
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 11, no. 10, 2023 
 
 
 

Abstract — Path-finding in uniform-cost grid environments 
is a popular task in different applications, like and video 
games, and robotics. In this project, several classical 
algorithms are presented and their work is explained, such as 
A*, Dijkstra, and Wave-front algorithm. A novel search 
strategy called Jump Point Search which uses pruning to 
decrease the discovered space is also presented. Jump Point 
Search is a designed optimal and fast algorithm for grids with 
no memory overhead. Moreover, Jump Point Search 
improvement will be discussed together with JPS+. We will use 
a benchmark to evaluate each of mentioned algorithms using 
different criteria, such as operation time, the number of visited 
nodes, and path length. Our environment will be a 2D uniform 
static grid. The aim of this article is to investigate the 
performance of several grid-based path-finding algorithms. We 
find that JPS produces the same path length as A* but with 
dramatically decreasing in time. 
 

Keywords— Artificial Intelligence, path planning 
algorithms, Pruning algorithms, Robotics, Game development.  

I. INTRODUCTION 
Path planning is finding a visible collision-free path that 

will lead the agent from the initial to the target 
configuration. It defines the next action to do from the 
current state. The algorithm selects the best next state to 
move to from all potential states. This decision is made 
according to some function of criteria, usually defined using 
one of the distance measures, such as the shortest Euclidean 
distance to the target state.  

 
Zero or multiple paths can be existing between certain 

initial and target states connecting the states. There are 
usually several possible paths (that is, paths that do not 
encounter obstacles). Criteria used in the evaluation of 
planning algorithms: 

• Completeness: the ability to always find the 
solution if it exists and correctly report an error 
when there is none. 

• Cost Optimization: is there a solution with the 
lowest path cost among all solutions? 

• Time Complexity: the time required to calculate the 
path if it exists. 

• Space Complexity: it defines the required memory 
to find the solution. 

• Path Length: According to these criteria, the main 
goal is to get the shortest possible path. This length 
can be calculated with different formulas 
(Euclidean, Manhattan, etc.). 

• Path Smoothness(PS): the path should be free from 
sharp turns, in other words, the goal of smoothness 

is to have a straight path as much as possible, and 
this will help minimize power consumption since 
turns on a straight path use much less memory than 
a curvy path. The smoothness of the path can be 
calculated using the following equation(1): 

𝑃𝑆 = ∑ (180 −  𝜙𝑖)𝑖     (1) 
• Detach from obstacles: the calculated path must be 

kept as far away from obstacles as possible. 
In this work, we compared the classical algorithm (A*) 

with the Jump Point Search algorithm (JPS). In the next 
sections, we will briefly cover the classical algorithms, and 
in detail the JPS. 

II. LITERATURE REVIEW 

A. Dijkistra 
Dijkstra’s Algorithm calculates all shortest paths from a 

given initial node to all other nodes in a fully connected 
graph. This algorithm requires information about the relative 
distance between all nodes Distances must not be negative. 

B. A* 
This is a search for the best first [9], which uses an 

evaluation function, refer to equation (2): 
 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1) 
 

where g(n) is the cost of the path from the start state to 
node n, and h(n) is the heuristic which estimates cost of the 
shortest path from n to the target state, so we have f(n) 
equals the estimated the cost of the best path that continues 
from n to the target. This approach allows the algorithm to 
distinguish between more or less promising nodes and, as a 
result, find a solution more efficiently. This heuristic 
function can be the Euclidean distance or the Manhattan 
distance (sum of vertical and horizontal displacements) from 
the current node to the target node. Algorithm A* is 
complete because it finds the optimal path if it exists and if 
the heuristic is feasible (optimistic). Its disadvantage is high 
memory usage. If all costs to reach the goal are set to zero, 
operation A* is equal to Dijkstra’s algorithm (h(n) = 0). 

C. Jump Point Search 
JPS is an optimized search algorithm for improving 

optimal search Aa* by expanding special nodes, called jump 
points [3] from the grid based on some rules. JPS excludes 
symmetric paths from a uniform 8-connected grid and 
provides one path between the destination and the target. 

 
 

An optimization of path planning A* for static 
uniform grid based on pruning algorithms: 

Experimental experience 

Mohammed Hammoud, Sergey Lupin 

33 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 11, no. 10, 2023 
 
 
 

        
        
        
        
        
        

a 

        
        
        
        
        
        

b 
Fig. 1 Symmetries paths from start to goal in grid 

environment 

Fig. 1 represents many equivalent best paths through this 
rectangular area. These tracks are symmetrical (costs the 
same). 

A* adds nearest neighbor nodes to the set of what to 
explore next. JPS identifies situations where path symmetry 
is present and ignores certain nodes as we expand our 
search, as shown in Fig. 2. 

 

Fig. 2 Difference between A* and JPS 

JPS can recognize symmetric paths and ignore all but one, 
while A* adds all neighbors to the open list, as in the classic 
A* algorithm. JPS suggests moving right and keeps moving 
in that direction until we find a node y with at least one 
more neighbor without dominance, as shown in Fig. 3. 

 
Fig. 3 JPS rules 

1) Work principle of JPS 
The main idea is to minimize the immediate neighbors 

around a node. The goal is to prove the presence of an 
optimal path between the node's parent and each neighbor, 
which doesn't pass through the current node.  Jump points 
are intermediate points on the map through which a 
minimum of one optimal path must be passed. 
2) Pruning rules 

For a given node x accessed through a parent node p(x), 
suppose π′ = (p, ..., n) - path without x, π = (p, x, n) - path 
with x. We truncate some neighbor’s n of x, if one of two 
rules is satisfied: 

• In the case of horizontal and vertical movement, 
there is a path shorter than one pass through current 
node x as shown in equation (3) 

length(π′)  ≤  length (π) (2) 
• π′ has a diagonal move earlier than π, and equation 

(4) is satisfied. 

length(π′) =  length (π) (3) 
3) Jump points 

JPS determines node x as the jump point on the following 
rules: 
1) x is a start or a target node. 
2) x has a minimum of one forced neighbor. 
3) The search direction from p(x) to x is diagonal and the 

other directions (vertical and horizontal) met the first 
two rules Fig. 3b. 

There are two sets of rules: pruning rules and jumping 
rules. Looking to Fig. 4b, node x is currently being 
expanded. The direction of movement from the parent of 
node x is either horizontal, vertical, or diagonal. 

 
   

p x  
   

 

   
 x  

p   
 

   
p x  
   

  

(a) straight, diagonal, and forced neighbor 

 
(b) The eight forced neighbor cases [2]. 

 
Fig. 4 Work principles of JPS 

Since there is an optimal path from p(x) to the gray 
marked neighbors of x without passing through x, we can 
prune the gray-marked neighbors. The remaining neighbors 
after pruning is called natural neighbors of x (marked in 
white). The existence of obstacles signals that it is important 
to consider a set of size k, where (0 ⩽ k ⩽ 2). These nodes 
represent forced neighbors of the current node that only 
occur when moving in a forward or cardinal direction 
(north, south, west, or east). Forced neighbors signal that the 
normal pruning strategy will fail and that the current node 
must consider additional nodes. 

Now we will explain the work of the JPS algorithm in the 
case illustrated in Fig. 5. 
1) Starting with a single node in the open queue, expand 

vertically and find nothing (Fig. 5a). 
2) Expanding horizontally, we find a node with a forced 

neighbor (highlighted in purple). Add this node to the 
open set (Fig. 5b). 

3) Expand diagonally, finding nothing because we run 
into the edge of the map (Fig. 5c). 

4) Explore the next best one (from the open node). Since 
we were moving horizontally, when we reached this 
node, we continue to jump horizontally (Fig. 5d). 

5) Since there is a forced neighbor, it is necessary to 
expand in this direction. Following the rules of 
diagonal jumps, we move diagonally, then look both 
vertically and horizontally (Fig. 5e). 

34 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 11, no. 10, 2023 
 
 
 
6) Found nothing, we again move diagonally (Fig. 5f). 
7) This time, after expanding horizontally (nowhere to 

go) and vertically, we see the target node. It is no less 
interesting than finding a node with a forced neighbor, 
so we add this node to the open set (Fig. 5g). 

8) Expanding the last open node, reaching the goal (Fig. 
5a). 

9) By skipping the last iteration of the algorithm – adding 
the target itself to the open set only to recognize it as 
such - we found a better way (Fig. 5i). 

D. Jump Point Search improvement 
JPS spends most of its time searching the grid for 

successors instead of manipulating nodes from lists. JPS has 
been enhanced using various techniques such as block-based 
symmetry breaking and improvement of cleaning rules. The 
majority of jump points are target independent. The 
improved JPS version uses a new preprocessing that 
calculates and stores jump points of nodes on the map. 

Such block-based operations allow applying the pruning 
rules of JPS to multiple nodes simultaneously. This will 
allow the grid to be scanned faster which increases the 
overall pathfinding performance. To achieve this, the grid 
must be encoded as a matrix of bits. Each bit corresponds to 
a unique location and implies the nodes that can be 
traversed. 

In JPS we will scan horizontally then vertically then 
diagonally (just one node at a time), in the order shown with 
the red numbers. While new JPS scan several nodes at the 
same time. 

JPS performs searching iteratively along a given row or 
column, and it stops in case finding a forced neighbor in an 
adjacent row or detecting a dead-end or the target node in 
the current row. The stopping condition can be validated 
using an operation on B ↑, BN, and B ↓. This algorithm is 
shown below (applied at the same time on the example 
shown in Fig.  7, where w = 8). 

1) Get 𝐵𝑁 by reading w nodes from N.  
𝐵𝑁 = [0, 0, 0, 0, 0, 1, 0, 0], Dead node exists at:  
𝑏𝑁 = ffs(𝐵𝑁) − 1 = 4 
𝑤ℎ𝑒𝑟𝑒 𝑓𝑓𝑠 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑡 

2) Get B ↑ by reading w nodes, from the previous 
row for node N  
B ↑= [0, 0, 0, 0, 0, 0, 0, 0] 

3) Get B ↓ (𝐵𝑑)by reading w nodes, from the 
previous row for node N 
B ↓= [0, 0, 1, 1, 0, 0, 0, 0] 

4) Detect dead node exists in position 𝑖 of byte B in 
case 𝐵𝑖  = 0 and  𝐵𝑖+1 = 1. In other words, this can 
be done, as shown in equation (5): 
𝑏𝑁  = find first set(𝐵𝑁) – 1 (4) 

𝑏𝑁= 5 − 1 = 4 
5) Detect forced neighbors, 𝐵𝑖  is a forced neighbor if 

𝐵𝑖  is traversable and 𝐵𝑖−1 is not(obstacles). This 
is done using equation (6): 

forced(B)  =  (B ≪  1) &!  B (5) 
6) Find stop byte 𝐵𝑠, using equation (7). 

       𝐵𝑠 =  forced�𝐵𝑦�| forced(𝐵𝑑)|𝐵𝑁  (6) 
𝐵𝑠 = [0, 0, 0, 0, 1, 1, 0, 0] 

𝐵𝑠= 0 → The search has to stop. Since 𝐵𝑁 If bs = 
0, jump w−1 nodes and repeat, else search has to 
stop. If 𝑏𝑠 is less than 𝑏𝑁, then there is a jump 
point at 𝐵𝑁 [𝑏𝑠− 1] else we hit a dead node. At 
position 𝑏𝑠= ffs (𝐵𝑁) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Fig. 5 JPS example workflow [4] 

 

Fig. 6 JPS (red numbers) and Improved JPS [5] 

JPS+ has disadvantages represented by preprocessing step 
(offline algorithm). The time complexity of JPS is quadratic 
while it has linear space requirements w.r.t the number of 

35 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 11, no. 10, 2023 
 
 
 
nodes in the grid. The disadvantage of the prepossessing 
step requires re-computing the map changes and introducing 
a substantive memory overhead.  

JPS+ is a speed algorithm since it searches for jump point 
successors in constant time rather than scanning the grid for 
jump points. In most cases, JPS+ requires scanning a small 
part of the map and in this case, time dramatically increases 
if the map is obstacle free. In this case, one diagonal jump 
may lead to all nodes being scanned.  Additionally, re-
computing the path via block-based symmetry is performed 
very fast. 

IV. METHODS AND METHODOLOGY 
We used the benchmark [8] as shown in Fig.  8 to 

evaluate each of the mentioned algorithms against various 
criteria such as running time, number of nodes visited, and 
path length. 
 

(a) Berlin_0_256 map (b) Boston_2_512 map 

Fig. 7 Samples from the dataset used to test and evaluate 
algorithms 

V. RESULTS 
For all maps in the dataset [10], the results are illustrated 

below. We have tested both algorithms (A*, JPS) on 
different maps from this dataset. Some results samples for 
some maps are shown in  Table. 1 and Table. 2. Each table 
corresponds to a different map size: 256 × 256 to 512 × 512. 

As shown in Tables, JPS finds a path faster than A*. JPS 
also produces a path almost similar to A*. From another 
point, we have tested the algorithms on all datasets, which 
are shown in Fig 9-14. 

 

Fig. 8 Path length comparison between A* (blue) and JPS 
(orange) for the entire dataset for a map size of 256 x 256 

 

Fig. 9 Time comparison between A* (blue) and JPS for map 
size 256 x 256 

 

Fig. 10 Path length comparison between A* (blue) and JPS 
(orange) for the entire dataset for a map size of  512 x 512 

 

Fig. 11 Time comparison between A* (blue) and JPS for 
map size 512 x 512 

 

Fig. 12 Path length comparison between A* (blue) and JPS 
(orange) for the entire dataset for a map size of 1024 x 1024 

 

Fig. 13 Time comparison between A* (blue) and JPS for 
map size 1024 x 1024 

 

 

 

 

 

36 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 11, no. 10, 2023 
 
 
 

Table.  I Algorithms Comparison for 256 * 256 map 

Map 
256 x 256 

Start Goal Benchmark 
(length) 

Algorithm 
A* JPS 

x y x y length Time (sec) length Time (sec) 

Boston_0-256 352 0 0 407 752.3595 752.3595 11.3571 751.7737 0.9301 
268 10 24 482 752.0530 752.0530 10.4115 751.4672 0.6380 

Paris_0-256 495 503 24 85 722.0509 722.0509 16.7910 720.2935 2.9828 
509 48 12 495 720.8570 720.8570 14.8685 717.3423 1.7216 

London_0-256 214 26 51 199 828.5311 828.5311 12.3035 825.6022 2.7474 
244 40 507 502 828.1930 828.1930 16.9394 828.1930 2.0201 

Moscow_0-256 5 499 510 20 729.1829 729.1829 15.0875 728.5971 1.0276 
67 499 502 6 731.8692 731.8692 4.7098 729.5260 167.0000 

 

Table.  II Algorithms Comparison for 512 x 512 map 

 

Map  
512 * 512 

Start Goal Benchmark 
(length) 

Algorithm 
A* JPS 

x y x y length Time(sec) length Time 

Boston_0-512 4 227 181 7 379.1564 379.1564 3.8948 377.3991 1.1406 
125 1 26 233 376.4113 376.4113 1.0783 375.2397 0.2997 

Paris_0-512 242 243 6 18 390.3036 390.3036 2.5419 387.3747 0.6335 
239 253 7 10 389.4752 389.4752 1.6995 387.1320 0.6477 

London_0-512 153 13 49 254 397.6001 397.6001 4.1897 395.8427 1.1271 
31 108 132 25 397.8305 397.8305 2.4166 394.3158 1.0736 

Moscow_0-512 247 4 7 247 361.0559 361.0559 1.6264 359.8843 0.4414 
20 241 246 0 360.0854 360.0854 2.5279 357.1564 0.4946 

 
Fig. 15 shows a visual representation of the path generated by JPS. 
 

 

Fig.  14 Visual representation of the shortest path between two points based on JPS 

 

CONCLUSION 
In this work, we compared A* with a pruning algorithm 

jump point search. Using the jumping approach, JPS is able 
to quickly move over the map with no need to add nodes to 
the open list. This reduces the operations number and nodes’ 
number in the list. JPS is optimal and eliminates nodes with 
no memory overhead. A disadvantage of JPS is to ignore the 

possibility from any angle so that JPS solutions always have 
a gap with the actual paths. This will be a possible working 
direction that will be implemented on enhanced JPS for 
better performance.   

REFERENCES 
[1] C. Y. Lee, “An algorithm for path connections and its applications, 
”IEEE Transactions on Electronic Computers, vol. EC-10, no. 3, pp.346–
365, Sep. 1961. 

37 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 11, no. 10, 2023 
 
 
 
[2] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on 
grid maps,” in Proceedings of the AAAI Conference on Artificial 
Intelligence, vol. 25, no. 1, 2011, pp. 1114–1119. 
[3] “The JPS pathfinding system,” in International Symposium on 
Combinatorial Search, vol. 3, no. 1, 2012. 
[4] https://zerowidth.com/2013/ a-visual-explanation-of-jump-point-
search.html. 
[5] D. Harabor and A. Grastien, “Improving jump point search,” in 
Proceedings of the International Conference on Automated Planning and 
Scheduling, vol. 24, 2014, pp. 128–135. 
[6] S. Rabin, Game AI Pro 360: guide to movement and pathfinding CRC 
Press, 2019. 
[7] Pygame, https://youtu.be/NmM4pv8uQwI. 

[8] “Moving AI lab: 2d maps and benchmark problems,” 
https://www.movingai.com/benchmarks/random/index.html. 
[9] B. Stout, “Smart moves: Intelligent pathfinding,” Game developer 
magazine, vol. 10, pp. 28–35, 1996. 
[10] “Moving AI lab: 2d maps and benchmark problems, city street,” 
https://www.movingai.com/benchmarks/street/index.html.  
 
Paper received 25 June 2023. 
Mohammed Hammoud, PhD student, National Research University of 
Electronic Technology (MIET) (e-mail: hammoudmsh93@gmail.com); 
Sergey Lupin, Professor, National Research University of Electronic 
Technology (MIET), (e-mail: lupin@miee.ru).

 

38 
 


	I. Introduction
	II. Literature review
	A. Dijkistra
	B. A*
	C. Jump Point Search
	1) Work principle of JPS
	2) Pruning rules
	3) Jump points

	D. Jump Point Search improvement

	IV. Methods and methodology
	V. Results
	Conclusion
	REFERENCES

