
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

Abstract—The widespread use of heterogeneous computing

platforms, as well as the incorporation of computationally ex-
pensive implementations of intelligent data analysis algorithms
into modern software systems leads to the demand in moving
software fragments to most suitable hardware accelerators that
are available on a heterogeneous computing platform. In this
research, we propose an approach to the generation of recom-
mendations for improving the performance of software systems
by finding candidate algorithm implementations for hardware
acceleration, and by suggesting the most suitable hardware
accelerator among the specialized processors that are available
on a given heterogeneous computing platform. The proposed
approach is based on a code-to-code search technique, which
extracts code fragments from an abstract syntax tree (AST),
converts them into vectors containing program features, and
compares the vectors with the query program vector. The ob-
tained results confirm that the use of automatically recom-
mended hardware accelerators for the code fragments identi-
fied using the proposed approach indeed allows to increase the
performance of software systems solving machine learning
tasks.

Keywords—program analysis, heterogeneous computing, ab-
stract syntax tree, recommender systems, software systems

I. INTRODUCTION
Innovations in computer architecture made it possible to
create heterogeneous computing platforms for solving spe-
cialized computational tasks [1]. In a heterogeneous plat-
form, a general-purpose central processing unit (CPU) is
complemented by specialized accelerators, such as graphics
processing units (GPUs) [2], application-specific integrated
circuits (ASICs), field programmable gate arrays (FPGAs)
[3].

Modern trends in software development are focused on
moving implementations of computationally expensive algo-
rithms to hardware accelerators that are available on a given
heterogeneous computing platform with the aim to improve
the performance of software by balancing the load on pro-
cessors of different types [4].

The choice of a specialized processor for hardware accel-

Manuscript received March 10, 2024.
Artyom V. Gorchakov, Postgraduate Student, Assistant of the Depart-

ment of Corporate Information Systems, Institute of Information Technolo-
gies, MIREA – Russian Technological University, 78, Vernadsky pr., Mos-
cow, 119454 (email: worldbeater-dev@yandex.ru).

Liliya A. Demidova, Dr. Sci. (Eng.), Professor, Professor of the De-
partment of Corporate Information Systems, Institute of Information Tech-
nologies, MIREA – Russian Technological University, 78, Vernadsky pr.,
Moscow, 119454 (email: liliya.demidova@rambler.ru).

eration of a code fragment depends on the algorithm imple-
mented by the code fragment. Thus, [5] reports the perfor-
mance of specialized and general-purpose processors in ma-
chine learning tasks, the reported results indicate that the
TitanXp GPU allows to speed up the training of a convolu-
tional artificial neural network (ANN) LeNet-5 by 8.8 times
compared to the CPU E-1620. At the same time, according
to [5], hardware implementation of the trained ANN on the
Arria-10 FPGA accelerates the decision-making process by
44.4 times compared to the E-1620 CPU. According to es-
timates reported in [6], the Xilinx PYNQ-Z1 FPGA makes it
possible to speed up the image classification process using
the convolutional ANN AlexNet by 64 times when com-
pared to a dual-core ARM Cortex-A9 CPU, and by 1.6 times
when compared to a quad-core CPU Intel i5-6400. As it is
shown in [5, 6], heterogeneous computing, including the use
of a CPU for data preparation, a GPU for training an ANN,
and an FPGA for making ANN predictions allows to
achieve the best performance of software in intelligent data
analysis tasks when using neural network-based algorithms.

During the development of software systems developers
use general-purpose programming languages, such as Py-
thon, Java, C#, C, JavaScript, while specialized languages
are used for programming hardware accelerators. For exam-
ple, Open Computing Language (OpenCL) [7] or Compute
Unified Device Architecture (CUDA) language [8] is used
to program GPUs, and hardware description languages
(HDL) such as Verilog or Very high-speed integrated cir-
cuits Hardware Description Language (VHDL) are used to
configure FPGAs [9]. To simplify the transfer of algorithms
to FPGAs, tools for high-level synthesis (HLS) of register
transfer level (RTL) instructions exist [10]. Such tools allow
to automatically convert algorithms implemented in high-
level languages, for example, in C or OpenCL, into RTL
code for subsequent FPGA configuration.

Moreover, domain-specific programming languages
(DSLs) exist, which allow synthesizing high-performance
HLS code [11-12]. The tool described in [11] allows to au-
tomatically translate a Python-like DSL into Vivado HLS or
Intel OpenCL. During the code translation process, a static
data flow graph is constructed, after that the graph is rewrit-
ten to apply performance optimizations, and then the low-
level code is synthesized for the target platforms. In [12],
methods and algorithms are described that allow synthesiz-
ing machine-dependent optimization rules for the use in
DSL compilers for specialized processors.

In [13, 14], the hardware-software partitioning optimiza-

An Approach to Generating Recommendations
for Improving the Performance of Software for

Heterogeneous Computing Platforms
Artyom V. Gorchakov and Liliya A. Demidova

68

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

tion problem was considered, and discrete population-based
optimization algorithms were used to solve the problem.

However, in order to formulate and solve the hardware-
software partitioning problem, it is necessary to first select
code fragments that have the potential for hardware acceler-
ation, and then to translate the selected code fragments into
representations suitable for running on specialized hardware.
In order to improve the performance of a software system
implemented using general-purpose programming languages
and operating on a heterogeneous computing platform,
software developers currently have to identify fragments of
code that are suitable for hardware acceleration, also, the
developers have to select the appropriate accelerator. Ap-
proaches to software acceleration include both the use of
specialized processors, and the use of data parallelism in a
general-purpose CPU [12, 13].

Hence, modern research in the field of static software
analysis is devoted to the identification of code fragments
for their subsequent refactoring with the aim to move com-
putationally expensive algorithm implementations to spe-
cialized hardware accelerators that are available on a given
heterogeneous computing platform [15, 16]. For example,
the methodology proposed in [16] is based on call graph
analysis of a program, the methodology is limited to acyclic
call graphs and involves the construction of control flow and
data flow graphs.

In this research, we propose an approach to the generation
of recommendations for improving the performance of soft-
ware systems by finding candidate algorithm implementa-
tions for hardware acceleration, and by suggesting the most
suitable hardware accelerator among the specialized proces-
sors that are available on a given computing platform. The
proposed approach is based on a code-to-code search tech-
nique, which extracts code fragments from an AST, converts
them into vectors containing program features, and com-
pares the vectors with the query program vector. We convert
programs into vectors based on Markov chains [17], as ac-
cording to the results reported in [17], the use of program
vectors that are based on Markov chains constructed for
ASTs allows to achieve the best classifier quality in mul-
ticlass program classification problems when compared to
word2vec [18], code2vec [19], histograms of assembly lan-
guage instruction opcodes [20] and other methods. Addi-
tionally, we propose a new method to program conversion
into vectors based on Markov chains constructed for ASTs
and for definition-use graphs simultaneously.

In the conducted experimental study, we aimed to find
answers to the following research questions (RQs):

RQ1: How the quality of program vector-based represen-
tations changes when constructing Markov chains not only
for ASTs [17], but also for DU-graphs?

RQ2: How the performance of software changes when
applying the proposed approach to generating recommenda-
tions for improving the performance of software for a heter-
ogeneous computing platform?

The rest of the paper is structured as follows. Section II
describes the proposed approach to generating recommenda-
tions for improving the performance of software for hetero-
geneous computing platforms, as well as the related methods
and algorithms. Section III reports the results of the con-

ducted experimental study and provides answers to the RQs.
Finally, the conclusion section highlights the direction for
future research and presents the discussion regarding the
results of the conducted experimental study.

II. METHODS AND ALGORITHMS
Code-to-code search [21] can be used to identify program
fragments that have similar properties as the example pro-
gram which is used as a search query. Thus, the task of iden-
tifying program fragments and generating recommendations
for increasing their performance can be reduced to:

- The creation of a database containing: sample programs;
ported versions of the programs compatible with accelera-
tors that are available on a given heterogeneous computing
platform; acceleration coefficients for the sample programs
computed using every available hardware accelerator.

- The code-to-code search execution for every sample
program that is stored in the database.

The proposed approach to generating recommendations
for improving the performance of software for heterogene-
ous computing platforms includes the following steps:

Step 1. The creation of a database containing software
implementations of algorithms.

Step 2. Translation of the software implementations of
algorithms into representations suitable for running on each
of the hardware accelerators that are available on a given
heterogeneous computing platform.

Step 3. Performance estimation of the software imple-
mentations of algorithms on each accelerator that is availa-
ble on the heterogeneous computing platform.

Step 4. Population of the database with coefficients calcu-
lated based on the performance assessments of algorithms
on each accelerator that is available on the heterogeneous
computing platform.

Step 5. Code-to-code search execution using the software
implementations of algorithms contained in the database as
search queries.

Step 6. Creation of a report on the acceleration perspec-
tives of the analyzed software system.

The code-to-code search problem, which is solved at the
5-th step of the proposed approach to generating recommen-
dations for improving the performance of software, is given
by a pair �𝐺𝑡 ,𝐺𝑞�, where 𝐺𝑡 ∈ 𝔾 is the AST of the statically
analyzed program, 𝐺𝑞 ∈ 𝔾 is the AST of the example pro-
gram which is used as a search query, and 𝔾 is the set of all
possible ASTs. The solution to the code-to-code search
problem is a mapping 𝑔:𝔾 × 𝔾 → {𝔾}, which maps the ana-
lyzed AST 𝐺𝑡 and the AST of the search query 𝐺𝑞 into a set
of recommended program fragments 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑘}
found in 𝐺𝑡 by the search query 𝐺𝑞 , where 𝑃 ∈ {𝔾}, and {𝔾}
denotes the set of all AST sets 𝔾, ∀𝑝𝑖 ∈ 𝑃: 𝑝𝑖 ∈ 𝔾.

If a finite set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} containing 𝑛 correct
recommendations is known (the set 𝐴 can be obtained, for
example, by manually extracting fragments from a pro-
gram), then the code-to-code search problem is represented
by a triplet �𝐺𝑡 ,𝐺𝑞 ,𝐴�, where 𝐺𝑡 ∈ 𝔾, 𝐺𝑞 ∈ 𝔾, and ∀𝑎𝑖 ∈
𝐴:𝑎𝑖 ∈ 𝔾, where 𝔾 is the set of all possible ASTs. In this
case, the quality of the mapping 𝑔:𝔾 × 𝔾 → {𝔾} can be

69

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

assessed by comparing the 𝑘 recommendations from the 𝑃
set to the manually extracted fragments from the 𝐴 set. The
𝑘 recommended fragments 𝑝1, 𝑝2, … , 𝑝𝑘 can be either true
positive (TP) or false positive (FP). Formally, TP =
|{𝑝 ∈ 𝑃: 𝑝 ∈ 𝐴}|, FP = |{𝑝 ∈ 𝑃: 𝑝 ∉ 𝐴}|. The expected an-
swers that are not included into the 𝑃 set containing 𝑘 rec-
ommendations are considered false negatives (FN), formal-
ly, FN = |{𝑎 ∈ 𝐴: 𝑎 ∉ 𝑃}|. Hence, the quality of the map-
ping 𝑔:𝔾 × 𝔾 → {𝔾} can be assessed with such metrics as
Precision@k, Recall@k, and F1 Score [22].

The algorithms for searching program fragments that
were proposed in [23] allowed to achieve ≈100% Recall@k
value and ≈80% F1 Score value in test code-to-code search
problems, so in the current study we first describe the lan-
guage-agnostic versions of the Python-specific code-to-code
search algorithms proposed in [23] as part of the described
approach to generating recommendations for improving the
performance of software for heterogeneous computing plat-
forms.

As it was shown in [17], program vectors based on first-
order Markov chains constructed for ASTs are well-suited
for practical applications, and allow achieving high classifi-
er accuracy in code classification problems, so we also use
Markov chain-based program vectors in our current study.

Below we describe the related algorithms and provide
theoretical estimates of their computational complexity.
Algorithm 1 describes the construction of a first-order Mar-
kov chain for a given graph-based representation of a pro-
gram.

Algorithm 1 — Markov chain construction for a graph 𝐺.
Input: 𝐺 = (𝑉,𝐸) ▷ A graph-based code representation.

1. Define 𝑝:𝑉 → 𝑇, 𝑝 maps 𝑣 ∈ 𝑉 to its type 𝑡 ∈ 𝑇.
2. 𝑀 = ∅.
3. 𝑇 = {𝑔(𝑣):𝑣 ∈ 𝑉}.
4. For each vertex type 𝑡 ∈ 𝑇 do:
5. 𝑉𝑑 = {𝑣𝑑: (𝑣𝑠 , 𝑣𝑑) ∈ 𝐸 ∧ 𝑔(𝑣𝑠) = 𝑡}.
6. 𝑇𝑑 = {𝑔(𝑣𝑑): 𝑣𝑑 ∈ 𝑉𝑑}.
7. For each vertex child type 𝑡𝑑 ∈ 𝑇𝑑 do:
8. 𝜔 ← 1

|𝑉𝑑|
|{𝑣𝑑: 𝑣𝑑 ∈ 𝑉𝑑 ∧ 𝑔(𝑣𝑑) = 𝑡𝑑}|.

9. 𝑀 ← 𝑀 ∪ {(𝑡, 𝑡𝑑,𝜔)}.
10. End loop.
11. End loop.
12. Return (𝑇,𝑀).

Algorithm 1 accepts a graph-based representation of code
𝐺 = (𝑉,𝐸), for example, an AST, which can be constructed
with language-specific tools. For the Python language we
used the “parse” function for AST construction [24]. An
example of a first-order Markov chain (𝑇,𝑀) constructed
using Algorithm 1 is shown in Figure 1.

Fig. 1. A Markov chain constructed for an AST of a Python program.

The mapping 𝑝:𝑉 → 𝑇 defined at line 1 of Algorithm 1
was implemented using the “type” function with 𝑂(1) time
complexity. Algorithm 1 at line 3 constructs the 𝑇 set con-
taining types of vertices, this takes 𝑂(|𝑉|). Next, for each
vertex type 𝑡 ∈ 𝑇 the set of child nodes 𝑉𝑑 is constructed
(see line 5), this takes 𝑂(|𝐸|). Then, the set of types of child
nodes is constructed (see line 6), this takes 𝑂(|𝑉𝑑|). Finally,
the computation of edge weights at line 8 takes 𝑂(|𝑇𝑑||𝑉𝑑|).

Taking the above estimates into account, Algorithm 1 av-
erage time complexity is 𝑂(|𝑉| + |𝑇||𝐸| + |𝑇|𝑏𝑐), where 𝑏
is the average count of child nodes of nodes of the same
type (see line 7), 𝑐 is the average count of types of child
nodes of nodes of the same type (see line 8).

Algorithm 2 converts an ordered set of graph-based pro-
gram representations into an ordered set of vector-based
program representations, the vectors are formed by concate-
nating rows of weighted adjacency matrices of Markov
chain state transition graphs constructed using Algorithm 1.

Algorithm 2 — Conversion of graphs into vectors.
Input: 𝔾 = (𝐺1,𝐺2, … ,𝐺𝑟). ▷ Ordered set of 𝑟 graphs.

1. 𝐻 = ∅.
2. 𝑅 = ∅. ▷ Ordered set of edge sets.
3. For each graph 𝐺𝑖 ∈ 𝔾 do:
4. (𝑇𝑖 ,𝑀𝑖) ← Algorithm 1(𝐺𝑖). ▷ Markov chain.
5. 𝐻 ← 𝐻 ∪ 𝑇𝑖.
6. 𝑅 ← 𝑅 ∪ (𝑀𝑖) ▷ Add 𝑀𝑖 to the end of 𝑅.
7. End loop.
8. 𝐵 = ∅. ▷ Ordered set of vectors.
9. ℎ = |𝐻|.

10. For each set of Markov chain edges 𝑀𝑖 ∈ 𝑅 do:
11. 𝐺∗𝑖 = (𝐻,𝑀𝑖). ▷ Temporary graph.
12. Construct adjacency matrix 𝐩𝑖 ∈ ℝℎ×ℎ for 𝐺∗𝑖.
13. Convert 𝐩𝑖 ∈ ℝℎ×ℎ into �⃗�𝑖 ∈ ℝ𝑚, 𝑚 = ℎ2.
14. 𝐵 ← 𝐵 ∪ (�⃗�𝑖). ▷ Add �⃗�𝑖 to the end of 𝐵.
15. End loop.
16. Return 𝐵.

Graph-based representations of different programs can
contain nodes of different types, node types that are present
in one graph might not exist in the other graph. Hence, adja-
cency matrices of Markov chain state transition graphs
might belong to different spaces for different graphs. Algo-
rithm 2 resolves this issue by maintaining the 𝐻 set contain-
ing all node types that occur in graphs from 𝔾 (see line 5),
and by constructing adjacency matrices for every i-th inter-

70

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

mediate graph 𝐺∗𝑖 = (𝐻,𝑀𝑖) containing edges from the i-th
Markov chain and vertices from the 𝐻 set (see line 4 and
line 11). The complexity of Algorithm 2 is 𝑂�|𝔾|(|𝑉| +
|𝑇||𝐸| + |𝑇|𝑏𝑐 + ℎ2)�, where 𝔾 is the input set containing
graph-based representations of programs, and ℎ is the count
of node types in the 𝐻 set (see line 9 in Algorithm 2).

Figure 1 shows an AST-based Markov chain constructed
by Algorithm 1; the AST-based Markov chain can be con-
verted into a vector by concatenating the rows of the
weighted adjacency matrix of the Markov chain state transi-
tion graph according to Algorithm 2.

Algorithm 1 and Algorithm 2 are not limited to AST-
based program representations. As it was shown in [23] for
the Python programming language, Markov chains can be
constructed for definition-use graphs (DU-graphs). A DU-
graph is a graph-based program representation in which the
places in ASTs where variables are defined are connected to
the places in ASTs where the defined variables are used.
The use of program vectors based on Markov chains con-
structed for DU-graphs allows a classification algorithm to
capture information about data flow in a program [23].

Algorithm 3 describes the language-agnostic construction
process of a DU-graph from an AST. Algorithm 3 recursive-
ly traverses the AST, starting with AST root node 𝑣.

Algorithm 3 — Construction of a DU-graph.
Input: 𝑣 ▷ The analyzed AST node.

𝑠 ▷ A dictionary linking variables with AST nodes.
1. 𝑉 = ∅.
2. 𝐸 = ∅.
3. If 𝑣 is a function definition, do:
4. 𝑠 ← ∅. ▷ Set 𝑠 to an empty dictionary.
5. End if.
6. For each name 𝜂 used by 𝑣, do:
7. 𝐸 ← 𝐸 ∪ {(𝑠[𝜂], 𝑣)}.
8. 𝑉 ← 𝑉 ∪ {𝑠[𝜂]} ∪ {𝑣}.
9. End loop.
10. For each name 𝜂 defined by 𝑣, do:
11. If 𝑣 is an assignment operator, do:
12. 𝑣 ← 𝑣rhs, where 𝑣rhs is the assignment source.
13. End if.
14. 𝑠[𝜂] ← 𝑣. ▷ Add node 𝑣 into 𝑠 with key 𝜂.
15. End loop.
16. For each node 𝑣𝑐, which is a child of 𝑣, do:
17. 𝐸 ← 𝐸 ∪ Algorithm 3(𝑣𝑐 , 𝑠).
18. End loop.
19. Return (𝑉,𝐸).

Algorithm 3 expects that every AST node 𝑣 contains ref-
erences to child nodes 𝑣𝑐, ASTs satisfying such property can
be constructed using language-specific tools such as the
“parse” function from the standard library [24] for the Py-
thon programming language, or the Roslyn compiler [25] for
the C# programming language. Average time complexity of
Algorithm 3 is 𝑂(|𝑉|𝜀), where |𝑉| denotes the count of
nodes in an AST, and 𝜀 is the average count of names that
are defined or used by every node in the AST.

An example of an AST augmented with edges belonging
to a DU-graph built using Algorithm 3 is shown in Figure 2.

The blue dashed lines in Figure 2 denote DU-graph edges,
the black solid lines denote AST edges. The blue vertices

denote such vertices that belong to the AST and to the DU-
graph at the same time, the black vertices denote such verti-
ces that belong only to the AST.

Fig. 2. A DU-graph constructed from an AST of a Python program [24].

An example of a Markov chain constructed using Algo-
rithm 1 for the AST augmented with DU-graph edges (see
Figure 2) is shown in Figure 3.

The blue dashed lines in Figure 3 denote the edges of a
Markov chain that was constructed for the DU-graph (see
blue vertices and edges in Figure 2). The black solid lines in
Figure 3 denote the edges of a Markov chain that was con-
structed for the AST (see black edges, black and blue verti-
ces in Figure 2). The blue vertices in Figure 3 denote such
vertices that belong to both Markov chains, the black verti-
ces denote such vertices that belong to a Markov chain con-
structed only for the AST.

Fig. 3. A Markov chain constructed for an AST and a DU-graph.

Algorithm 2 accepts a set of graph-based program repre-
sentations and converts the graphs into vector-based repre-
sentations of programs by constructing Markov chains with
Algorithm 1. Algorithm 2 supports arbitrary graphs, such as
ASTs or DU-graphs constructed using Algorithm 3.

In a code-to-code search problem it is required to have a
method for measuring program similarity. As recommended
in [26] and [27], we use Jensen-Shannon divergence (JSD)
for measuring the similarity of two Markov chain-based
program vectors.

The JSD metric value for two vectors is computed as:

JSD(�⃗�𝑖 , �⃗�ℎ) =
1
2
∑ 𝑣𝑖𝑘 log2

𝑣𝑖𝑘
1
2(𝑣𝑖𝑘+𝑣ℎ𝑘)

+ 1
2
∑ 𝑣ℎ𝑘 log2

𝑣ℎ𝑘
1
2(𝑣𝑖𝑘+𝑣ℎ𝑘)

𝑚
𝑘=1

𝑚
𝑘=1 , (1)

where �⃗�𝑖 and �⃗�ℎ are the vector-based representations of the
compared programs; 𝑣𝑖𝑘 is the k-th component of �⃗�𝑖; 𝑣ℎ𝑘 is
the k-th component of �⃗�ℎ; m denotes the component count in
the vector-based representations of programs.

Algorithm 4 defines how Algorithm 2, Algorithm 3, and

71

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

the JSD metric (1) are used together for measuring similarity
of two programs.

Algorithm 4 — Code similarity measurement.
Input: 𝐺1 ▷ AST of the first program.

𝐺2 ▷ AST of the second program.
𝜔1 ∈ [0,1] ▷ Weight of AST-based distance.
𝜔2 ∈ [0,1] ▷ Weight of DU-graph based distance.

1. �𝜈1AST, 𝜈2AST� ← Algorithm 2(𝐺1,𝐺2).
2. 𝐺1DU ← Algorithm 3(𝑣1root,∅).
3. 𝐺2DU ← Algorithm 3(𝑣2root,∅).
4. (𝜈1DU, 𝜈2DU) ← Algorithm 2(𝐺1DU,𝐺2DU).
5. 𝜌 = 𝜔1

2
JSD�𝜈1AST, 𝜈2AST� + 𝜔2

2
JSD(𝜈1DU, 𝜈2DU).

6. Return the distance between programs 𝜌.

First, Algorithm 4 builds program vectors that are based
on Markov chains constructed for ASTs (see line 1). Then,
DU-graphs are constructed for ASTs 𝐺1 and 𝐺2 (see line 2
and line 3). 𝑣1root on line 2 denotes the root of the AST 𝐺1,
and 𝑣2root on line 3 denotes the root of the AST 𝐺2. After
building program vectors that are based on DU-graphs (see
line 4), Algorithm 4 computes JSD according to (1) for pro-
gram vectors of different types (see line 5).

Average time complexity of Algorithm 4 depends on the
complexities of Algorithm 2 and Algorithm 3, and is esti-
mated as 𝑂(|𝑇||𝐸| + |𝑇|𝑏𝑐 + ℎ2 + |𝑉|𝜀), where |𝑇| denotes
the average count of node types in ASTs 𝐺1 and 𝐺2, |𝑉| is
the average count of nodes in ASTs, |𝐸| is the average count
of edges in ASTs, ℎ is the average count of node types in the
𝐻 set (see line 9 in Algorithm 2), 𝜀 is the average count of
names that are defined or used by every node in ASTs 𝐺1
and 𝐺2, 𝑏 is the average count of child nodes of nodes of the
same type, 𝑐 is the average count of types of child nodes of
nodes of the same type, Algorithm 4 is an auxiliary algo-
rithm which is then used in Algorithm 5.

Algorithm 5 is designed to solve a code-to-code search
problem represented by a pair �𝐺𝑡 ,𝐺𝑞�, where 𝐺𝑡 is the AST
of the statically analyzed program, and 𝐺𝑞 is the AST of the
example program which is used as a search query.

Algorithm 5 — Code-to-code search in an AST.
Input: 𝐺𝑡 = (𝑉𝑡 ,𝐸𝑡) ▷ AST of the analyzed program.

𝐺𝑞 ▷ AST of the search query.
𝜔1 ▷ Weight of AST-based distance.
𝜔2 ▷ Weight of DU-graph based distance.
𝜗 ▷ Count of statements in AST fragments.
𝜅 ▷ Count of recommendations.

1. 𝑅 = ∅.
2. For each node 𝑣 ∈ 𝑉𝑡 do:
3. 𝜉 = 𝑣body. ▷ Set 𝜉 to a sequence of statements.
4. If 𝜉 ≠ ∅ do:
5. For each combination (𝑣1, … , 𝑣𝜗) ∈ �𝜉𝜗� do:
6. Create AST 𝐺 with statements (𝑣1, … , 𝑣𝜗).
7. 𝜌 ← Algorithm 4�𝐺,𝐺𝑞 ,𝜔1,𝜔2�.
8. 𝑅 ← 𝑅 ∪ {(𝜌,𝐺)}.
9. End loop.

10. End if.
11. End loop.
12. Return 𝜅 pairs with smallest 𝜌 values from 𝑅.

Algorithm 5 visits every node 𝑣 of the analyzed AST 𝐺𝑡
and processes tuples of sequentially executed statements 𝜉
associated with the node 𝑣 (see line 3). For example, if the
node 𝑣 represents the loop operator (see the “For” AST node
in Figure 2), then the tuple of statements 𝜉 contains instruc-
tions that are sequentially executed on every iteration of the
loop. If 𝑣 represents the function definition operator (see the
“FunctionDef” AST node in Figure 2), then 𝜉 contains in-
structions that are executed when the control flow of a pro-
gram enters the function. If the 𝜉 tuple is not empty, Algo-
rithm 5 extracts all possible combinations of 𝜗 nodes
(𝑣1, … , 𝑣𝜗) from 𝜉 (see line 5 in Algorithm 5).

The total count of combinations extracted from 𝜉 is:

𝐶|𝜉|
𝜗 = �|𝜉|

𝜗 � = |𝜉|!
𝜗!(|𝜉|−𝜗)!

, (2)

where 𝜗 is the count of nodes in the combinations extracted
from 𝜉, and |𝜉| is the length of the 𝜉 tuple.

The temporary AST 𝐺 containing the extracted nodes
(𝑣1, … , 𝑣𝜗) (see line 6) is compared to the AST 𝐺𝑞 used as a
search query, Algorithm 4 is used for the comparison.

Average time complexity of Algorithm 5 is estimated as
𝑂 �|𝑉𝑡|𝐶|𝜉|

𝜗 (|𝑇||𝐸| + |𝑇|𝑏𝑐 + ℎ2 + |𝑉|𝜀)�, where |𝑉𝑡| is the

count of nodes in the AST 𝐺𝑡, 𝐶|𝜉|
𝜗 (2) is the average count

of node combinations extracted from 𝜉, |𝑇|, |𝐸|, and |𝑉|
denote the average count of node types, edges, and nodes in
𝐺𝑞 and in the fragments extracted from the AST 𝐺𝑡 (see line
7), ℎ is the average count of node types in the 𝐻 set (see line
9 in Algorithm 2), 𝜀 is the average count of names that are
defined or used by every node in 𝐺𝑞 and in the fragments
extracted from the AST 𝐺𝑡, 𝑏 is the average count of child
nodes of nodes of the same type, 𝑐 is the average count of
types of child nodes of nodes of the same type.

III. EXPERIMENTAL EVALUATION

RQ1: How the quality of program vector-based representa-
tions changes when constructing Markov chains not only for
ASTs, but also for DU-graphs?
Aiming to compare the quality of program vectors based on
Markov chains constructed for ASTs (see Algorithm 2), and
the quality of program vectors based on Markov chains con-
structed for ASTs and DU-graphs simultaneously (see Algo-
rithm 3 and Algorithm 2), we considered the publicly avail-
able dataset [27] containing 13 881 small Python programs
solving unique programming exercises of 11 different types,
the programming exercises were generated by the Digital
Teaching Assistant (DTA) system used at RTU MIREA
[28].

We considered the task classification problem which is a
multiclass classification problem. A solution to this problem
is a mapping 𝑎:𝑋 → 𝑌 which maps a program text 𝑥 ∈ 𝑋 to
the type of the task 𝑦 ∈ 𝑌 solved by the program. The set of
known task types 𝑌 was finite, 𝑌 = {1,2, … ,11} [27]. The
dataset {(𝑥𝑖 ,𝑦𝑖): 𝑥𝑖 ∈ 𝑋,𝑦𝑖 ∈ 𝑌} used for classifier training
contained pairs of programs and their task labels. We con-
sidered such classifiers as the k-nearest neighbor (KNN)
classifier [29], support vector machine (SVM) [30], random

72

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

forest (RF) [31], and multilayer perceptron (MLP) [32]. Im-
plementations of the classifiers were borrowed from sklearn
[33].

In order to compare the quality of program vectors based
on Markov chains constructed for ASTs (see Figure 1) and
for ASTs and DU-graphs (see Figure 3) we transformed the
original training dataset into two different datasets contain-
ing program vectors and their labels. After that we trained
KNN, SVM, RF and MLP, and assessed the quality of the
classifiers using Accuracy, Precision, Recall, and F1 Score
[17]. Classification quality was accessed using 5-fold cross
validation.

The obtained results are shown in Table I. Best metric
value for every classifier is highlighted in bold.

TABLE I. CLASSIFICATION QUALITY ASSESSMENTS

Vectors Alg. Accuracy Precision Recall F1 Score

AST-based
Markov
chains

KNN 81.0 78.8 78.2 75.4
SVM 84.0 78.6 80.0 77.0
RF 92.0 88.2 89.4 87.8

MLP 86.0 79.6 82.0 79.5

DU-graph-
and AST-

based Markov
chains

KNN 84.0 81.8 80.9 79.0
SVM 85.0 80.9 81.8 79.4
RF 92.0 88.2 89.4 87.8

MLP 89.0 85.8 85.8 83.1

According to Table 2, the use of program vectors that are
based on Markov chains built for ASTs and DU-graphs sim-
ultaneously indeed improves the quality of KNN, SVM and
MLP-based classifiers when compared to program vectors
that are based on Markov chains constructed only for ASTs,
and the quality of an RF-based classifier remains un-
changed.

In [17], a specialized metric was proposed for measuring
the sensitivity of program vectors to the used classifier. The
quality of a classifier is usually assessed by using k-fold
cross-validation and a specialized classification quality met-
ric (for example, Accuracy, Precision, Recall or F1 Score).
k-fold cross-validation outputs a set 𝑄𝑡 = {𝑞1𝑡, 𝑞2𝑡 , … , 𝑞𝑘𝑡 }
containing k quality assessments of the t-th classifier. In
order to measure the sensitivity of program vectors to the
used classifier [17] proposed the 𝜎� metric:

𝜎�(ℚ) = �𝛴𝑡=1𝑛 �𝜇(𝑄𝑡) − �̅�(ℚ)�2 𝜎−1(𝑄𝑡)
𝛴𝑖=1
𝑛 𝜎−1(𝑄𝑖)

, (3)

�̅�(ℚ) = 𝛴𝑡=1𝑛 𝜇(𝑄𝑡)
𝜎−1(𝑄𝑡)

𝛴𝑖=1
𝑛 𝜎−1(𝑄𝑖)

, (4)

where 𝑄𝑡 = {𝑞1𝑡, 𝑞2𝑡 , … , 𝑞𝑘𝑡 } is the set containing k quality
assessments of the t-th classifier; ℚ =
{𝑄1,𝑄2, … ,𝑄𝑡 , … ,𝑄𝑛}; 𝜇(𝑄𝑡) is the mean quality of the t-th
classifier; 𝜎(𝑄𝑡) is the standard deviation; 𝑛 is the count of
classifiers evaluated during the sensitivity assessment of
program vectors to the used classifier; 𝑡 = 1,𝑛�����, 𝑖 = 1,𝑛�����; the
less the value of 𝜎�(ℚ) is, the better program vectors are.

The results of the sensitivity assessment of program vec-
tors based on Markov chains constructed for ASTs (see Al-
gorithm 2), and of program vectors based on Markov chains
constructed for ASTs and DU-graphs simultaneously (see
Algorithm 3 and Algorithm 2) are shown in Figure 4.

Fig. 4. A Markov chain constructed for an AST and a DU-graph.

As it is shown in Figure 4, program vectors that are based
on Markov chains constructed for ASTs and DU-graphs
simultaneously (highlighted in blue in Figure 4) are less
sensitive to the used classifier in the sense of (3) when com-
pared to program vectors that are based on Markov chains
constructed only for ASTs that were studied in [17].

Overall, the results shown in Table 1 and Figure 4 indi-
cate that the quality of program vectors improves when
building Markov chains not only for ASTs, but also for DU-
graphs.

RQ2: How the performance of software changes when ap-
plying the proposed approach to generating recommenda-
tions for improving the performance of software for a heter-
ogeneous computing platform?
The approach to generating recommendations for improving
the performance of software for heterogeneous computing
platforms, which is based on Algorithm 5 performing code-
to-code search, was used to generate recommendations for
accelerating Python programs implementing:

- Logistic regression training algorithm for binary classi-
fication problems;

- Extreme learning machine [34] prediction making algo-
rithm for multiclass classification problems.

The analysis of programs using the proposed approach
was carried out with the aim of accelerating them by moving
code fragments to specialized accelerators that are available
on a heterogeneous computing platform, the characteristics
of the computing platform are listed in Table II.

TABLE II. CHARACTERISTICS OF THE COMPUTING PLATFORM

Parameter Value
CPU Intel® Core™ i7-4770, 3.40 GHz (4 cores)
GPU NVIDIA GeForce GTX 1050TI, 1341 MHz, 4 GB GDDR5

At the first step of the proposed approach, a database of
Python implementations of simple algorithms was formed,
the database included an algorithm for calculating the scalar
product of two vectors, an algorithm for transposing a ma-
trix, an algorithm for applying mathematical operations to
each element of a vector.

At the second step of the proposed approach, each of the
Python implementations of the algorithms was translated
into representations suitable for running on each of the spe-
cialized accelerators available on the considered heteroge-
neous computing platform (see Table II). In order to paral-
lelize calculations on the CPU and GPU using the SIMD
(Single Instruction, Multiple Data) principle, we used
PyTorch DSL [35].

At the third step of the proposed approach, the operating
time of algorithm implementations on each of the accelera-
tors available on the computing platform was assessed.
When assessing the performance, the algorithms were fed

73

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

with random vectors belonging to ℝ1000000, the calculations
were repeated 2000 times, the average operating time was
calculated based on the results of repeated measurements.

At the fourth step of the proposed approach, the database
of algorithm implementations was supplemented with coef-
ficients calculated based on performance assessments of
algorithms on accelerators available on the heterogeneous
computing platform (see Table II). The resulting database of
algorithm implementations and acceleration coefficients is
presented in Table III.

TABLE III. DATABASE WITH ALGORITHMS AND COEFFICIENTS

Python Implementations of Algorithms CPU GPU
 out = 0
 for i in range(len(a)):
 out = out + b[i] * a[i]

0.43 2.31

 transpose = []
 for i in range(len(m[0])):
 t = []
 for j in range(len(m)):
 t.append(m[j][i])
 transpose.append(t)

1.41 0.71

 out = []
 for i in range(len(a)):
 out.append((a[i] + a[i]) / a[i])

0.04 25.13

We developed an extension for the Visual Studio Code®
editor that supports the code-to-code search for fragments of
programs that are potentially suitable for acceleration, the
extension can display the preferred accelerator and show the
performance gain coefficient when transferring the identi-
fied code fragment to a preferred hardware accelerator com-
pared to other accelerators that are available on a given het-
erogeneous computing platform (see, for example, Table II).

At the fifth step of the proposed approach, we used the
developed Visual Studio Code® extension for performing
code-to-code search for each of the algorithm implementa-
tions stored in the database (see Table III). Each of the Py-
thon programs was used as a search query 𝐺𝑞 in Algorithm
5.

At the sixth step of the proposed approach the developed
Visual Studio Code® extension generated a report contain-
ing recommendations for improving the performance of
software for the heterogeneous computing platform (see
Table II).

The generated report for the Python implementation of
the logistic regression training algorithm for binary classifi-
cation problems is shown in Figure 5.

Fig. 5. The generated report for the Python implementation of the logistic
regression training algorithm for binary classification problems.

The generated report for the Python implementation of
the Extreme Learning Machine prediction making algorithm
for multiclass classification problems is shown in Figure 6.

Fig. 6. The generated report for the Python implementation of the Extreme
Learning Machine prediction making algorithm for multiclass classification
problems.

The program implementing the logistic regression train-
ing algorithm for binary classification problems was sup-
plied with vectors belonging to ℝ1000000, the vectors were
taken from a synthetic set of vectors generated using sklearn
[33], 200 iterations of the training algorithm were evaluated.
The program implementing the algorithm for making predic-
tions by an extreme learning machine was supplied with a
set of 10000 vectors belonging to the space ℝ10000, the
number of neurons in the hidden layer was set to 1000. Per-
formance measurements were repeated 50 times for each of
the 3 parallelization options, the first option was based on
homogeneous SIMD using only CPU, the second option was
based on homogeneous SIMD using only GPU, the third
option was based on heterogeneous computations, where the

74

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

preferred accelerator was selected according to the recom-
mendations (see Figure 5 and Figure 6). Code parts where
the preferred accelerator is GPU were merged and translated
into PyTorch DSL [35] with CUDA [8] support, code parts
where the preferred accelerator is CPU were translated into
PyTorch DSL with support for CPU SIMD intrinsics.

The obtained results are shown in Table IV.
TABLE IV. PERFORMANCE OF DIFFERENT PARALLELIZATION OPTIONS

Algorithm Implementation CPU Only GPU Only CPU+GPU
Logistic regression training

algorithm for binary classification 20.91 4.17 4.00

Extreme learning machine
prediction making algorithm for

multiclass classification
6.72 1.58 1.34

According to Table IV, following the recommendations
for code refactoring that were generated according to the
proposed approach (see Figure 5) allowed to achieve the
best performance of the Python implementation of the lo-
gistic regression training algorithm for binary classification.
Program performance improves by 5.23 times when com-
pared to the CPU-only SIMD parallelization, and improves
by 1.04 times when compared to the GPU-only SIMD paral-
lelization on the considered heterogeneous computing plat-
form (see Table II).

Moreover, according to Table IV, following the recom-
mendations for code refactoring that were generated accord-
ing to the proposed approach (see Figure 6) allows to
achieve the best performance of the Python implementation
of the extreme learning machine prediction making algo-
rithm for multiclass classification. Program performance
improves by 5.01 times when compared to the CPU-only
SIMD parallelization, and by 1.18 times when compared to
the GPU-only SIMD parallelization.

IV. CONCLUSION
In the presented research we proposed an approach to gener-
ating recommendations for improving the performance of
software for heterogeneous computing platforms, which is
based on a code-to-code search algorithm. The obtained
results indicate that reworking programs implementing intel-
ligent data analysis algorithms according to the generated
recommendations allows to improve the performance of
software on a given heterogeneous computing platform.

In addition, we described language-agnostic algorithms
for constructing program vectors that are based on Markov
chains (see Algorithm 1 and Algorithm 2). The Markov
chains were constructed for ASTs and DU-graphs (see Al-
gorithm 3). We also presented Algorithm 4 which allows
comparing programs based on ASTs and DU-graphs.

Experimental results show that program representations
based on Markov chains constructed for ASTs and DU-
graphs are less sensitive to the used classifier when com-
pared to AST-based Markov chains proposed in [17] (see
Figure 4), and allow to increase the quality of program clas-
sifiers in the considered task classification problem (see
Table I) [27].

Future work could cover the incorporation of language-
agnostic ASTs into the proposed algorithms. Currently, add-
ing support for a new language requires the re-

implementation of the listed algorithms to use the applica-
tion programming interfaces of the compiler of the new lan-
guage, and language-agnostic ASTs such as [36] could sim-
plify the implementation of source code analyzers for differ-
ent languages.

ACKNOWLEDGMENT
The research was supported by the Ministry of Science and
Higher Education of the Russian Federation (Project No.
FSFZ-2024-0023).

REFERENCES
[1] V.N. Glinskikh, A.R. Dudaev, O.V. Nechaev, “High-performance

CPU – GPU heterogeneous computing in resistivity logging of oil and
gas wells,” in Vychislitelnye Tekhnologii, 2017, Vol. 22, No. 3, pp.
16–31.

[2] D.I. Mirzoyan, “Osnovnye aspekty primeneniya GPGPU sistem,” in
Modern Information Technologies and IT-Education, 2011, No. 7, pp.
988–994.

[3] E. Andrianova, P. Sovietov, I. Tarasov, “Hardware acceleration of
statistical data processing based on FPGAs in corporate information
systems,” in Proceedings of the 2020 2nd International Conference on
Control Systems, Mathematical Modeling, Automation and Energy
Efficiency (SUMMA), IEEE 2020, pp. 669–671.

[4] S. Mittal, J.S. Vetter, “A Survey of CPU-GPU Heterogeneous Com-
puting Techniques,” in ACM Computing Surveys (CSUR), 2015, Vol.
47, No. 4, pp. 1–35.

[5] X. Liu, H.A. Ounifi, A. Gherbi, Y. Lemieux, W. Li, “A Hybrid GPU-
FPGA-based Computing Platform for Machine Learning,” in Proce-
dia Computer Science, 2018, Vol. 141, pp. 104–111.

[6] F. Al-Ali, T.D. Gamage, H.W. Nanayakkara, F. Mehdipour, S.K. Ray,
“Novel casestudy and benchmarking of AlexNet for edge AI: From
CPU and GPU to FPGA,” in Proceedings of the 2020 IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), IEEE,
2020, pp. 1–4.

[7] J.E. Stone, D. Gohara, G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” in Computing in sci-
ence & engineering, 2010, Vol. 12, № 3, p. 66.

[8] S. Cook, CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2012.

[9] G. Gannot, M. Ligthart, “Verilog HDL based FPGA design,” in Pro-
ceedings of the International Verilog HDL Conference, IEEE, 1994,
pp. 86–92.

[10] W. Meeus, K. Van Beeck, T. Goedeme, J. Meel, D. Stroobandt, “An
overview of today’s high-level synthesis tools,” in Design Automation
for Embedded Systems, 2012, Vol. 16, pp. 31–51.

[11] J.F. Licht, T.D. Matteis, T. Ben-Nun, A. Kuster, O. Rausch, M. Burg-
er, C.J. Johnsen, T. Hoefler, “Python FPGA Programming with Data-
Centric Multi-Level Design,” in arXiv, 2022, arXiv:2212.13768.

[12] P.N. Sovetov, “Development of DSL Compilers for Specialized Pro-
cessors,” in Programming and Computer Software, 2021, Vol. 47,
No. 7, pp. 541–554.

[13] D. Saha, R.S. Mitra, A. Basu, “Hardware software partitioning using
genetic algorithm,” in Proceedings of the Tenth International Confer-
ence on VLSI Design, IEEE, 1997, pp. 155–160.

[14] P. Arató, S. Juhász, Z.A. Mann, A. Orban, D. Papp, “Hardware-
software partitioning in embedded system design,” in Proceedings of
the IEEE International Symposium on Intelligent Signal Processing,
IEEE, 2003, pp. 197–202.

[15] P. Mokri, M. Hempstead, “Early-stage automated accelerator identifi-
cation tool for embedded systems with limited area,” in Proceedings
of the 39th International Conference on Computer-Aided Design,
2020, p. 115.

[16] G. Zacharopoulos, L. Ferretti, G. Ansaloni, G. Di Guglielmo, L. Car-
loni and L. Pozzi, “Compiler-assisted selection of hardware accelera-
tion candidates from application source code,” in Proceedings of the
2019 IEEE 37th International Conference on Computer Design
(ICCD), IEEE, 2019, pp. 129–137.

[17] A.V. Gorchakov, L.A. Demidova, P.N. Sovietov, “Analysis of Pro-
gram Representations Based on Abstract Syntax Trees and Higher-
Order Markov Chains for Source Code Classification Task,” in Fu-
ture Internet, 2023, Vol. 15, № 9, p. 314.

75

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 4, 2024

[18] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, “Distribut-

ed Representations of Words and Phrases and their Compositionali-
ty,” in Advances in Neural Information Processing Systems, 2013, Т.
26, pp. 3111–3119.

[19] U. Alon, M. Zilberstein, O. Levy, E. Yahav, “code2vec: Learning
distributed representations of code,” in Proceedings of the ACM on
Programming Languages, Association for Computing Machinery,
2019, Vol. 3, No. 40, pp. 1–29.

[20] A.F. Da Silva, E. Borin, F.M.Q. Pereira, N.L. Queiroz, O.O. Napoli,
“Program Representations for Predictive Compilation: State of Affairs
in the Early 20’s,” in Journal of Computer Languages, 2022, Vol. 73,
p. 101171.

[21] Y. Yu, Z. Huang, G. Shen, W. Li, Y. Shao, “ASTENS-BWA: Search-
ing partial syntactic similar regions between source code fragments
via AST-based encoded sequence alignment,” in Science of Computer
Programming, 2022, No. 222, p. 102839.

[22] T. Silveira, M. Zhang, X. Lin, Y. Liu, S. Ma, “How good your rec-
ommender system is? A survey on evaluations in recommendation,”
in International Journal of Machine Learning and Cybernetics, 2019,
Vol. 10, pp. 813–831.

[23] A.V. Gorchakov, “Methods and Algorithms for Identifying Program
Fragments for Making Recommendations with the Aim to Increase
the Speed of Software Systems,” in Vestnik of Ryazan State Radio
Engineering University, 2023, Vol. 86, pp. 96–109.

[24] Python Software Foundation. AST — Abstract Syntax Trees, Python
Documentation. URL: https://docs.python.org/3/library/ast.html (ac-
cessed at 20.02.2024)

[25] S.M. Staroletov, A.V. Dubko, “A method to verify parallel and dis-
tributed software in C# by doing Roslyn AST transformation to a
Promela model,” in System Informatics, 2019, No. 15, pp. 13–44.

[26] A.V. Gorchakov, L.A. Demidova, “Intelligent Accounting of Educa-
tional Achievements in the Digital Teaching Assistant System,” in In-
ternational Journal of Open Information Technologies, 2023, Vol. 11,
No. 4, pp. 106–115.

[27] L.A. Demidova, E.G. Andrianova, P.N. Sovietov, A.V. Gorchakov,
“Dataset of Program Source Codes Solving Unique Programming Ex-
ercises Generated by Digital Teaching Assistant,” in Data, 2023, Vol.
8, No. 6, p. 109.

[28] P.N. Sovietov, A.V. Gorchakov, “Digital Teaching Assistant for the
Python Programming Course,” in Proceedings of the 2022 2nd Inter-

national Conference on Technology Enhanced Learning in Higher
Education (TELE), IEEE, 2022, pp. 272–276.

[29] E. Fix, J. Hodges, “Discriminatory Analysis. Nonparametric Discrim-
ination: Consistency Properties,” in International Statistical Review,
1989, 57, pp. 238–247.

[30] C. Cortes, V. Vapnik, “Support-vector networks,” in Machine Learn-
ing, 1995, Vol. 20, pp. 273–297.

[31] T.K. Ho, “Random Decision Forests,” in Proceedings of the 3rd In-
ternational Conference on Document Analysis and Recognition, Mon-
treal, QC, Canada, 14–16 August 1995; IEEE: Piscataway, NJ, USA,
1995; pp. 278–282.

[32] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” in Psychological Review, 1958,
Vol. 65, pp. 386–408.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, “Scikit-
learn: Machine learning in Python,” in Journal of Machine Learning
Research, 2011, Vol. 12, pp. 2825–2830.

[34] G.B. Huang, Q.Y. Zhu, C.K. Siew, “Extreme learning machine: theo-
ry and applications,” in Neurocomputing, 2006, Vol. 70, No. 1–3, pp.
489–501.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimenshein et al. “PyTorch: An Imperative Style,
High-performance Deep Learning Library,” in Advances in Neural In-
formation Processing Systems, 2019, Vol. 32.

[36] J. Curtis, “On language-agnostic abstract-syntax trees: student re-
search abstract,” in Proceedings of the 37th ACM/SIGAPP Symposi-
um on Applied Computing, 2022, pp. 1619–1625.

Artyom V. Gorchakov, Postgraduate Student, Department of Corporate

Information Systems, Institute of Information Technologies, MIREA –
Russian Technological University (78, Vernadsky pr., Moscow, 119454).
worldbeater-dev@yandex.ru. https://orcid.org/0000-0003-1977-8165

Liliya A. Demidova, Dr. Sci. (Eng.), Professor, Professor of the De-
partment of Corporate Information Systems, Institute of Information Tech-
nologies, MIREA – Russian Technological University (78, Vernadsky pr.,
Moscow, 119454). liliya.demidova@rambler.ru. https://orcid.org/0000-
0003-4516-3746

76

	I. INTRODUCTION
	II. Methods and Algorithms
	III. Experimental Evaluation
	RQ1: How the quality of program vector-based representations changes when constructing Markov chains not only for ASTs, but also for DU-graphs?
	RQ2: How the performance of software changes when applying the proposed approach to generating recommendations for improving the performance of software for a heterogeneous computing platform?

	IV. Conclusion
	Acknowledgment
	References

