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Abstract—The widespread use of heterogeneous computing 

platforms, as well as the incorporation of computationally ex-
pensive implementations of intelligent data analysis algorithms 
into modern software systems leads to the demand in moving 
software fragments to most suitable hardware accelerators that 
are available on a heterogeneous computing platform. In this 
research, we propose an approach to the generation of recom-
mendations for improving the performance of software systems 
by finding candidate algorithm implementations for hardware 
acceleration, and by suggesting the most suitable hardware 
accelerator among the specialized processors that are available 
on a given heterogeneous computing platform. The proposed 
approach is based on a code-to-code search technique, which 
extracts code fragments from an abstract syntax tree (AST), 
converts them into vectors containing program features, and 
compares the vectors with the query program vector. The ob-
tained results confirm that the use of automatically recom-
mended hardware accelerators for the code fragments identi-
fied using the proposed approach indeed allows to increase the 
performance of software systems solving machine learning 
tasks.  
 

Keywords—program analysis, heterogeneous computing, ab-
stract syntax tree, recommender systems, software systems 

I. INTRODUCTION 
Innovations in computer architecture made it possible to 
create heterogeneous computing platforms for solving spe-
cialized computational tasks [1]. In a heterogeneous plat-
form, a general-purpose central processing unit (CPU) is 
complemented by specialized accelerators, such as graphics 
processing units (GPUs) [2], application-specific integrated 
circuits (ASICs), field programmable gate arrays (FPGAs) 
[3].  

Modern trends in software development are focused on 
moving implementations of computationally expensive algo-
rithms to hardware accelerators that are available on a given 
heterogeneous computing platform with the aim to improve 
the performance of software by balancing the load on pro-
cessors of different types [4]. 

The choice of a specialized processor for hardware accel-
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eration of a code fragment depends on the algorithm imple-
mented by the code fragment. Thus, [5] reports the perfor-
mance of specialized and general-purpose processors in ma-
chine learning tasks, the reported results indicate that the 
TitanXp GPU allows to speed up the training of a convolu-
tional artificial neural network (ANN) LeNet-5 by 8.8 times 
compared to the CPU E-1620. At the same time, according 
to [5], hardware implementation of the trained ANN on the 
Arria-10 FPGA accelerates the decision-making process by 
44.4 times compared to the E-1620 CPU. According to es-
timates reported in [6], the Xilinx PYNQ-Z1 FPGA makes it 
possible to speed up the image classification process using 
the convolutional ANN AlexNet by 64 times when com-
pared to a dual-core ARM Cortex-A9 CPU, and by 1.6 times 
when compared to a quad-core CPU Intel i5-6400. As it is 
shown in [5, 6], heterogeneous computing, including the use 
of a CPU for data preparation, a GPU for training an ANN, 
and an FPGA for making ANN predictions allows to 
achieve the best performance of software in intelligent data 
analysis tasks when using neural network-based algorithms. 

During the development of software systems developers 
use general-purpose programming languages, such as Py-
thon, Java, C#, C, JavaScript, while specialized languages 
are used for programming hardware accelerators. For exam-
ple, Open Computing Language (OpenCL) [7] or Compute 
Unified Device Architecture (CUDA) language [8] is used 
to program GPUs, and hardware description languages 
(HDL) such as Verilog or Very high-speed integrated cir-
cuits Hardware Description Language (VHDL) are used to 
configure FPGAs [9]. To simplify the transfer of algorithms 
to FPGAs, tools for high-level synthesis (HLS) of register 
transfer level (RTL) instructions exist [10]. Such tools allow 
to automatically convert algorithms implemented in high-
level languages, for example, in C or OpenCL, into RTL 
code for subsequent FPGA configuration. 

Moreover, domain-specific programming languages 
(DSLs) exist, which allow synthesizing high-performance 
HLS code [11-12]. The tool described in [11] allows to au-
tomatically translate a Python-like DSL into Vivado HLS or 
Intel OpenCL. During the code translation process, a static 
data flow graph is constructed, after that the graph is rewrit-
ten to apply performance optimizations, and then the low-
level code is synthesized for the target platforms. In [12], 
methods and algorithms are described that allow synthesiz-
ing machine-dependent optimization rules for the use in 
DSL compilers for specialized processors. 

In [13, 14], the hardware-software partitioning optimiza-
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tion problem was considered, and discrete population-based 
optimization algorithms were used to solve the problem.  

However, in order to formulate and solve the hardware-
software partitioning problem, it is necessary to first select 
code fragments that have the potential for hardware acceler-
ation, and then to translate the selected code fragments into 
representations suitable for running on specialized hardware. 
In order to improve the performance of a software system 
implemented using general-purpose programming languages 
and operating on a heterogeneous computing platform, 
software developers currently have to identify fragments of 
code that are suitable for hardware acceleration, also, the 
developers have to select the appropriate accelerator. Ap-
proaches to software acceleration include both the use of 
specialized processors, and the use of data parallelism in a 
general-purpose CPU [12, 13]. 

Hence, modern research in the field of static software 
analysis is devoted to the identification of code fragments 
for their subsequent refactoring with the aim to move com-
putationally expensive algorithm implementations to spe-
cialized hardware accelerators that are available on a given 
heterogeneous computing platform [15, 16]. For example, 
the methodology proposed in [16] is based on call graph 
analysis of a program, the methodology is limited to acyclic 
call graphs and involves the construction of control flow and 
data flow graphs. 

In this research, we propose an approach to the generation 
of recommendations for improving the performance of soft-
ware systems by finding candidate algorithm implementa-
tions for hardware acceleration, and by suggesting the most 
suitable hardware accelerator among the specialized proces-
sors that are available on a given computing platform. The 
proposed approach is based on a code-to-code search tech-
nique, which extracts code fragments from an AST, converts 
them into vectors containing program features, and com-
pares the vectors with the query program vector. We convert 
programs into vectors based on Markov chains [17], as ac-
cording to the results reported in [17], the use of program 
vectors that are based on Markov chains constructed for 
ASTs allows to achieve the best classifier quality in mul-
ticlass program classification problems when compared to 
word2vec [18], code2vec [19], histograms of assembly lan-
guage instruction opcodes [20] and other methods. Addi-
tionally, we propose a new method to program conversion 
into vectors based on Markov chains constructed for ASTs 
and for definition-use graphs simultaneously.  

In the conducted experimental study, we aimed to find 
answers to the following research questions (RQs): 

RQ1: How the quality of program vector-based represen-
tations changes when constructing Markov chains not only 
for ASTs [17], but also for DU-graphs? 

RQ2: How the performance of software changes when 
applying the proposed approach to generating recommenda-
tions for improving the performance of software for a heter-
ogeneous computing platform? 

The rest of the paper is structured as follows. Section II 
describes the proposed approach to generating recommenda-
tions for improving the performance of software for hetero-
geneous computing platforms, as well as the related methods 
and algorithms. Section III reports the results of the con-

ducted experimental study and provides answers to the RQs. 
Finally, the conclusion section highlights the direction for 
future research and presents the discussion regarding the 
results of the conducted experimental study. 

II. METHODS AND ALGORITHMS 
Code-to-code search [21] can be used to identify program 
fragments that have similar properties as the example pro-
gram which is used as a search query. Thus, the task of iden-
tifying program fragments and generating recommendations 
for increasing their performance can be reduced to: 

- The creation of a database containing: sample programs; 
ported versions of the programs compatible with accelera-
tors that are available on a given heterogeneous computing 
platform; acceleration coefficients for the sample programs 
computed using every available hardware accelerator. 

- The code-to-code search execution for every sample 
program that is stored in the database. 

The proposed approach to generating recommendations 
for improving the performance of software for heterogene-
ous computing platforms includes the following steps: 

Step 1. The creation of a database containing software 
implementations of algorithms. 

Step 2. Translation of the software implementations of 
algorithms into representations suitable for running on each 
of the hardware accelerators that are available on a given 
heterogeneous computing platform. 

Step 3. Performance estimation of the software imple-
mentations of algorithms on each accelerator that is availa-
ble on the heterogeneous computing platform. 

Step 4. Population of the database with coefficients calcu-
lated based on the performance assessments of algorithms 
on each accelerator that is available on the heterogeneous 
computing platform. 

Step 5. Code-to-code search execution using the software 
implementations of algorithms contained in the database as 
search queries. 

Step 6. Creation of a report on the acceleration perspec-
tives of the analyzed software system. 

The code-to-code search problem, which is solved at the 
5-th step of the proposed approach to generating recommen-
dations for improving the performance of software, is given 
by a pair �𝐺𝑡 ,𝐺𝑞�, where 𝐺𝑡 ∈ 𝔾 is the AST of the statically 
analyzed program, 𝐺𝑞 ∈ 𝔾 is the AST of the example pro-
gram which is used as a search query, and 𝔾 is the set of all 
possible ASTs. The solution to the code-to-code search 
problem is a mapping 𝑔:𝔾 × 𝔾 → {𝔾}, which maps the ana-
lyzed AST 𝐺𝑡 and the AST of the search query 𝐺𝑞  into a set 
of recommended program fragments 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑘} 
found in 𝐺𝑡 by the search query 𝐺𝑞 , where 𝑃 ∈ {𝔾}, and {𝔾} 
denotes the set of all AST sets 𝔾, ∀𝑝𝑖 ∈ 𝑃: 𝑝𝑖 ∈ 𝔾. 

If a finite set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} containing 𝑛 correct 
recommendations is known (the set 𝐴 can be obtained, for 
example, by manually extracting fragments from a pro-
gram), then the code-to-code search problem is represented 
by a triplet �𝐺𝑡 ,𝐺𝑞 ,𝐴�, where 𝐺𝑡 ∈ 𝔾, 𝐺𝑞 ∈ 𝔾, and ∀𝑎𝑖 ∈
𝐴:𝑎𝑖 ∈ 𝔾, where 𝔾 is the set of all possible ASTs. In this 
case, the quality of the mapping 𝑔:𝔾 × 𝔾 → {𝔾} can be 
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assessed by comparing the 𝑘 recommendations from the 𝑃 
set to the manually extracted fragments from the 𝐴 set. The 
𝑘 recommended fragments 𝑝1, 𝑝2, … , 𝑝𝑘 can be either true 
positive (TP) or false positive (FP). Formally, TP =
|{𝑝 ∈ 𝑃: 𝑝 ∈ 𝐴}|, FP = |{𝑝 ∈ 𝑃: 𝑝 ∉ 𝐴}|. The expected an-
swers that are not included into the 𝑃 set containing 𝑘 rec-
ommendations are considered false negatives (FN), formal-
ly, FN = |{𝑎 ∈ 𝐴: 𝑎 ∉ 𝑃}|. Hence, the quality of the map-
ping 𝑔:𝔾 × 𝔾 → {𝔾} can be assessed with such metrics as 
Precision@k, Recall@k, and F1 Score [22]. 

The algorithms for searching program fragments that 
were proposed in [23] allowed to achieve ≈100% Recall@k 
value and ≈80% F1 Score value in test code-to-code search 
problems, so in the current study we first describe the lan-
guage-agnostic versions of the Python-specific code-to-code 
search algorithms proposed in [23] as part of the described 
approach to generating recommendations for improving the 
performance of software for heterogeneous computing plat-
forms.  

As it was shown in [17], program vectors based on first-
order Markov chains constructed for ASTs are well-suited 
for practical applications, and allow achieving high classifi-
er accuracy in code classification problems, so we also use 
Markov chain-based program vectors in our current study. 

Below we describe the related algorithms and provide 
theoretical estimates of their computational complexity. 
Algorithm 1 describes the construction of a first-order Mar-
kov chain for a given graph-based representation of a pro-
gram. 

Algorithm 1 — Markov chain construction for a graph 𝐺. 
Input: 𝐺 = (𝑉,𝐸) ▷ A graph-based code representation. 

1. Define 𝑝:𝑉 → 𝑇, 𝑝 maps 𝑣 ∈ 𝑉 to its type 𝑡 ∈ 𝑇. 
2. 𝑀 = ∅. 
3. 𝑇 = {𝑔(𝑣):𝑣 ∈ 𝑉}. 
4. For each vertex type 𝑡 ∈ 𝑇 do: 
5.     𝑉𝑑 = {𝑣𝑑: (𝑣𝑠 , 𝑣𝑑) ∈ 𝐸 ∧ 𝑔(𝑣𝑠) = 𝑡}. 
6.     𝑇𝑑 = {𝑔(𝑣𝑑): 𝑣𝑑 ∈ 𝑉𝑑}. 
7.     For each vertex child type 𝑡𝑑 ∈ 𝑇𝑑 do: 
8.         𝜔 ← 1

|𝑉𝑑|
|{𝑣𝑑: 𝑣𝑑 ∈ 𝑉𝑑 ∧ 𝑔(𝑣𝑑) = 𝑡𝑑}|. 

9.         𝑀 ← 𝑀 ∪ {(𝑡, 𝑡𝑑,𝜔)}. 
10.     End loop. 
11. End loop. 
12. Return (𝑇,𝑀). 

Algorithm 1 accepts a graph-based representation of code 
𝐺 = (𝑉,𝐸), for example, an AST, which can be constructed 
with language-specific tools. For the Python language we 
used the “parse” function for AST construction [24]. An 
example of a first-order Markov chain (𝑇,𝑀) constructed 
using Algorithm 1 is shown in Figure 1. 

 
Fig. 1. A Markov chain constructed for an AST of a Python program.  

The mapping 𝑝:𝑉 → 𝑇 defined at line 1 of Algorithm 1 
was implemented using the “type” function with 𝑂(1) time 
complexity. Algorithm 1 at line 3 constructs the 𝑇 set con-
taining types of vertices, this takes 𝑂(|𝑉|). Next, for each 
vertex type 𝑡 ∈ 𝑇 the set of child nodes 𝑉𝑑 is constructed 
(see line 5), this takes 𝑂(|𝐸|). Then, the set of types of child 
nodes is constructed (see line 6), this takes 𝑂(|𝑉𝑑|). Finally, 
the computation of edge weights at line 8 takes 𝑂(|𝑇𝑑||𝑉𝑑|). 

Taking the above estimates into account, Algorithm 1 av-
erage time complexity is 𝑂(|𝑉| + |𝑇||𝐸| + |𝑇|𝑏𝑐), where 𝑏 
is the average count of child nodes of nodes of the same 
type (see line 7), 𝑐 is the average count of types of child 
nodes of nodes of the same type (see line 8). 

Algorithm 2 converts an ordered set of graph-based pro-
gram representations into an ordered set of vector-based 
program representations, the vectors are formed by concate-
nating rows of weighted adjacency matrices of Markov 
chain state transition graphs constructed using Algorithm 1. 

Algorithm 2 — Conversion of graphs into vectors. 
Input: 𝔾 = (𝐺1,𝐺2, … ,𝐺𝑟). ▷ Ordered set of 𝑟 graphs. 

1. 𝐻 = ∅.  
2. 𝑅 = ∅. ▷ Ordered set of edge sets. 
3. For each graph 𝐺𝑖 ∈ 𝔾 do:  
4.     (𝑇𝑖 ,𝑀𝑖) ← Algorithm 1(𝐺𝑖). ▷ Markov chain. 
5.     𝐻 ← 𝐻 ∪ 𝑇𝑖. 
6.     𝑅 ← 𝑅 ∪ (𝑀𝑖) ▷ Add 𝑀𝑖 to the end of 𝑅. 
7. End loop. 
8. 𝐵 = ∅. ▷ Ordered set of vectors. 
9. ℎ = |𝐻|. 

10. For each set of Markov chain edges 𝑀𝑖 ∈ 𝑅 do: 
11.     𝐺∗𝑖 = (𝐻,𝑀𝑖). ▷ Temporary graph. 
12.     Construct adjacency matrix 𝐩𝑖 ∈ ℝℎ×ℎ for 𝐺∗𝑖. 
13.     Convert 𝐩𝑖 ∈ ℝℎ×ℎ into �⃗�𝑖 ∈ ℝ𝑚, 𝑚 = ℎ2. 
14.     𝐵 ← 𝐵 ∪ (�⃗�𝑖). ▷ Add �⃗�𝑖 to the end of 𝐵. 
15. End loop. 
16. Return 𝐵. 

Graph-based representations of different programs can 
contain nodes of different types, node types that are present 
in one graph might not exist in the other graph. Hence, adja-
cency matrices of Markov chain state transition graphs 
might belong to different spaces for different graphs. Algo-
rithm 2 resolves this issue by maintaining the 𝐻 set contain-
ing all node types that occur in graphs from 𝔾 (see line 5), 
and by constructing adjacency matrices for every i-th inter-
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mediate graph 𝐺∗𝑖 = (𝐻,𝑀𝑖) containing edges from the i-th 
Markov chain and vertices from the 𝐻 set (see line 4 and 
line 11).  The complexity of Algorithm 2 is 𝑂�|𝔾|(|𝑉| +
|𝑇||𝐸| + |𝑇|𝑏𝑐 + ℎ2)�, where 𝔾 is the input set containing 
graph-based representations of programs, and ℎ is the count 
of node types in the 𝐻 set (see line 9 in Algorithm 2). 

Figure 1 shows an AST-based Markov chain constructed 
by Algorithm 1; the AST-based Markov chain can be con-
verted into a vector by concatenating the rows of the 
weighted adjacency matrix of the Markov chain state transi-
tion graph according to Algorithm 2. 

Algorithm 1 and Algorithm 2 are not limited to AST-
based program representations. As it was shown in [23] for 
the Python programming language, Markov chains can be 
constructed for definition-use graphs (DU-graphs). A DU-
graph is a graph-based program representation in which the 
places in ASTs where variables are defined are connected to 
the places in ASTs where the defined variables are used. 
The use of program vectors based on Markov chains con-
structed for DU-graphs allows a classification algorithm to 
capture information about data flow in a program [23]. 

Algorithm 3 describes the language-agnostic construction 
process of a DU-graph from an AST. Algorithm 3 recursive-
ly traverses the AST, starting with AST root node 𝑣. 

Algorithm 3 — Construction of a DU-graph. 
Input: 𝑣 ▷ The analyzed AST node. 

𝑠 ▷ A dictionary linking variables with AST nodes. 
1. 𝑉 = ∅. 
2. 𝐸 = ∅. 
3. If 𝑣 is a function definition, do: 
4.     𝑠 ← ∅. ▷ Set 𝑠 to an empty dictionary. 
5. End if. 
6. For each name 𝜂 used by 𝑣, do: 
7.     𝐸 ← 𝐸 ∪ {(𝑠[𝜂], 𝑣)}.  
8.     𝑉 ← 𝑉 ∪ {𝑠[𝜂]} ∪ {𝑣}. 
9. End loop. 
10. For each name 𝜂 defined by 𝑣, do: 
11.     If 𝑣 is an assignment operator, do: 
12.         𝑣 ← 𝑣rhs, where 𝑣rhs is the assignment source. 
13.     End if. 
14.     𝑠[𝜂] ← 𝑣. ▷ Add node 𝑣 into 𝑠 with key 𝜂.  
15. End loop. 
16. For each node 𝑣𝑐, which is a child of 𝑣, do: 
17.     𝐸 ← 𝐸 ∪ Algorithm 3(𝑣𝑐 , 𝑠). 
18. End loop. 
19. Return (𝑉,𝐸). 

Algorithm 3 expects that every AST node 𝑣 contains ref-
erences to child nodes 𝑣𝑐, ASTs satisfying such property can 
be constructed using language-specific tools such as the 
“parse” function from the standard library [24] for the Py-
thon programming language, or the Roslyn compiler [25] for 
the C# programming language. Average time complexity of 
Algorithm 3 is 𝑂(|𝑉|𝜀), where |𝑉| denotes the count of 
nodes in an AST, and 𝜀 is the average count of names that 
are defined or used by every node in the AST. 

An example of an AST augmented with edges belonging 
to a DU-graph built using Algorithm 3 is shown in Figure 2.  

The blue dashed lines in Figure 2 denote DU-graph edges, 
the black solid lines denote AST edges. The blue vertices 

denote such vertices that belong to the AST and to the DU-
graph at the same time, the black vertices denote such verti-
ces that belong only to the AST. 

 
Fig. 2. A DU-graph constructed from an AST of a Python program [24].  

An example of a Markov chain constructed using Algo-
rithm 1 for the AST augmented with DU-graph edges (see 
Figure 2) is shown in Figure 3. 

The blue dashed lines in Figure 3 denote the edges of a 
Markov chain that was constructed for the DU-graph (see 
blue vertices and edges in Figure 2). The black solid lines in 
Figure 3 denote the edges of a Markov chain that was con-
structed for the AST (see black edges, black and blue verti-
ces in Figure 2). The blue vertices in Figure 3 denote such 
vertices that belong to both Markov chains, the black verti-
ces denote such vertices that belong to a Markov chain con-
structed only for the AST. 

 
Fig. 3. A Markov chain constructed for an AST and a DU-graph.  

Algorithm 2 accepts a set of graph-based program repre-
sentations and converts the graphs into vector-based repre-
sentations of programs by constructing Markov chains with 
Algorithm 1. Algorithm 2 supports arbitrary graphs, such as 
ASTs or DU-graphs constructed using Algorithm 3. 

In a code-to-code search problem it is required to have a 
method for measuring program similarity. As recommended 
in [26] and [27], we use Jensen-Shannon divergence (JSD) 
for measuring the similarity of two Markov chain-based 
program vectors. 

The JSD metric value for two vectors is computed as: 

JSD(�⃗�𝑖 , �⃗�ℎ) =
1
2
∑ 𝑣𝑖𝑘 log2

𝑣𝑖𝑘
1
2(𝑣𝑖𝑘+𝑣ℎ𝑘)

+ 1
2
∑ 𝑣ℎ𝑘 log2

𝑣ℎ𝑘
1
2(𝑣𝑖𝑘+𝑣ℎ𝑘)

𝑚
𝑘=1

𝑚
𝑘=1 , (1) 

where �⃗�𝑖 and �⃗�ℎ are the vector-based representations of the 
compared programs; 𝑣𝑖𝑘 is the k-th component of �⃗�𝑖; 𝑣ℎ𝑘 is 
the k-th component of �⃗�ℎ; m denotes the component count in 
the vector-based representations of programs. 

Algorithm 4 defines how Algorithm 2, Algorithm 3, and 
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the JSD metric (1) are used together for measuring similarity 
of two programs. 

Algorithm 4 — Code similarity measurement. 
Input: 𝐺1 ▷ AST of the first program. 

𝐺2 ▷ AST of the second program. 
𝜔1 ∈ [0,1] ▷ Weight of AST-based distance. 
𝜔2 ∈ [0,1] ▷ Weight of DU-graph based distance. 

1. �𝜈1AST, 𝜈2AST� ← Algorithm 2(𝐺1,𝐺2). 
2. 𝐺1DU ← Algorithm 3(𝑣1root,∅). 
3. 𝐺2DU ← Algorithm 3(𝑣2root,∅). 
4. (𝜈1DU, 𝜈2DU) ← Algorithm 2(𝐺1DU,𝐺2DU). 
5. 𝜌 = 𝜔1

2
JSD�𝜈1AST, 𝜈2AST� + 𝜔2

2
JSD(𝜈1DU, 𝜈2DU). 

6. Return the distance between programs 𝜌. 

First, Algorithm 4 builds program vectors that are based 
on Markov chains constructed for ASTs (see line 1). Then, 
DU-graphs are constructed for ASTs 𝐺1 and 𝐺2 (see line 2 
and line 3). 𝑣1root on line 2 denotes the root of the AST 𝐺1, 
and 𝑣2root on line 3 denotes the root of the AST 𝐺2. After 
building program vectors that are based on DU-graphs (see 
line 4), Algorithm 4 computes JSD according to (1) for pro-
gram vectors of different types (see line 5). 

Average time complexity of Algorithm 4 depends on the 
complexities of Algorithm 2 and Algorithm 3, and is esti-
mated as 𝑂(|𝑇||𝐸| + |𝑇|𝑏𝑐 + ℎ2 + |𝑉|𝜀), where |𝑇| denotes 
the average count of node types in ASTs 𝐺1 and 𝐺2, |𝑉| is 
the average count of nodes in ASTs, |𝐸| is the average count 
of edges in ASTs, ℎ is the average count of node types in the 
𝐻 set (see line 9 in Algorithm 2), 𝜀 is the average count of 
names that are defined or used by every node in ASTs 𝐺1 
and 𝐺2, 𝑏 is the average count of child nodes of nodes of the 
same type, 𝑐 is the average count of types of child nodes of 
nodes of the same type, Algorithm 4 is an auxiliary algo-
rithm which is then used in Algorithm 5. 

Algorithm 5 is designed to solve a code-to-code search 
problem represented by a pair �𝐺𝑡 ,𝐺𝑞�, where 𝐺𝑡 is the AST 
of the statically analyzed program, and 𝐺𝑞  is the AST of the 
example program which is used as a search query. 

Algorithm 5 — Code-to-code search in an AST. 
Input: 𝐺𝑡 = (𝑉𝑡 ,𝐸𝑡) ▷ AST of the analyzed program. 

𝐺𝑞  ▷ AST of the search query. 
𝜔1 ▷ Weight of AST-based distance. 
𝜔2 ▷ Weight of DU-graph based distance. 
𝜗 ▷ Count of statements in AST fragments. 
𝜅 ▷ Count of recommendations. 

1. 𝑅 = ∅. 
2. For each node 𝑣 ∈ 𝑉𝑡 do: 
3.     𝜉 = 𝑣body. ▷ Set 𝜉 to a sequence of statements. 
4.     If 𝜉 ≠ ∅ do: 
5.         For each combination (𝑣1, … , 𝑣𝜗) ∈ �𝜉𝜗� do: 
6.             Create AST 𝐺 with statements (𝑣1, … , 𝑣𝜗). 
7.             𝜌 ← Algorithm 4�𝐺,𝐺𝑞 ,𝜔1,𝜔2�. 
8.             𝑅 ← 𝑅 ∪ {(𝜌,𝐺)}. 
9.         End loop. 

10.     End if. 
11. End loop. 
12. Return 𝜅 pairs with smallest 𝜌 values from 𝑅. 

Algorithm 5 visits every node 𝑣 of the analyzed AST 𝐺𝑡 
and processes tuples of sequentially executed statements 𝜉 
associated with the node 𝑣 (see line 3). For example, if the 
node 𝑣 represents the loop operator (see the “For” AST node 
in Figure 2), then the tuple of statements 𝜉 contains instruc-
tions that are sequentially executed on every iteration of the 
loop. If 𝑣 represents the function definition operator (see the 
“FunctionDef” AST node in Figure 2), then 𝜉 contains in-
structions that are executed when the control flow of a pro-
gram enters the function. If the 𝜉 tuple is not empty, Algo-
rithm 5 extracts all possible combinations of 𝜗 nodes 
(𝑣1, … , 𝑣𝜗) from 𝜉 (see line 5 in Algorithm 5). 

The total count of combinations extracted from 𝜉 is: 

𝐶|𝜉|
𝜗 = �|𝜉|

𝜗 � = |𝜉|!
𝜗!(|𝜉|−𝜗)!

, (2) 

where 𝜗 is the count of nodes in the combinations extracted 
from 𝜉, and |𝜉| is the length of the 𝜉 tuple. 

The temporary AST 𝐺 containing the extracted nodes 
(𝑣1, … , 𝑣𝜗) (see line 6) is compared to the AST 𝐺𝑞  used as a 
search query, Algorithm 4 is used for the comparison. 

Average time complexity of Algorithm 5 is estimated as 
𝑂 �|𝑉𝑡|𝐶|𝜉|

𝜗 (|𝑇||𝐸| + |𝑇|𝑏𝑐 + ℎ2 + |𝑉|𝜀)�, where |𝑉𝑡| is the 

count of nodes in the AST 𝐺𝑡, 𝐶|𝜉|
𝜗  (2) is the average count 

of node combinations extracted from 𝜉, |𝑇|, |𝐸|, and |𝑉| 
denote the average count of node types, edges, and nodes in 
𝐺𝑞  and in the fragments extracted from the AST 𝐺𝑡 (see line 
7), ℎ is the average count of node types in the 𝐻 set (see line 
9 in Algorithm 2), 𝜀 is the average count of names that are 
defined or used by every node in 𝐺𝑞  and in the fragments 
extracted from the AST 𝐺𝑡, 𝑏 is the average count of child 
nodes of nodes of the same type, 𝑐 is the average count of 
types of child nodes of nodes of the same type. 

III. EXPERIMENTAL EVALUATION 

RQ1: How the quality of program vector-based representa-
tions changes when constructing Markov chains not only for 
ASTs, but also for DU-graphs? 
Aiming to compare the quality of program vectors based on 
Markov chains constructed for ASTs (see Algorithm 2), and 
the quality of program vectors based on Markov chains con-
structed for ASTs and DU-graphs simultaneously (see Algo-
rithm 3 and Algorithm 2), we considered the publicly avail-
able dataset [27] containing 13 881 small Python programs 
solving unique programming exercises of 11 different types, 
the programming exercises were generated by the Digital 
Teaching Assistant (DTA) system used at RTU MIREA 
[28]. 

We considered the task classification problem which is a 
multiclass classification problem. A solution to this problem 
is a mapping 𝑎:𝑋 → 𝑌 which maps a program text 𝑥 ∈ 𝑋 to 
the type of the task 𝑦 ∈ 𝑌 solved by the program. The set of 
known task types 𝑌 was finite, 𝑌 = {1,2, … ,11} [27]. The 
dataset {(𝑥𝑖 ,𝑦𝑖): 𝑥𝑖 ∈ 𝑋,𝑦𝑖 ∈ 𝑌} used for classifier training 
contained pairs of programs and their task labels. We con-
sidered such classifiers as the k-nearest neighbor (KNN) 
classifier [29], support vector machine (SVM) [30], random 
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forest (RF) [31], and multilayer perceptron (MLP) [32]. Im-
plementations of the classifiers were borrowed from sklearn 
[33]. 

In order to compare the quality of program vectors based 
on Markov chains constructed for ASTs (see Figure 1) and 
for ASTs and DU-graphs (see Figure 3) we transformed the 
original training dataset into two different datasets contain-
ing program vectors and their labels. After that we trained 
KNN, SVM, RF and MLP, and assessed the quality of the 
classifiers using Accuracy, Precision, Recall, and F1 Score 
[17]. Classification quality was accessed using 5-fold cross 
validation. 

The obtained results are shown in Table I. Best metric 
value for every classifier is highlighted in bold. 

TABLE I.  CLASSIFICATION QUALITY ASSESSMENTS 

Vectors Alg. Accuracy Precision Recall F1 Score 

AST-based 
Markov 
chains 

KNN 81.0 78.8 78.2 75.4 
SVM 84.0 78.6 80.0 77.0 
RF 92.0 88.2 89.4 87.8 

MLP 86.0 79.6 82.0 79.5 

DU-graph- 
and AST-

based Markov 
chains 

KNN 84.0 81.8 80.9 79.0 
SVM 85.0 80.9 81.8 79.4 
RF 92.0 88.2 89.4 87.8 

MLP 89.0 85.8 85.8 83.1 

According to Table 2, the use of program vectors that are 
based on Markov chains built for ASTs and DU-graphs sim-
ultaneously indeed improves the quality of KNN, SVM and 
MLP-based classifiers when compared to program vectors 
that are based on Markov chains constructed only for ASTs, 
and the quality of an RF-based classifier remains un-
changed. 

In [17], a specialized metric was proposed for measuring 
the sensitivity of program vectors to the used classifier. The 
quality of a classifier is usually assessed by using k-fold 
cross-validation and a specialized classification quality met-
ric (for example, Accuracy, Precision, Recall or F1 Score). 
k-fold cross-validation outputs a set 𝑄𝑡 = {𝑞1𝑡, 𝑞2𝑡 , … , 𝑞𝑘𝑡 } 
containing k quality assessments of the t-th classifier. In 
order to measure the sensitivity of program vectors to the 
used classifier [17] proposed the 𝜎� metric: 

𝜎�(ℚ) = �𝛴𝑡=1𝑛 �𝜇(𝑄𝑡) − �̅�(ℚ)�2 𝜎−1(𝑄𝑡)
𝛴𝑖=1
𝑛 𝜎−1(𝑄𝑖)

, (3) 

�̅�(ℚ) = 𝛴𝑡=1𝑛 𝜇(𝑄𝑡)
𝜎−1(𝑄𝑡)

𝛴𝑖=1
𝑛 𝜎−1(𝑄𝑖)

, (4) 

where 𝑄𝑡 = {𝑞1𝑡, 𝑞2𝑡 , … , 𝑞𝑘𝑡 } is the set containing k quality 
assessments of the t-th classifier; ℚ =
{𝑄1,𝑄2, … ,𝑄𝑡 , … ,𝑄𝑛}; 𝜇(𝑄𝑡) is the mean quality of the t-th 
classifier; 𝜎(𝑄𝑡) is the standard deviation; 𝑛 is the count of 
classifiers evaluated during the sensitivity assessment of 
program vectors to the used classifier; 𝑡 = 1,𝑛�����, 𝑖 = 1,𝑛�����; the 
less the value of 𝜎�(ℚ) is, the better program vectors are. 

The results of the sensitivity assessment of program vec-
tors based on Markov chains constructed for ASTs (see Al-
gorithm 2), and of program vectors based on Markov chains 
constructed for ASTs and DU-graphs simultaneously (see 
Algorithm 3 and Algorithm 2) are shown in Figure 4. 

 
Fig. 4. A Markov chain constructed for an AST and a DU-graph.  

As it is shown in Figure 4, program vectors that are based 
on Markov chains constructed for ASTs and DU-graphs 
simultaneously (highlighted in blue in Figure 4) are less 
sensitive to the used classifier in the sense of (3) when com-
pared to program vectors that are based on Markov chains 
constructed only for ASTs that were studied in [17]. 

Overall, the results shown in Table 1 and Figure 4 indi-
cate that the quality of program vectors improves when 
building Markov chains not only for ASTs, but also for DU-
graphs. 

RQ2: How the performance of software changes when ap-
plying the proposed approach to generating recommenda-
tions for improving the performance of software for a heter-
ogeneous computing platform? 
The approach to generating recommendations for improving 
the performance of software for heterogeneous computing 
platforms, which is based on Algorithm 5 performing code-
to-code search, was used to generate recommendations for 
accelerating Python programs implementing: 

- Logistic regression training algorithm for binary classi-
fication problems; 

- Extreme learning machine [34] prediction making algo-
rithm for multiclass classification problems. 

The analysis of programs using the proposed approach 
was carried out with the aim of accelerating them by moving 
code fragments to specialized accelerators that are available 
on a heterogeneous computing platform, the characteristics 
of the computing platform are listed in Table II. 

TABLE II.  CHARACTERISTICS OF THE COMPUTING PLATFORM 

Parameter Value 
CPU Intel® Core™ i7-4770, 3.40 GHz (4 cores) 
GPU NVIDIA GeForce GTX 1050TI, 1341 MHz, 4 GB GDDR5 

At the first step of the proposed approach, a database of 
Python implementations of simple algorithms was formed, 
the database included an algorithm for calculating the scalar 
product of two vectors, an algorithm for transposing a ma-
trix, an algorithm for applying mathematical operations to 
each element of a vector. 

At the second step of the proposed approach, each of the 
Python implementations of the algorithms was translated 
into representations suitable for running on each of the spe-
cialized accelerators available on the considered heteroge-
neous computing platform (see Table II). In order to paral-
lelize calculations on the CPU and GPU using the SIMD 
(Single Instruction, Multiple Data) principle, we used 
PyTorch DSL [35]. 

At the third step of the proposed approach, the operating 
time of algorithm implementations on each of the accelera-
tors available on the computing platform was assessed. 
When assessing the performance, the algorithms were fed 
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with random vectors belonging to ℝ1000000, the calculations 
were repeated 2000 times, the average operating time was 
calculated based on the results of repeated measurements.  

At the fourth step of the proposed approach, the database 
of algorithm implementations was supplemented with coef-
ficients calculated based on performance assessments of 
algorithms on accelerators available on the heterogeneous 
computing platform (see Table II). The resulting database of 
algorithm implementations and acceleration coefficients is 
presented in Table III. 

TABLE III.  DATABASE WITH ALGORITHMS AND COEFFICIENTS 

Python Implementations of Algorithms CPU GPU 
    out = 0 
    for i in range(len(a)): 
        out = out + b[i] * a[i] 

0.43 2.31 

    transpose = [] 
    for i in range(len(m[0])): 
        t = [] 
        for j in range(len(m)): 
            t.append(m[j][i]) 
            transpose.append(t) 

1.41 0.71 

    out = [] 
    for i in range(len(a)): 
        out.append((a[i] + a[i]) / a[i]) 

0.04 25.13 

We developed an extension for the Visual Studio Code® 
editor that supports the code-to-code search for fragments of 
programs that are potentially suitable for acceleration, the 
extension can display the preferred accelerator and show the 
performance gain coefficient when transferring the identi-
fied code fragment to a preferred hardware accelerator com-
pared to other accelerators that are available on a given het-
erogeneous computing platform (see, for example, Table II). 

At the fifth step of the proposed approach, we used the 
developed Visual Studio Code® extension for performing 
code-to-code search for each of the algorithm implementa-
tions stored in the database (see Table III). Each of the Py-
thon programs was used as a search query 𝐺𝑞  in Algorithm 
5. 

At the sixth step of the proposed approach the developed 
Visual Studio Code® extension generated a report contain-
ing recommendations for improving the performance of 
software for the heterogeneous computing platform (see 
Table II). 

The generated report for the Python implementation of 
the logistic regression training algorithm for binary classifi-
cation problems is shown in Figure 5. 

 
Fig. 5. The generated report for the Python implementation of the logistic 
regression training algorithm for binary classification problems.  

The generated report for the Python implementation of 
the Extreme Learning Machine prediction making algorithm 
for multiclass classification problems is shown in Figure 6. 

 
Fig. 6. The generated report for the Python implementation of the Extreme 
Learning Machine prediction making algorithm for multiclass classification 
problems.  

The program implementing the logistic regression train-
ing algorithm for binary classification problems was sup-
plied with vectors belonging to ℝ1000000, the vectors were 
taken from a synthetic set of vectors generated using sklearn 
[33], 200 iterations of the training algorithm were evaluated. 
The program implementing the algorithm for making predic-
tions by an extreme learning machine was supplied with a 
set of 10000 vectors belonging to the space ℝ10000, the 
number of neurons in the hidden layer was set to 1000. Per-
formance measurements were repeated 50 times for each of 
the 3 parallelization options, the first option was based on 
homogeneous SIMD using only CPU, the second option was 
based on homogeneous SIMD using only GPU, the third 
option was based on heterogeneous computations, where the 
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preferred accelerator was selected according to the recom-
mendations (see Figure 5 and Figure 6). Code parts where 
the preferred accelerator is GPU were merged and translated 
into PyTorch DSL [35] with CUDA [8] support, code parts 
where the preferred accelerator is CPU were translated into 
PyTorch DSL with support for CPU SIMD intrinsics. 

The obtained results are shown in Table IV. 
TABLE IV.  PERFORMANCE OF DIFFERENT PARALLELIZATION OPTIONS 

Algorithm Implementation CPU Only GPU Only CPU+GPU 
Logistic regression training  

algorithm for binary classification  20.91 4.17 4.00 

Extreme learning machine  
prediction making algorithm for 

multiclass classification 
6.72 1.58 1.34 

According to Table IV, following the recommendations 
for code refactoring that were generated according to the 
proposed approach (see Figure 5) allowed to achieve the 
best performance of the Python implementation of the lo-
gistic regression training algorithm for binary classification. 
Program performance improves by 5.23 times when com-
pared to the CPU-only SIMD parallelization, and improves 
by 1.04 times when compared to the GPU-only SIMD paral-
lelization on the considered heterogeneous computing plat-
form (see Table II).  

Moreover, according to Table IV, following the recom-
mendations for code refactoring that were generated accord-
ing to the proposed approach (see Figure 6) allows to 
achieve the best performance of the Python implementation 
of the extreme learning machine prediction making algo-
rithm for multiclass classification. Program performance 
improves by 5.01 times when compared to the CPU-only 
SIMD parallelization, and by 1.18 times when compared to 
the GPU-only SIMD parallelization. 

IV. CONCLUSION 
In the presented research we proposed an approach to gener-
ating recommendations for improving the performance of 
software for heterogeneous computing platforms, which is 
based on a code-to-code search algorithm. The obtained 
results indicate that reworking programs implementing intel-
ligent data analysis algorithms according to the generated 
recommendations allows to improve the performance of 
software on a given heterogeneous computing platform. 

In addition, we described language-agnostic algorithms 
for constructing program vectors that are based on Markov 
chains (see Algorithm 1 and Algorithm 2). The Markov 
chains were constructed for ASTs and DU-graphs (see Al-
gorithm 3). We also presented Algorithm 4 which allows 
comparing programs based on ASTs and DU-graphs. 

Experimental results show that program representations 
based on Markov chains constructed for ASTs and DU-
graphs are less sensitive to the used classifier when com-
pared to AST-based Markov chains proposed in [17] (see 
Figure 4), and allow to increase the quality of program clas-
sifiers in the considered task classification problem (see 
Table I) [27]. 

Future work could cover the incorporation of language-
agnostic ASTs into the proposed algorithms. Currently, add-
ing support for a new language requires the re-

implementation of the listed algorithms to use the applica-
tion programming interfaces of the compiler of the new lan-
guage, and language-agnostic ASTs such as [36] could sim-
plify the implementation of source code analyzers for differ-
ent languages. 
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