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Abstract— Climate change today is a global crisis requiring 

grave concern to the extent that governments worldwide have 
realized that if this problem is left unmitigated, catastrophic 
events may occur, ultimately jeopardizing humanity’s survival. 
Climate change is primarily due to too much presence of 
greenhouse gases, mainly CO2, in the atmosphere. Vehicular 
exhaust is one of the main contributors to the emissions of CO2. 
Although specialized sensors exist for CO2 monitoring, they are 
inefficient and not highly prevalent. This study suggests a 
workable, pragmatic, and feasible monitoring system for 
vehicular CO2 emissions that involves an LSTM network 
trained and tested based on OBD-II data available in the public 
domain. Also, this work presents a comparison of the proposed 
model with a latter-day solution. This proposed system could be 
deployed on the cloud, with the IoT-based dongles put in the 
vehicles that can collect in-sensor data from vehicles and send 
them to the cloud for processing the data, where the deployed 
model can give real-time predictions of CO2 emissions. 
 

Keywords—Vehicular Emissions, CO2, Climate Crisis, 
LSTM. 

I. INTRODUCTION 
The climate crisis has come to the center stage of 
international debate, encompassing significant consequences 
for the health and welfare of the coming generation. Despite 
all the abnormal influences from natural forces, it is human 
activity which is the major factor leading to massive climate 
change over the last century, mainly caused by a sudden 
spurt in global industrialization. This eventually resulted in 
the exploitation of natural resources on a large scale. 
Untimely resolution of these issues could possibly lead to 
the extinction of our species. Indeed, the tangible impacts of 
global warming are already evident. These include the 
melting of glaciers and icecaps, rising seas, heightened CO2 
concentration in the atmosphere, tree cutting and 
desertification, reduced numbers of wildlife species, and 
water shortages. Moreover, studies suggest that around 3.3 
to 3.6 billion people reside in areas with high vulnerability 
[1]. This highlights the inimical prospective of this 
occurrence.  
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Increasingly, greenhouse gas accumulation, particularly 
carbon dioxide (CO2) serves to spark climate change [2]. 
See Fig. 1 [3]. In addition, this argument is backed up by 
empirical facts depicted in Fig. 2 showing global emission of 
greenhouse gases with respect to different sectors in 2019 
till 2022 [4], [22]. There is clear evidence of a significant 
influence by the transportation industry. 

 

 
Fig. 1. Global greenhouse emissions by gas. 
 

 
Fig. 2. Global CO2 emissions by sector, 2019-22. 

 
The role of the transport sector in climate change is 

obvious in India, with about 337 metric tons of CO2 
emissions in 2019 through this sector [5], as represented in 
Fig. 3. Thus, this highlights the transport sector’s major 
contribution to climate change. 

Such observation points out the necessity of an extensive 
monitoring system for automobile CO2 pollution, which is 
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not easy as there is a heterogeneous and huge amount of  
vehicles that move around the world. The adoption of 
specialized vehicle emission sensors can be taken into 
consideration, but in that case, cost and scalability will be a 
major challenge to deal with. This is where the dilemma 
arises that propelled the proposed research. 
 

 
Fig. 3. CO2 Emissions in India by economic sector, 2019. 
 

The existing literature in this regard indicates that 
numerous machine learning based models on diverse 
datasets have been successful in estimating CO2 emissions. 
These techniques are cost-effective and can be replicated. 
This paper presents a 2-layer Long Short-Term Memory 
(LSTM) model based on the OBD – II dataset for improving 
the efficiency of emission monitoring. In this novel 
approach, a system of dongles for transmitting electronic 
signal information from an On-Board Diagnostics (OBD) 
chip [28] to a “cloud”-based solution driven by IoT is 
proposed. Finally, it gives on-the-spot predictions of 
anthropogenic carbon. This makes use of modern advances 
in the field of mobile communications, which makes this 
easily deployable [6] at a reasonable price. 

The proposed model was extensively trained and 
validated on an open-source dataset extracted from OBD-II 
data aggregated by P. Rettore et al. [7], [8]. OBD-II 
provides detailed readings by the sensors within an 
automobile including Engine Load and Engine RPM, along 
with other values, and records fault codes for vehicles. 
Indeed, it is stated that internal combustion engine emission 
readings correlate directly with sensor readings such as RPM 
and are therefore useful for inferring a vehicle’s emission 
characteristics [9] [29]. It is worth noting that machine 
learning approaches traditionally work on present input-
output combinations and do not account for the outcome of 
previous events when it comes to vehicle telematics data, 
which is mostly presented in time-series form. Therefore, 
such methods fail to consider sequential relations among 
data. This study suggests using a deep learning-based LSTM 
network model, which is very popular and efficient when 
forecasting time-series. Moreover, the presented model is 
compared with the latter-day implementation and delivers 
better results. 

There are five different parts of this paper. Section II 
discusses the related works studied, which formed part of a 
thorough literature review for this research. Section III 
presents an elaborate description of the research 
methodology used in this study. Section IV summarizes the 
results obtained and their detailed analysis. Finally, section 
V explains what this study contributes, recognizes the 
shortcomings of this study, and suggests directions for 
further studies. 

II. LITERATURE REVIEW 
The development in mobile telecommunication 

technology [6] combined with the continued growth of 
different aspects of artificial intelligence and related 
technologies has made deploying data-driven models [22] 
based on vehicle telematics trouble-free along with ease in 
access, thus leading to its broad acceptance by the masses. 
The subsequent paragraphs in this section represent a 
summary of the relevant literature reviewed during this 
study.  

In [10], light has been thrown upon the the insufficient 
approximation of CO2 emissions utilization only two 
features, by training Support Vector Machine (SVM), 
Artificial Neural Network (ANN), and VT-Micro solutions 
to predict emissions of CO2, incorporating OBD data such 
as throttle, speed, and acceleration collected at 30-second 
intervals to identify environmentally optimal vehicle routes. 
A linear relationship was formulated in [11] amongst CO2 
emissions and vehicle speed and acceleration via the use of 
regression analysis, inferring that speed exhibited a higher 
correlation with CO2 emissions compared to acceleration. A 
blend of OBD-based models and Inductive Loop Detectors 
(ILDs) is proposed in [12], suggesting the integration of ILD 
data with vehicle categorization using OBD to prgmatically 
model CO2 emissions. 

Studies have shown that though intensive investigations 
were made on forecasting CO2 emissions by means of 
machine learning for environmental purposes, prediction of 
vehicle exhaust emission still remained untouched area for a 
significant period of time. For example a linear regression 
model for projection of CO2 emissions gave RMSE of 0.22 
[13]. Moreover, another linear regression model, that was 
primarily developed to forecast CO2 emissions for various 
sectors and electric generation attained high R2 accuracy of 
0.941 [14]. In addition, a latter-day ensembled method using 
principal component analysis and support vector machine for 
NOX prediction was found to be highly effective [15]. 
Building on this, authors in [16] gathered data from OBD for 
Maruti Dzire 2019 via an ELM327 microcontroller and 
Torque app while driving within the city and selected seven 
features for the training of five conventional machine 
learning models, thus recommending random forest 
estimators and decision tree due to their favorable 
performance over Support Vector Machine, Linear 
Regression, and K-Nearest Neighbor. A notable drawback of 
this study was that it had reliance on data collected from a 
single vehicle, thus limiting its scalability. Furthermore, [17] 
describes a study where data was collected from one fully 
hybrid vehicle using a complex Portable Emissions 
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Measurement System (PEMS) system, that restrained its 
generalizability to different vehicular makes. 

[18] emphasized work suggesting a Boosted and Bagged 
Decision Trees (BBDT) [22] solution, and it made use of 
vehicular and environmental data from OBD-II in a light-
duty vehicle and a system based on PEMS to model idling 
emissions of hydrocarbon (HC), nitrogen oxides (NO), 
carbon monoxide (CO) along with carbon dioxide (CO2).  A 
notable drawback of work in [18] is that the model's training 
and evaluation were performed only on a single vehicular 
make data, thus keeping its applicability within bounds. [19] 
suggested Gradient Boosting Regression (GBR) for CO2 
modeling, thereby inferring a relationship between CO2 
emissions and vehicle speed that was exponential in nature 
[22], but the data here was collected in a controlled 
environment within a laboratory and the solution relied on a 
single feature. 

A major inference from the literature survey above is that 
the currently available systems for CO2 modeling are 
unsuitable for a scalable and generalized deployment [22]. 
Trailblazing systems based upon complex techniques lack 
scalability despite being accurate. Also, the aforementioned 
information clearly is in favor of the usage of OBD-II data 
for predictive modeling of CO2 emissions. Furthermore, 
platitudinous techniques like ANN, SVM etc cannot work 
with time-series data, because of their inability to consider 
sequential interrelation amongst the data points. In such 
cases, Recurrent Neural Network (RNN)-based approaches 
[23], [24] such as LSTM [25] ,[26] have shown relatively 
better performance.  

[20] shows a study implying an approach involving the 
application of a combination of deep learning and machine 
learning approaches to estimate CO2 emissions in vehicles. 
[21] proposed a 3-layer LSTM approach [27] outdoing ANN 
and SVM to estimate CO2 on a time-series OBD-II data. 
The six features that it used were Speed, Engine RPM, 
Mileage, Acceleration, Fuel Flow and Throttle. Our work 
has considered [21] as a foundation, with the 2-layer and six 
feature LSTM in [22] as our intermediate solution. 

III. RESEARCH METHODOLOGY 
This section throws light on this work's methodology of 

research along with the trends observed in the data in a 
comprehensive manner. Here, A gives an overview of the 
proposed solution, B emphasizes the dataset used, C 
elaborates on the data preparation for the training and 
evaluation data, D highlights the trends in the data and E 
explains the LSTM model used for estimation in this study. 

A. Proposed Solution Overview 
The system architecture of the proposed solution is 

depicted in Fig. 4. First, raw time-series data are collected 
from the vehicle’s OBD ports. Then these data points pass 
through several stages of data preparation so as finally to 
transform into the supervised learning format for the LSTM 
model. Then, this information becomes the input of the 
proposed LSTM solution to foretell the real-time CO2 
emissions. The systems depicted here are cloud deployable 
allowing for constant and real-time prediction and reporting 

of vehicle’s CO2 emissions via IoT-based dongles. 

B. Dataset 
The suggested solution’s training and evaluation has been 

conducted using an openly available dataset collated by 
Federal University of Minas Gerais Department of Computer 
Science’s Dr. P. Rettore [22], [7]. The process of collecting 
the data is described in Table 1 [7]. Here, the data were 
gathered from 14 drivers and 2 vehicles, with detailed 
information provided in [8], [30]. Vehicle 1 was driven by 
ten drivers, while Vehicle 2 was driven by the rest four. 
Notably, the trips recorded by both vehicles differed: the 
four drivers of Vehicle 2 were instructed to drive along two 
distinct routes, while the ten drivers of Vehicle 1 used the 
vehicle for various ends in their daily routines. To ensure 
driver privacy, all available data were anonymized, and the 
start as well as end points of every trip were removed, 
resulting in a reduced dataset. The CO2 emission readings 
can be found in the dataset, which are utilized as the true 
values for training and evaluating the suggested solution. 

For simplicity, during the phase of training, we trained the 
model using data from Vehicle 1 and drivers 1 to 8. We then 
performed validation of the model using data from Vehicle 1 
and drivers 9 and 10. For testing purposes, we evaluated the 
model on data from Vehicle 2 and driver 11, which were not 
learnt by the model while it was being trained. This 
approach ensures that the solution suggested in this paper 
considers various vehicle types and numbers in its 
predictions. 
 

 
Fig. 4. Flow of the proposed model. 

Table 1. Data collection set up 

 VEHICLE 1 VEHICLE 2 
Engine 1.0 16v 1.6 16v 
Max RPM 7000 7000 
Transmissions 5 5 
Power 76cv 122cv 
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Weight 1025 kg 1000 kg 
Manufacturer Renault Hyundai 
Model Sandero HB20 
Trips 36 8 
Trip Time 28 hours 3 hours 
Trip Type Naturalistic Controlled 
Drivers 10 4 
Gender 6 M - 4 F 2 M – 2 F 
Age 25-61 20-53 

C. Data Preparation 
As depicted in the previous Fig. 4, the data preparation 

step plays a crucial role in processing and transforming raw 
time-series data into a format suitable for training and 
evaluating the LSTM network, specifically in the form of 
supervised learning data. This step encompasses several 
processes, including data pre-processing, feature selection, 
and sequence formation [22], which finally output the 
supervised learning data, ultimately ensuring that the input 
data is appropriately processed and structured for the LSTM 
network. The following paragraphs provide a detailed 
explanation of each of these processes. 
Data Pre-processing. Data pre-processing is a crucial step 
in the preparation of data for model training and evaluation. 
In this step, after loading the dataset, the presence of any 
NaN values was checked, none of which were found. The 
process of data cleaning was performed that focused on the 
column of device timestamp. For example, in several 
instances where the month of September was shortened as 
'set' instead of 'Sep,' it was standardized to 'Sep' using the 
function of replace available in Python's str object. 
Additionally, the timestamp column’s datatype was 
equalized to datetime64[s] [22]. 

The column names in the dataset may be tough for noivce 
to grasp, such as 'OBD_CO2_gkm_Instant,' which represents 
CO2 emission at an instant in simpler terms. Consequently, 
the names of the column were modified to make them more 
comprehensible. 

Next, the dataset was divided into two sets [22]: the input 
set, which contained the input columns, and the output set, 
which contained the output columns. The input set was then 
subjected to normalization to confirm that every feature 
followed a scale that was same. Normalization is essential 
because features measured on different scales can have 
unequal contributions to fitting the model, potentially 
introducing biases. In this study, Min-Max normalization has 
been utilized for normalizing of data, the mathematical 
equation for which is- 

 

(1) 

 
where xscaled is the normalized feature value [22], for a data 

point with value x. 
Hence, as seen in Fig. 4 earlier, Data Pre-processing takes 

Raw time-series data and outputs a normalized and cleaned 
pre-processed time-series data, which is then utilized in 
feature selection and sequence formation. 

Feature Selection. Feature selection is one of the crucial 
steps of data analysis for high dimensional data because of 
the presence of irrelevant and redundant data points. It 

assists in the elimination of such data, thereby improving the 
solution’s performance. Feature selection for this study 
entailed Principal Component Analysis (PCA) loading 
scores and correlation values.  A biplot of the features using 
the first two Principal Components (PC) with a percentage 
variance of 91.21% is shown in Fig. 5. Loading matrix 
generated through PCA have the weights for numerous 
features for each of its components. The biplot has x-axis 
representing PC-1 and y-axis representing PC-2. The vector 
lengths of all features represented by their corresponding 
vectors are proportional to their contribution in the PC, ans 
so it serves as a basis of ranking for feature selection. Vector 
labels 1 to 6 in Fig. 5 are feature IDs as given in Table II. 
From the biplot in Fig. 5, it is clearly evident that speed, 
engine RPM, and mileage contribute the most on PCs. Thus, 
these 3 features were taken into account for estimating the 
emissions of CO2 in this study. 

Fig. 6 shows the correlation matrix of the feature set, the 
relational data which can cater to prediction of missing 
values. The low co-relation scores of the selected attributes 
or features as seen in the correlation matrix in Fig. 6, clearly 
imply that they add new information to the set. 

To sum up, this step of data preparation selects features 
from pre-processed time-series data and helps in formulating 
the optimal feature subset for the model. 

 

 
Fig. 5. PCA biplot using first two components. 
 

 
Fig. 6. Correlation matrix of the feature set. 

Table 2. Feature set description 

FEATURE UNITS RANGE ID 
Speed km/h 0-121 1 
Engine RPM Revolutions/min 0-5500 2 
Mileage km/l 0-45 3 
Fuel Flow cc/min 0-350 4 
Throttle % 0-100 5 
Acceleration km/s2 -25-45 6 

 
Sequence Formation. As seen in Fig. 4 earlier, this step 
uses the pre-processed time-series data and optimal feature 
subset selected from feature selection process to convert the 
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time-series data to a format suitable for deep learning, i.e., 
supervised learning format of input and output sequences. 

As previously stated during the pre-processing stage, the 
dataset has been separated into input and output sets, where 
input set has the three selected input features, i.e., Speed, 
Engine RPM and Mileage, and output set has one output 
feature, i.e., instantaneous CO2 emission, or simply put, 
CO2. Then, min-max normalization is performed on the 
input set to standardize the input. After this, both input and 
output sets, being time-series, are converted to supervised 
learning format, by using sliding window technique, for 
which a sliding window of breadth as 64 seconds has been 
used with 50% of overlap, i.e., 1st window has data from 0th 
till 64th second, 2nd window has data from 32th till 96th 
second and so on. Fig. 7 depicts the windowing technique 
used here. This window width of 64 seconds has been used 
similar to [21] where different window widths were used for 
the validation set, and 64 gave the least mean squared error. 
Also, mean of every window is found and is used for the 
output set. 

 
Fig. 7. Sliding window with 50% overlap. 

 
As a result of this step, the input set has 64*3 columns and 

output set has 1 single column for CO2 emission output. We 
have performed this step for all training, validation and test 
sets as mentioned earlier. 

D. Trends in the Data 

 
Fig. 8. Speed vs CO2. 
 

Speed vs CO2. See Fig. 8. The “Speed vs. CO2” graph 
offers invaluable information concerning the correlation 
between the speed of a vehicle and its related carbon dioxide 
(CO2) discharge. Most of the data points are all within the 

speed range of 10 to 100 mph and the CO2 emission range 
of 100 – 300 g/km, consistent with what one could observe 
during a normal driving situation. 

Typically, it is seen that as the vehicle speed goes 
upwards, so does the amount of carbon dioxide emitted. This 
accords with a common perception that more speed would 
translate to increased usage of energy products such as fuel, 
which in turn causes the release of more emissions. 
However, it should be noted that these different data points 
occur under other influencing factors like engine efficiency, 
truck type, and road conditions. 

However, there is significant data inconsistency while 
analyzing the sub-segment readings at speeds between 20 
and 40mph, as these particular data points diverge from the 
overall trends. Further research on these high emissions at 
low speeds is needed, given that some specific driving 
conditions or engine performance problems might strongly 
influence air pollution. 

It is vital to comprehend how CO2 emissions change 
according to vehicle speed as it assists in advancing 
environmental sustainability. This entails that speed control, 
while moving slowly, might be an essential element leading 
to reducing carbon emissions. Additional research should be 
conducted to determine the exact contributors to this 
observation and what remedial measures are applicable and 
practical during real-world driving conditions 

 
Fig. 9. Mieage vs CO2. 
 

Mileage vs CO2. See Fig. 9. There is an impressive trend 
in the correlation between a vehicle's carbon dioxide (CO2) 
emissions and its mileage. This chart depicts different points 
on different mileage values and corresponding CO2 
emissions values. 

A steep reduction in CO2 emissions characterizes this 
trend as the mileage increases. Vehicles that travel farther on 
each fuel gallon have much lower CO2 emissions. The 
reverse correlation reflects fuel economy's critical role in 
improving transportation's environmental impact. The more 
miles vehicles put on the road, the faster CO2 levels 
decrease. 

A detailed analysis of the graph's behavior reveals that the 
reduction in CO2 emission begins from high levels around 
1250 g/km. When the mileage exceeds a specific limit, 
usually 35 miles, the CO2 emission reduces following the 
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exponential decay formula to about 150 g per km. 
Essentially, CO2 emissions at the stage after this crucial 
distance are more or less constant, and additional miles do 
not affect the amount of emissions. 

Understanding this trend is essential in developing 
effective means to improve the efficiency of vehicles in the 
environment. It is essential for fuel efficiency and 
emphasizes technology, which allows an exponential 
reduction in CO2 emission as the mile increases. It also 
highlights the importance of defining the corresponding 
mileage limits once emissions attain an equilibrium, guiding 
suitable emission management plans. 

 
Fig. 10. Acceleration vs CO2. 
 

Acceleration vs CO2. See Fig. 10. "Acceleration VS 
CO2" is one of the most critical graphs since it offers an 
extremely crucial analysis of a highly complex situation 
where the acceleration of vehicles is related to their CO2 
emissions. The graph above shows data scattered among 
various acceleration values on the x-axis and CO2 emissions 
on the y-axis. 

One notable feature of this trend is the dense data points 
within the acceleration range from −5 to 5 kilometers per 
second squared (km/s2). The vehicles have different 
acceleration patterns in this range that are based on actual 
driving situations and how drivers behave. 

However, a striking feature on the graph is the different 
CO2 emissions across various acceleration rates. The data 
points' values reveal a significant rise in CO2 amount, even 
up to 1250 g/km, for acceleration values varying between 2 
and 3 km/s^2. This indicates that fast and intense 
acceleration can lead to significant fuel consumption, which 
implies high carbon dioxide emissions. 

Nevertheless, the existing pattern goes even further. CO2 
emission is almost constant above and below 600g/km 
within the 2-3 km/s2 range, approximately 250 g/km. This 
gives the impression that the car emitted the same amount 
throughout this period, and it is probably the result of factors 
like the engine at its optimal stage performance during 
moderate acceleration, driving conditions, and the nature of 
the machine. 

In addition, non-linearity behavior complicates the 
relationship between acceleration and CO2 emissions. 
Increased emissions typically arise from higher acceleration 

but not always in the exact degree. These are not the only 
additional factors because, at certain acceleration levels, the 
growth of emissions exceeds that expected for the reasons 
mentioned above. 
RPM vs CO2. See Fig. 11. The "RPM vs. CO2" graph 
mirrors the intricate relationship between RPM, which 
stands for revolutions per minute, and CO2. In this graph, 
data points are mainly found between the RPM values of 
500 and 3500 on the x–axis, thereby giving an overview of 
how emissions are affected by engine speed. 

A significant feature of this trend is the well-defined peak 
in CO2 emissions between the revolutions per minute of 
2000 and 2500. Vehicles have the highest CO2 emissions 
within the RPM range, ranging between 1000 and 1250 
g/km. The highest acceleration peak is 2-3 km/s^2, which 
shows that emissions are strongly linked to engine speed and 
acceleration. 

Additionally, beyond the 2000-2500 RPM, CO2 
emissions are maintained within the 250 g/km region. It 
means that the same pattern of emissions exists at different 
engine speeds, which proves the efficiency and fuel 
consumption of the engine operation under various 
conditions. 

This emphasizes the idea of non-linearity in the 
relationship between engine speed, acceleration, and CO2 
emissions. The specific range of RPMs (2000 – 2500) 
produces much more air pollutants than other RPMs, though 
other RPMs usually generate more emissions generally. 
These may include engine design, power output, and 
optimizing fuel efficiency. 

 
Fig. 11. Engine RPM vs CO2. 
 

Acceleration and RPM Redundancy. The "Acceleration 
vs. CO2" and "RPM vs. CO2" graphs reflect an intriguing 
commonality in the behavior of two distinct driving 
parameters, acceleration (expressed in kilometers per second 
squared, km/s^2) and engine rpm (measured in revolutions 
per minute, RPM), concerning their influence on carbon 
dioxide (CO2) emissions. Both parameters exhibit a non-
linear relationship with CO2 emissions, characterized by 
concentration within specific ranges and peak emissions at 
particular values. 

In the "Acceleration vs. CO2" graph, higher acceleration 
levels correspond to significantly elevated CO2 emissions, 
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with peak emissions occurring in the 2-3 km/s^2 range. 
Similarly, the "RPM vs. CO2" graph reveals that within the 
2000-2500 RPM range, CO2 emissions reach their zenith. 
This overlapping pattern between acceleration and RPM 
indicates that these two variables are proportional and that 
changes in one can directly affect the other. 

Considering these shared characteristics and the high 
correlation between acceleration and engine speed in the 
context of CO2 emissions, it becomes evident that either 
acceleration or RPM can be a representative feature for 
evaluating and predicting emissions. As either of them could 
be considered redundant, we have used the results of the 
PCA to determine the redundant feature, which is 
acceleration in this case. 

E. Proposed LSTM Model 
In the proposed methodology, this particular step utilizes 

the data prepared in the Data Preparation phase for the 
suggested solution’s training and evaluation. Since the 
sample of input are in sequential format, conventional 
techniques of machine learning such as SVM or standard 
feed-forward neural networks are not suitable for 
forecasting. Therefore, this study introduces the utilization 
of LSTM networks, which have specialized connections that 
facilitate feedback and enable efficient processing of 
sequential inputs. As discussed earlier in the terminology 
section of this paper, LSTMs outperform RNNs as they 
possess the risk of vanishing gradients. LSTMs are 
especially advantageous for time-series data as they are 
resilient to duration gaps in the data that are not known, 
which sets them apart from RNNs and traditional machine 
learning techniques [21]. 

LSTM needs input in a 3D shape and not a 2D shape. The 
2D shape format refers to the shape of the data as [Number 
of Rows (r), Number of Columns (c)]. The 3D shape format 
refers to the shape of the data as [Number of Rows (r), 
Timestep of the window (t), Number of Features (f)]. It is 
evident that- 

c = t X f (2) 
The dataset generated by the data preparation step initially 

exists in a 2D format. However, since this data is sequential 
in nature, it needs to be transformed into a 3D format to 
provide essential details regarding the number of features 
and timesteps involved. This 3D shape is crucial for 
processing tasks such as training and evaluating sequential 
data. To achieve this, the set of inputs is reshaped to 3D 
format from their 2D format using the reshape function in 
Python. This reshaping process is applied to all the training, 
validation, and testing input sets. 

Hyperparameters like the number of layers, nodes, and 
others directly influence the complexity as well as 
performance of the model. The optimum settings regarding 
the hyperparameters of the suggested LSTM were 
determined via conducting a random search.  

In this study, the suggested optimal architecture for the 
neural network is a sequential 2-layer LSTM model. The 
first layer of the LSTM comprises 90 neurons, while the 
second layer consists of 180 neurons. The model is trained 
over 120 epochs, utilizing loss function in the form of “mean 

squared error”, that can be understood from the following 
equation- 

 

(3) 

where N is the number of values,  is the actual value and 

 is the predicted value of a variable [22]. Put simply, 
MSE calculates the average of the squared differences 
between the predicted and actual values of a variable. 

For training, the model utilizes the RMS Prop Optimizer. 
RMSProp has similarities with algorithm of gradient descent 
with momentum and limits the oscillations vertically, 
thereby allowing to increase the learning rate and proposed 
algorithm could take larger steps in the horizontal direction 
converging faster. RMSProp's core principle involves 
maintaining a moving average of the squared gradients and 
dividing the gradient by the square root of this average. By 
employing this optimizer, the gradients’s moving average is 
leveraged for the variance estimation. 

Table 3 below shows the algorithm for the proposed 
LSTM model. It shows the requirements of this algorithm, 
followed by its steps and the output. 

Table 3. Proposed Algorithm 

ALGORITHM ALGORITHM FOR THE PROPOSED LSTM MODEL 
Require: Batch size=32, Epochs=120, No of input features=3, No 
of timesteps=64, No of output features=1 
1. Define Sequential Model 
2. 
model.add(LSTM(90,return_sequences=True,input_shape=(64,3))
) 
3. model.add(LSTM(180)) 
4. model.add(Dense(1)) 
5. model.compile(loss=’mse’,optimizer=’rmsprop’) 
6. history=model.fit() 
7. model.predict() 
8. rmse=sqrt(mean_squared_error(y_predicted,y)) 
 
Output: Training loss, Validation loss, Evaluation RMSE 

IV. RESULTS 
In this section, we analyze the outcomes of observations in 
this study. The methodology we developed was executed in 
a Google Colab Pro environment, utilizing Python 3 and 
leveraging the hardware accelerator of Graphics Processing 
Unit (GPU). 
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Fig. 12. Training Loss (Mean Squared Error). 

 
The evaluation of the results utilized two metrics: MSE 

and RMSE. MSE represents Mean Squared Error (Equation 
(3)), while RMSE denotes Root Mean Squared Error [22]. 
The concept of MSE can be found in section IIIE. RMSE, 
on the other hand, is the square root of the average of the 
squared differences between the predicted and the actual 
values of a variable. Mathematically, the calculation of 
RMSE can be expressed as follows- 

 

(4) 

where N is the number of values, is the actual value and 

 is the predicted value of a variable [22]. 
The obtained MSE loss curve during the training of the 

suggested solution is demonstrated in Fig. 12. As previously 
stated in section IIIB, the model's evaluation is conducted 
using the data from vehicle 2, which was not utilized during 
the training phase. This approach ensures the model's 
robustness and effectiveness, as well as its independence 
from the specific type and make of the vehicle. 

When assessed on the test dataset, the proposed model 
demonstrated promising results with an MSE of 63.52 and 
an RMSE of 7.97. Notably, these evaluations were 
conducted on data from a vehicle that the model had never 
encountered before. This outcome suggests that the 
suggested solution is scalable and so it can be employed on a 
wide range of vehicles, regardless of their type or make. It 
signifies that a single model is proficient and effective in 
predicting CO2 emissions using general vehicle 
characteristics such as Speed, Engine RPM, and Mileage. 

The performance of the suggested 2-layer LSTM solution 
is contrasted with the latter-day implementation [21], as well 
as a 3-layer Deep Convolutional Neural Network (CNN) and 
4-layer DNN models [21] [22]. Table IV presents a 
comparative analysis of the performance of all four models. 
It is evident from the table that this study’s suggested 
solution, exhibits strong performance with 7.97 as RMSE. 

When assessed on the test dataset, the proposed model 
demonstrated promising results with an MSE of 63.52 and 
an RMSE of 7.97. Notably, these evaluations were 
conducted on data from a vehicle that the model had never 
encountered before. This outcome suggests that the 
suggested solution is scalable and so it can be employed on a 
wide range of vehicles, regardless of their type or make. It 
signifies that a single model is proficient and effective in 
predicting CO2 emissions using general vehicle 
characteristics such as Speed, Engine RPM, and Mileage. 

The performance of the suggested 2-layer LSTM solution 
is contrasted with the latter-day implementation [21], as well 
as a 3-layer Deep Convolutional Neural Network (CNN) and 
4-layer DNN models [21] [22]. Table 4 presents a 
comparative analysis of the performance of all four models. 
It is evident from the table that this study’s suggested 
solution, exhibits strong performance with 7.97 as RMSE. 

Table 5 shows some of the key differences between the 2-

layer LSTM solution proposed in this work, and latter-day 
solution [21]. 

Table 4. Comparison of various models of deep learning 

MODEL RMSE 

4-layer DNN 64.87 

3-layer Deep CNN 17.82 

3-layer LSTM 9.30 

Proposed Model 7.97 

Table 5. Comparison of Latter-Day Solution with Suggested 
Solution 

 LATTER-DAY SOLUTION SUGGESTED SOLUTION 

i. Utilizes 6 input features- 
Speed, Acceleration, 
Throttle, Mileage, Fuel 
Flow, and Engine RPM. 

Utilizes 3 input features- 
Speed, Engine RPM and 
Mileage. 

ii. 3 layers having 120, 240 
and 500 neurons 
respectively. 

2 layers having 90 and 120 
neurons respectively. 

iii. RMSE achieved- 9.30 RMSE achieved- 7.97 

V. CONCLUSION AND FUTURE SCOPE 
This paper depicts a 2-Layer LSTM network-based solution 
that forecasts CO2 emissions from vehicles, employing three 
key features from OBD-II data: Speed, Engine RPM, and 
instantaneous Mileage. The suggested system can be 
implemented on a cloud platform with IoT dongles inside 
vehicles. This work emphasizes the robustness and 
efficiency of the suggested model, backed by strong 
performance metrics, and tackling existing solutions. It 
adapts to varying conditions, like road and traffic variations, 
that may influence OBD-II readings and so CO2 emission 
predictions. 

However, a constraint of this study is the dependence on a 
limited OBD-II dataset from only two vehicles. Expanding 
the dataset to inculcate diverse vehicle types and sizes is 
crucial for greater accuracy and applicability, and thus forms 
basis for the future scope of this work. This expansion will, 
in turn, enhance predictions across different vehicle 
categories, thus strengthening validity, and improving 
practical utility for policymakers and environmentally 
conscious individuals. Furthermore, it will support 
identifying potential biases and constraints specific to certain 
vehicle types, allowing for model refinements for better and 
broader applicability and reliability. 
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