbitrary 
nodes. At this point is formed cluster, also-called infinite or 
contracting.  

For finite-size structures, conduction may occur with 
different proportions of conductive nodes (or links, see fig. 
3). However, if the size of the network L is going to infinity, 
the area of transition to the conductive state becomes 
compact (see fig. 3, where curve I is represented for a 
structure of small size, and II for an infinite network). Note, 
that this approach claims to be universal and can be applied 
not only to the topology of road networks, but also to other 
topologies [6, 7]. 

 
Fig. 3. The probability of percolation depending on the size of the 
proportion of conductive nodes (or links). 

For finite-size structures, the value of the percolation 
threshold ξc(L) can be determined from a given value of the 
probability of the network entering a conductive state. On 

16 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024 
 
 
fig. 3 such kind of probability is selected as 0.5 (50%). 
However, you can take, for example, a value of 0.90, 0.95 or 
0.99 (then the percolation threshold will meet the specified 
criterion for network reliability), i.e., it is possible to 
determine at what proportion of blocked nodes and/or links 
the entire network will lose the desired level of operability. 

If you specify a network availability value (the 
probability of a transition or being in a conductive state), 
you can determine the proportion of nodes (or links) that are 
in an unblocked state. 

The proportion of blocked nodes (or links) in which the 
conductivity of the network disappears (which can be 
calculated by the formula: one minus the proportion of 
conducting nodes (or links)), sets the blocking of the entire 
network, and the value of which can be associated with the 
macro characteristics of the traffic in the transport system (at 
current point in time). In the simplest case, we can give the 
following estimate: the accepted level of intensity of free 
traffic (let's denote it as qmax): for European cities is 600-
900, in the USA - up to 1300, and in Russian cities this 
figure is 300-700 cars per lane per hour. Accordingly, 
knowing the total length of the roads of the metropolis and 
the number of lanes on them, as well as the dynamics of the 
daily number of vehicles, it is possible to calculate based on 
these data the average level of traffic intensity for the entire 
network at any time (let's denote it as q(t)). Then, the 
average probability (P(t)) of blocking the network element 
at time t can be determined as follows: 

𝑃(𝑡) = �
𝑞(𝑡)
𝑞𝑚𝑎𝑥

,𝑤ℎ𝑒𝑛 𝑞(𝑡) ≤ 𝑞𝑚𝑎𝑥
1,𝑤ℎ𝑒𝑛  𝑞(𝑡) > 𝑞𝑚𝑎𝑥

 (1) 

Further, using the obtained estimate of the probability of 
blocking the network element, it is possible to determine at a 
given time t the state of its reliability and operability, as well 
as to analyze the daily dynamics of changes, and, if 
necessary, change the structure (for example, the density of 
links) of the transport system in the necessary way. 

For accurate estimates of the average probability of 
blocking, various macroscopic mathematical models of 
traffic flows can be used (models of Greenshields, Richards, 
Grindberg, El Khozaini, Underwood, Drake, Pipes, optimal 
speed, "smart" driver, following the leader, cellular 
automata, and many others). 

The main problem in the study of percolation properties 
of network structures that have a random structure is the 
absence (at present) of general analytical methods, and the 
study of network structures is possible mainly only with the 
involvement of computer modeling methods. To study the 
percolation properties of planar network structures that have 
a random structure, it is first necessary to build their 
topological graph, which is a very time-consuming task. At 
the same time, to build a graph, you can use the algorithm 
for building planar networks [6,10]. After the network is 
built (either algorithmically or based on real data), it is 
possible to study the percolation properties of the resulting 
network structure. 

The application of some methods of percolation theory to 
the modeling of traffic flows is described in the work [7]. In 
this paper, traffic dynamics is considered as a critical 
phenomenon in which there is a transition between isolated 

local and global flows on the roads with the formation of 
clusters of congested sections of the transport network in 
local structures and their unification into a giant cluster. 
Local flows are connected by narrow links, and the narrow 
links themselves can occur in different places of the 
transport network at different times of the day. The authors 
[7] characterize such processes as traffic percolation 
between local clusters. The authors tried to describe how 
local flows on roads interact and unite into a global flow 
throughout the urban network. One of the complex tasks that 
arise when modeling a transport structure is the assessment 
of all its dynamics and traffic organizations throughout the 
network and its relationship with local traffic characteristics 
[7]. They collected and analyzed the speeds of more than 
1,000 roads with a record of 5-minute segments measured 
on roads in a central area of Beijing. The data covers a 
period of 2 weeks in 2013, the road network consists of 
intersections (nodes) and road sections between two 
intersections. For each road, the speed of Vij(t) changes 
during the day according to the real time. For each road eij , 
the authors set the 95th percentile of its maximum speed in 
each day and defined the model parameter rij(t) as the ratio 
between the current speed and the limited maximum speed 
measured for that day. At some given threshold q, all roads 
eij can be divided into two categories: those that are 
accessible at rij > q and inaccessible at rij < q. According to 
the authors [7], in this way, it is possible to construct a 
functional traffic network for a given value q from the 
dynamics of traffic flows.  

With q = 0, nothing happens to the network with traffic, 
and with q = 1, the traffic becomes completely fragmented. 
Hierarchical traffic organization at different scales appears 
only in groups of roads with rij higher than q. Such clusters 
are functional modules consisting of connected roads at 
speeds above q. For example, at q = 0.69, a speed occurs on 
some sections that cannot be maintained by a transport 
network everywhere. When the value of q is reduced to 
0.19, then, small clusters merge together and a giant cluster 
is formed in which a functional network (with a lower flow 
rate) extends to almost the entire road network. 

The advantage of the method of traffic modeling and 
analysis presented by the authors is that having data on 
transport flows in a real network, it is possible to determine 
the critical value qc below which the transport network loses 
functionality (percolation threshold). In [7], the value of qc 
was approximately equal to 0.4. 

The disadvantage of the study [7] is that the results 
obtained are of a private nature and are obtained only for a 
certain part of Beijing's transport network. Therefore, they 
cannot be generalized to a transport network with an 
arbitrary structure. 

In addition, another drawback is the significant 
laboriousness of the method of analysis and modeling of 
transport networks proposed by the authors of this work.  

A more technological and universal modeling method can 
be the use of general characteristics of network structures, 
for example, the influence of network density on traffic 
percolation. In this case, if it turns out that the density of the 
network, regardless of its actual structure, is a universal 
characteristic that allows you to link structural and dynamic 
(such as traffic) characteristics, then, at a minimum, this 
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reduces the complexity of analyzing and modeling the 
performance of the transport network, and this approach will 
be a universal solution. 

V. FINDING SOLUTIONS 
As part of the study, random planar networks, and 

algorithms for modeling percolation processes in them, were 
simulated.  

The results of numerical modeling based on algorithms 
and the calculation of percolation thresholds of planar 
networks with a random number of links on each node for 
the nodes problem task and links problems task are 
presented in Table 1 below. 

TABLE I. VALUES OF PERCOLATION THRESHOLDS FOR PLANAR 
NETWORKS HAVING A RANDOM STRUCTURE 

№ Task Type Density (Inverse 
density)a 

Percolation 
threshold (ln P(t)) b 

1. 

Nodes 
problem task 
[9–12] 

5.99 (0.167) 0.500 (-0.693) 

2. 5.40 (0.185) 0.533 (-0.629) 

3. 4.80 (0.208) 0.570 (-0.562) 

4. 4.50 (0.222) 0.593 (-0.523) 

5. 4.20 (0.238) 0.618 (-0.481) 

6. 3.90 (0.256) 0.650 (-0.431) 

7. 3.60 (0.278) 0.683 (-0.381) 

8. 3.42 (0.292) 0.708 (-0.345) 

9. 3.18 (0.314) 0.750 (-0.288) 

10. 2.94 (0.340) 0.793 (-0.232) 

11. 2.70 (0.370) 0.852 (-0.160) 

12. 2.46 (0.407) 0.925 (-0.078) 

13. 

Links 
problem task 

5.99 (0.167) 0.395 (-0.929) 

14. 5.69 (0.176) 0.405 (-0.904) 

15. 5.39 (0.186) 0.435 (-0.832) 

16. 5.09 (0.196) 0.445 (-0.810) 

17. 4.49 (0.223) 0.480 (-0.734) 

18. 4.19 (0.239) 0.510 (-0.673) 

19. 3.89 (0.257) 0.550 (-0.598) 

20. 3.59 (0.279) 0.570 (-0.562) 

21. 3.29 (0.304) 0.625 (-0.470) 

22. 2.99 (0.334) 0.685 (-0.378) 

23. 2.87 (0.348) 0.715 (-0.335) 

24. 2.70 (0.370) 0.770 (-0.261) 

25. 2.58 (0.388) 0.805 (-0.217) 

26. 2.39 (0.418) 0.900 (-0.105) 
a. Average number of links per network node (network density).  

In parentheses   are the values for inverse density values. 

b. Percolation threshold value (the proportion of conductive nodes or links at which conductivity of 
the network occurs).  

In brackets are the values of the natural logarithm values from the value of the percolation 
threshold. 

Table 1 specifies the values of percolation thresholds, as 
the proportion of conductive nodes (or links) at which the 
conductivity of the network occurs. The proportion of 

blocked nodes (or links) in which the conductivity of the 
network disappears can be found as a one minus the 
proportion of conductive nodes (or links). 

Note that the values of percolation thresholds of planar 
networks with different densities for the problem of 
blocking nodes were determined earlier in the works [9–12], 
where, for numerical modeling, networks consisting of 
100,000 nodes were used. To conduct numerical 
experiments in solving the links problem, smaller networks 
with 5,000 nodes were used for this work, which was due to 
the need to use insignificant computing power to solve 
problems. 

As a level for determining the threshold of percolation of 
network structures, the value of the probability of the 
network transition to a conductive state of 0 is selected. Fig. 
5 (see fig. 3). However, once again, we note that you can 
take another value of the transition probability , for example, 
0. 90, 0.95 or 0. 99 (then the percolation threshold will 
specify the criterion of network reliability), i.e. it is possible 
to determine under what proportion of blocked nodes and / 
or links the network as a whole will lose the desired level of 
operability, or in another interpretation: how much it is 
necessary to maintain the level of availability of the 
transport network. 

It is important to note that for a flat graph, the average 
number of links per node (network density) cannot exceed 
the value of 6. This is a consequence of Euler's theorem 
[13], according to which the equality must be fulfilled for a 
connected planar graph: V–E+F=2, where V is the number 
of vertices in the graph, E is the number of edges, F is the 
number of regions into which the graph divides the plane.  

 
Fig. 4. Dependence of the values of the percolation thresholds of planar 
random networks on their density (curve 1 - for the nodes problem task, 
curve 2 - for the links problem task) 

Fig. 4 shows the dependencies of the values of the 
percolation thresholds of planar networks on the average 
number of their links per node (in the node blocking 
problem [8] and in the link blocking problem).fig. 4 [9] 

To determine the effect of the density of network 
structures on the value of their percolation thresholds, it is 
necessary to analyze the data presented in table I and fig. 4 
and obtain a functional relationship that can describe the 
effect of network density on the value of the percolation 
threshold of this network. This will allow, having 
determined the density of connections of real transport 
networks, to estimate the value of their percolation threshold 
and, thereby, to draw a conclusion about the reliability of 
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their structure, i.e., to determine at what proportion of 
blocked nodes and / or connections the network, will lose 
the desired level of operability.  

The results obtained can be used in the construction of 
transport networks or the reconstruction of such networks to 
increase capacity and operability, as well as to obtain 
estimates for improving the reliability of transport 
infrastructure before the actual construction phase is 
completed. 

In the works [14–16], based on the ideas of Shklovsky 
and de Genna about the topological structure of the 
connecting cluster ("skeleton" and "dead" ends), a function 
of the conditional probability of flow (percolation) in the 
lattice Y(ξ,L) was obtained, which has the form (the 
probability of reaching the percolation threshold with a 
certain proportion of blocked nodes is considered):  

  𝑌(𝜉, 𝐿) = 1
1+𝑒−𝑆(𝜉,𝐿) (1) 

where 𝑆(𝜉, 𝐿) = ∑ 𝑎𝑖(𝜉𝑖 − 𝜉𝑐𝑖(𝐿))𝑖  is a polynomial of degree 
i, ai is its coefficients, ξ is the proportion of blocked nodes, 
ξc(L) is the proportion of blocked nodes corresponding to the 
value of the percolation threshold, and it depends on the 
network size L. A polynomial 𝑆(𝜉, 𝐿) of degree i can depend 
on the topological properties of the network structure 
(network density, spatial symmetry, dimension, etc.), which 
can be specified in the phenomenological approach of 
description using coefficients ai.  

The main problem in describing percolation using 
equation (1) is to determine the degree of the polynomial i 
and its coefficients. The combined use of the function (1), as 
well as the methods of Hodge's algebraic geometry [18] and 
the Kadanov–Wilson similarity theory [18, 19] using renorm 
groups [5], makes it possible (in some cases) to calculate the 
theoretical values of the percolation threshold for some 
regular structures [13–16]. Hodge's theory deals with 
algebraic manifolds (sets composed of subsets, each of 
which is a set of solutions to some polynomial equations), 
and the geometric representation of algebraic manifolds are 
figures called Hodge cycles. Linear combinations of such 
geometric shapes are called algebraic cycles [20]. 

Let us propose another approach, which consists in the 
fact that it is possible to express the dependence of a 
polynomial 𝑆(𝜉, 𝐿) of degree i on the conditional probability 
of Y(ξ,L) of the flow in the lattice and determine the 
influence of topological factors on this dependence. Using 
the formula (1) you can get:  

  𝑙𝑛 𝑌 (𝜉, 𝐿) = −1�1 + 𝑒−𝑆(𝜉,𝐿)� (2) 

where 𝑆(𝜉, 𝐿) = ∑ 𝑎𝑖(𝜉𝑖 − 𝜉𝑐𝑖(𝐿))𝑖 is a polynomial of degree 
i, and ai is its coefficients, ξ is the current value of the 
fraction of blocked nodes, ξc(L) is the proportion of blocked 
nodes corresponding to the value of the percolation 
threshold (depends on the network size L). Given that near 
the percolation threshold ξ≈ξc(L), we get that the magnitude 
of the polynomial S(ξ,L)𝑆(𝜉, 𝐿) is small and can be 
decomposed𝑒−𝑆(𝜉,𝐿)𝑒−𝑆(𝜉,𝐿) into a series, limiting itself to 

two of its members. Having done the transformations, we 
get: 

 𝑙𝑛 𝑌 (𝜉, 𝐿) ≈ 1 − 𝑆(𝜉, 𝐿) = 1 − ∑ 𝑎𝑖(𝜉𝑖 − 𝜉𝑐𝑖(𝐿))𝑖  (2) 

The right side of equation (2) may be a function (or 
functional) of several variables, each of which is related to a 
specific topological property of the network. For example, 
one of the parameters may be the average number of 
connections (network density). 

 
Fig. 5. . Dependence of the natural logarithm of the percolation threshold 
(lnP(x)) of planar random structures on the inverse of their density (1/x) 

The described approach makes it possible to analyze the 
data given in 0 and fig. 3 and present them as a dependence 
of natural logarithms of the values of the ln P(x) percolation 
thresholds from topological characteristics (for example, the 
inverse of the network density, (1/x) is a unit divided by the 
average number of connections per network node (see fig. 
5). 

As can be seen from fig. 5, the resulting dependencies 
have a linear form and can be approximated by linear 
equations. 

For planar structures in the nodes problem task, the 
dependence of the natural logarithm of the percolation 
threshold lnP(x) on the inverse of the network density (1/x) 
can be described by the equation:  

  𝑙𝑛 𝑃𝑛𝑜𝑑𝑒,𝑢𝑛𝑟𝑒𝑔 (𝑥) = 2,52
𝑥
− 1,08 (3) 

where the correlation coefficient of the numerical data and 
the linear dependency equation is equal 0. 99 (see straight 1 
on fig. 5). Similarly, in the links problem task:  

 𝑙𝑛 𝑃𝑛𝑜𝑑𝑒,𝑢𝑛𝑟𝑒𝑔 (𝑥) = 3,19
𝑥
− 1,44 (4) 

with the value of the correlation coefficient of numerical 
data and the equation of linear dependence equal to 0.99 
(see straight 2 on fig. 5). 

VI. STOCHASTIC MODEL OF A ROAD SECTION 
Fig. 6 shows a fragment of the road network built from 

OpenStreetMap data using the SUMO (Simulation of Urban 
Mobility) package. Such of data illustrates a conditional 
regulated intersection in a real city. Let's consider the 
composition and characteristics of this section of the road 
network in more detail way. 
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First, we note that the intersection itself cannot be a 
"node" of the road graph, since according to the rules of the 
road, the car should not stop at the intersection and cannot 
go to it if there is a traffic jam ahead [21]. Given this 
limitation, the "intersection" does not have its own state, 
with the vehicle on it, and, thus, is a union of various 
"connections" (movements through the intersection) of the 
graph of the road network. 

Secondly, when we choosing one lane as a "node" of the 
road network (with its beginning, end and possible 
directions of movement), we must take into account the 
physical parameters of this lane, such as the length of the 
lane, based on which depends the number of cars that can 
occupy space on this lane, or the capacity of this lane, as 
well as the connections of this lane with other lanes: first of 
all, connections passing through regulated and unregulated 
intersections, but also connections with neighboring lanes - 
"on" which and "with" which can be cars move into 
maneuver. 

Thus, for our graph of the road network (consisting of 
separate road lanes), we want to understand the indicators of 
traffic reliability on these lanes (find the probability that the 
number of cars will not exceed the maximum threshold) and 
build work on managing traffic flows in this network from 
such indicators. 

Special attention in Fig. 6 deserves the possible directions 
of movement through the intersection (indicated by white 
arrows), which may differ, and which can be regulated by 
individual traffic light phases. 

 
Fig. 6. Crossroad in some city, Russia (SUMO) 

Let's introduce the concept of the probability of finding a 
road lane in a particular state (by the number of vehicles in 
each lane). The state observed at time t can be denoted  
as x (x∈X). In addition, we introduce the time interval τ, 
during which it is possible to change the state x. In this case, 
the value of the current time is described as t=hτ, where h is 
the number of the step of transition between states (the 
process of transition between states becomes quasi-
continuous with an infinite small-time interval τ), 
h = 0, 1, 2, 3, …, N. Let's assume that the current state x at 
step h after the transition at step h + 1 can increase by a 
certain amount ε (the value of the incoming flow of 
machines) or decrease by an amount ξ (the value of the 
outgoing flow of machines) and, accordingly, be equal to 
x+ε or x–ξ. Then, the probabilities of finding our node in the 
desired state are as follows: 

P(x–ε,h) – the probability that the system is in a state of (x–
ε) on a step h;  

P(x,h) – the probability that the system is in a state of x; 

P(x+ξ,h) – the probability that the system is in a state of 
(x+ξ).  

Within the framework of this model, after each step, the 
state x can change by a magnitude ε or ξ. Then, the 
probability P(x,h+1) – that in the next (h+1) step the 
system (or process) will be in state x will be equal to (see 
Fig. 7):  

P(x,h+1)=P(x–ε,h)+P(x+ξ,h)–P(x,h) (5) 

 
Fig. 7. Diagram of possible transitions between system (or process) states 
at h+1 step 

 Let us explain equation (1) and the diagram shown in Fig. 
2. The probability of transition to state x at step h+1 is  
P(x, h + 1), and is determined by the sum of the 
probabilities of transitions to this state from states (x–ε) and 
(x+ξ), i.e.  
P(x – ε, h) + P(x + ξ, h) in which the system was located in 
the previous step h, but minus the probability of transition  
P(x, h) of the system from state x (in which it was in the 
previous step h) to any other state at the next step h + 1 .  

Given that t=h·τ, where t is the process time, h is the step 
number, τ is the duration of one step, we will go from h to t. 
Expand equation (1) into a Taylor series near the point x.  

Further, moving from probability-to-probability density 
(𝜌(𝑥, 𝑡) = 𝑑𝑃(𝑥,𝑡)

𝑑𝑥
) and considering no more than the second 

derivatives 𝜌(𝑥, 𝑡) = 𝑑𝑃(𝑥,𝑡)
𝑑𝑥

 of x and time t, we get (6):  

𝑑𝜌(𝑥,𝑡)
𝑑𝑡

= 𝑎 𝑑2𝜌(𝑥,𝑡)
𝑑𝑥2

− 𝑏 𝑑𝜌(𝑥,𝑡)
𝑑𝑥

− 𝑐 𝑑
2𝜌(𝑥,𝑡)
𝑑𝑡2

, (6) 

where 𝑎 = 𝜀2+𝜉2

2𝜏
 , 𝑏 = 𝜀−𝜉

𝜏
 and c=τ  

The term of the equation ∂P(x,t)∂t – determines the total 
change in state over time.  

∂P(x,t)∂x an ordered transition either to a state when it 
increases (𝜀 > 𝜉) or when it decreases (𝜀 < 𝜉). 

𝑑2𝜌(𝑥,𝑡)
𝑑𝑥2

 – describes a random change in state.  

𝑑2𝜌(𝑥,𝑡)
𝑑𝑡2

 – allows you to describe the situation when there 
is an acceleration of state changes. In the simulated 
conditions, the acceleration of the propagation of congestion 
in transport networks is not assumed, and we will not take 
this term of the equation into account in the presented 
model.  

It should be noted that the basics of our approach to 
modeling the stochastic dynamics of processes in complex 
systems were described by us in our previous works [22,23]. 
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Formulation and solution of the boundary value problem 
for describing the stochastic dynamics of blocking the 
transport network. 

Let us formulate and solve a boundary value problem to 
describe the operation of network nodes without considering 
the acceleration of state change (without a term 𝑑

2𝜌(𝑥,𝑡)
𝑑𝑡2

 in 
equation (6)). Let's assume that when the number of 
machines at the node reaches a given critical value L (L is a 
capacitive parameter of the length of the road lane divided 
by the average size of the car on the lane), it goes into a 
blocked state and becomes available only when the size of 
the queue decreases to a certain value. Since we are trying to 
avoid this state, the first boundary condition can be chosen 
in the form: ρ(x,t)x=L=0 (the condition of reflection from the 
boundary, the probability of detecting such a state will be 
different from zero, and the probability density 𝜌(𝑥, 𝑡) must 
be taken equal to zero). 

Given that the number of machines on the node cannot 
go into the area of negative values, the second boundary 
condition will be of the form: ρ(x,t)x=0=0 (here the condition 
of reflection from the boundary must also be met).  

Since at the time of the observation started, or t = 0, 
there may already be a certain number of x0 machines on the 
node, the initial condition will be set in the form: 

𝜌(𝑥, 𝑡 = 0) = 𝛿(𝑥 − 𝑥0) 
Since the initial condition contains a delta function, the 

solution for ρ(x,t) is divided into two regions: at  x > x0  and 
at x ≤ x0.  

Using the methods of operational calculus for the 
probability density ρ1(x,t) and ρ2(x,t) of detecting the state of 
the system (node of the road network graph) in one of the 
values in the segment from 0 to L, we can obtain the 
following system of equations: 
for the part, when 𝑥 ≤ 𝑥0 
ρ1(𝑥, 𝑡) = 

2
𝐿
𝑒
− (ε−ξ)2𝑡
4τ(ε2+ξ2)𝑒

(ε−ξ)(𝑥0−𝑥)
(ε2+ξ2) ∑

sin�π𝑛𝑥𝐿� sin�π𝑛
𝐿−𝑥0
𝐿 �

cos(π𝑛) 𝑒
− 
π2𝑛2�ε2+ξ2�𝑡

2τ𝐿2𝑀
𝑛=1  

 (7a) 
for the part, when 𝑥 > 𝑥0 
𝜌2(𝑥, 𝑡) = 
2
𝐿
𝑒
− (ε−ξ)2𝑡
4τ�ε2+ξ2�𝑒

(𝜀−𝜉)(𝑥−𝑥0)
�𝜀2+𝜉2� ∑

sin�𝜋𝑛𝑥0𝐿 � sin�𝜋𝑛
𝐿−𝑥
𝐿 �

cos(𝜋𝑛)
𝑒− 

𝜋2𝑛2�ε2+ξ2)�𝑡
2𝜏𝐿2𝑀

𝑛=1  
 (7b) 
If we calculate the integral P(L,t): 
𝑃(𝐿, 𝑡) = ∫ 𝜌1(𝑥, 𝑡)𝑑𝑥 + ∫ 𝜌2(𝑥, 𝑡)𝑑𝑥𝐿

𝑥0
𝑥0
0  (8) 

then, the function P(L,t) will set the probability that the state 
of the node of the road network at time t will  be in the 
segment from 0 to L, i.e. blocking state will not occur (state 
L will not be reached).   

VII. PRACTICAL SOLUTIONS 
 To obtain the maximum time intervals at which the 
transport node remains operational, we use models 
developed considering the percolation properties of the 
network: models of stochastic dynamics of blocking 
transport network nodes. To solve the problems of 
improving the reliability of the city's transport network, it is 
proposed to use the following approach:  

1. Load the road network graph from an external source, 
such as OSM (OpenStreetMap), using ready-made 
SUMO tools (Simulation of urban mobility). 

2. After step 1 we transform the road network into a 
representation in the form of a graph. We form the 
nodes of the graph (lines of the road strip), we form the 
connections between the nodes (intersections, 
rebuilding). 

3. For each node of the road network, we calculate a 
certain threshold value L of the permissible number of 
cars on it, through the length of a fragment of the road 
network divided by the average length of one car (let's 
take 6.5 meters as such a distance) on the road strip. 

4. Let's take τ = 1 as the measurement interval and 
calculate the value of the number of outgoing machines 
ξ at one step and the number of incoming machines ε at 
one step.  

5. For each node of the constructed road network, we 
determine at each step the value x - the length of the 
queue.  

6. On next step we can set the value of the permissible 
probability ψ(L,t) of blocking the node as a result of 
overload (availability of a single element). As a value 
of ψ(L,t), you can take the value of the percolation 
threshold, calculated by the equation 
ln{ψmax(Qi)} = –1.71g + 0.04 (see Fig 5), where g 
value – is the inversion of the network density. 

7. Using the value ψ(L,t) determined from the density of 
the network under consideration, we equate it to 
𝑃(𝐿, 𝑡), and, solving the integral equation (8), we 
calculate for each node the time to achieve the 
probability of its blocking. In this case, we use the 
values ξ, ε, L and xi given (founded) for the node. The 
probability determines the occurrence of blockage, 
therefore, the Zvalue of the percolation threshold for 
the resulting network can be used as the value of such 
a probability (the percolation threshold is the 
probability of blocking 𝑃(𝐿, 𝑡) a single node at which 
the entire network loses conductivity).  

8. Having done the procedures described in steps 4-7, we 
get, for each stage of modeling, a table of the predicted 
times for each of the network nodes to reach the 
permissible threshold value. Based on the capacity and 
size of the queues of cars, it is possible to calculate the 
time of passage of cars through each node (road lane).  

Thus, the calculated values make it possible to predict the 
time of failure (overload) for each road lane in the road 
network, and, for those lanes that are connected to traffic 
light regulation, make request for modified traffic light 
control signals to change the number of cars entering and 
outgoing to the lane, and, as a result, to increase the 
reliability of both a separate section of the road network and 
the entire road network as a whole. 

The application of the model of stochastic dynamics of 
blocking transport network nodes to obtain the predicted 
time of blocking a road network node with a given 
probability of such blocking. 

In Fig. 8. there is shown a comparison of the probabilities 
of blocking a single node of the road network with the same 
model parameters (time interval τ, incoming flow 𝜀, 
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outgoing flow 𝜉), but for different capacities (lengths) of the 
road strip. Values with L = 75, L = 80 parking spaces get the 
maximum probability of going beyond the limits of the 
capacity L faster than more capacious ones at this parameter 
(L = 90, L = 100). Which is a consistent result. 

 

Fig. 8. Distribution of the probability of blocking a single node of the road 
network with the same flows (input and output), but different capacities of 
the road strip 

The maximum operating times obtained in this way (for a 
given reliability of the operation of a single node of the 
transport network) make it possible, based on these data, to 
optimize (dynamically adjust) the switching intervals of 
traffic lights at adjacent intersections. 

FINDINGS 
The study shows that for different transport networks it is 

possible to generalize and simplify the calculation of the 
parameters of the availability indicators of the entire 
network, or its part with a high degree of correlation. 
Further, the obtained values of the probability of percolation 
transition can be applied in a model of stochastic dynamics 
of lane blocking and calculate with its help the values of the 
time to reach the blocked state. The obtained times can be 
used in traffic light switching control algorithms. 
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