
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 6, 2022

57

Abstract—The Java garbage collector is one of the important

modules of the Java Virtual Machine (JVM). When an object

has no references, it is considered "garbage". The memory space

occupied by this object needs to be freed. The role of the Java

garbage collector is to manage memory and release the memory

occupied by this "garbage". This article introduces the main

function and working principle of the Java garbage collector,

focusing on three mainstream garbage collection algorithms and

compares serial, parallel, and concurrent design choices. This

article also introduces 7 garbage collectors in Java based on

different algorithms and design choices: Serial, Serial Old,

ParNew, Parallel, Scavenge, Parallel Old, CMS, and G1.

Keywords—Jave garbage collector, JVM, Memory

management.

I. INTRODUCTION

Memory management is the process of recognizing when

allocated objects are no longer needed, deallocating (freeing)

the memory used by such objects, and making it available for

subsequent allocations [1]. There are two ways to implement

dynamic memory management: Explicit and Automatic

Memory Management. The garbage collector is a solution to

automatic memory management. The Java programming

language implements Automatic Memory Management,

which is the java garbage collector. The Java garbage

collector is one of three important modules of the Java Virtual

Machine (JVM) (the other two being the interpreter and

multithreading mechanism) [2]. Its role is to provide

applications for automatic memory allocation and automatic

garbage collection.

The Java heap is the main area managed by the garbage

collector, also known as the "GC heap", which is a memory

area shared by all threads. The purpose of heap memory is to

store object instances, that is, objects and arrays created by

"new" and instance variables of objects [3]. Generally

speaking, for an object stored on the heap, if multiple

references are pointing to it, the object is "live", otherwise it is

"dead" and considered garbage that needs to be collected.

II. GENERATIONAL GARBAGE COLLECTION STRATEGY

Because the life cycle of most objects in Java is short-lived,

the generational recycling strategy is used in the Java garbage

collector to manage the memory of the heap generationally.

The purpose of "generational collection" is to use different

management strategies (collection algorithms) for different

generations of memory blocks to maximize performance [4].

Generally, the Java heap is divided into the young generation,

the old generation, and the persistent generation [5]. It is

worth noting that no matter how it is divided, it has nothing to

do with the content. No matter which area, all object instances

are stored.

A. Minor GC

In most cases, objects are allocated to the young generation.

In the young generation, there is a space called Eden Space,

which is mainly used to store new objects. In addition to the

Eden space, there are From Survivor and To Survivor spaces.

These two areas are equal in size, equivalent to the two areas

in the copying algorithm, which are used to store objects that

survive each garbage collection.

 Garbage collection in the young generation is called Minor

GC. When Eden space does not have enough space for an

allocation, the newly created object cannot be placed in Eden

Space, and the virtual machine will trigger a Minor GC at this

time.

 The main processes of Minor GC are as follows:

1) In the initial state, the newly created object is allocated

to the Eden area, and the two spaces (From and To) of

the survivor are empty.

2) When there is not enough space in ‘Eden’ space, the

Space objects of ‘Eden’ and ‘From’ will be copied to

‘To’ space, and then ‘Eden’ and ‘From’ space will be

emptied. The first garbage collection is done. At this

point, ‘Eden’ space and ‘From’ space has been emptied,

and “live” object are tightly stored in ‘To’ space.

3) When the 'Eden' space is full again, the "live" objects of

the 'Eden' space and the 'To' space will be copied to the

'From' space. Then, the 'Eden' space and the 'To' space

are emptied. At this point, the live object is stored in the

'From' space.

4) The above steps are repeated.

Figure 1: copy algorithm

 This method of garbage collection by repeatedly copying

through two spaces is called the copying algorithm. This

copying algorithm is simple to implement and efficient to run.

Java Garbage Collectors

Wang Sihan

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 6, 2022

58

Because the memory is freed for one of the spaces each time,

there is no need to consider memory fragmentation when

allocating memory. Just move the top pointer of the heap and

allocate memory in sequence.

B. From the Young Generation to the Old Generation

Objects will be moved to the old generation in the following

cases:

1) When the Minor GC is executed, the live objects in

the 'Eden' and 'From' places will be moved to the ‘To’

place. If the 'To' place cannot be loaded at this time,

the objects will be directly moved to the old

generation.

2) "Old" objects in the 'From' place will be moved to the

old generation. Even if the 'To' place is not full, the

JVM will still move objects that are old enough for

the old generation. (The "age" of the object: If the

object is born in the Eden space, still alive after the

first Minor GC, and can be accommodated by the

Survivor space, then the object will be moved to the

Survivor space, and the age will be set to 1. In

survivor space, an object survives once from minor

GC, and its age increases by 1 year. When its age

increases to a certain age (default 15), it will be

transferred to the old generation. The threshold for

object promotion to the old generation age can be set

by the parameter -XX:MaxTenuringThreshold.)

3) In the Survivor space, if the sum of the size of the

objects with the same age is bigger than half of the

Survivor space, the objects whose age is bigger than

or equal to this age are directly transferred to the old

generation, without waiting for the age to required in

MaxTenuringThreshold.

4) Large objects are allocated directly to the old

generation. Large objects are a nuisance to virtual

machine memory allocation. Large objects tend to

trigger garbage collection early when there is still a lot

of space in memory, because enough contiguous

space needs to be arranged to accommodate them.

The virtual machine provides a

-XX:PretenureSizeThreshold parameter, which

allows objects larger than this setting value to be

allocated directly in the old generation. The purpose

is to avoid a large number of memory copies between

the Eden space and the two Survivor spaces.

C. Garbage collection mechanism in old generation

The old generation mainly stores memory objects with a long

life cycle. If the old generation is full of objects and new

objects cannot be moved from the young generation, a major

collection (major GC) will be triggered. In the old generation

garbage collection generally uses mark-compact or

mark-and-sweep algorithm. The "mark" algorithm is slower

and less efficient than the copy algorithm, but it reduces

memory requirements.

Algorithm mark-and-sweep. The mark-sweep algorithm

can be divided into two stages: mark and clear. First, mark all

reachable objects starting from the root node. Unmarked

objects are unreferenced garbage objects. Second clear all

unmarked objects. The main problem with this algorithm is

that it will generate a large number of discontinuous memory

fragments. Too much fragmentation will result in not being

able to find enough contiguous memory when allocating

larger objects, in which case another garbage collection will

have to be triggered early.

Algorithm mark-compact. The algorithm mark-compact

is optimized based on the mark-and-sweep algorithm. It

solves the memory fragmentation problem of the

Mark-and-Sweep algorithm. The mark-compact algorithm

can be divided into three processes: mark, sweep, and

compact. In the mark phase, still the same as the mark-sweep

algorithm, through the root node, all reachable objects

starting from the root node are marked. Then there is the

compact phase, which compacts all live objects into a part of

memory (the first part of the old generation). Finally, there is

the sweep phase, which cleans up memory beyond the end

boundary and frees all dead objects.

Both the mark-and-sweep algorithm and the mark-compact

algorithm sacrifice efficiency in exchange for memory

utilization. Therefore, they are more suitable for situations

where there are many surviving objects such as in the old

generation.

Compare three garbage collection algorithms：

1) In terms of efficiency (time complexity): the copying

algorithm is the highest, followed by mark-compact,

and Mark-and-Sweep is the lowest.

2) For memory utilization, Mark-Compact has the

highest, followed by mark-and-sweep, and the

copying algorithm has the lowest.

3) From the point of view of memory neatness, both the

copying algorithm and the mark-compact algorithm

can effectively solve the problem of memory

fragmentation, while mark-and-sweep will produce a

large amount of memory fragmentation.

In fact, in java, in addition to the young generation and the

old generation, there is a third-generation - the permanent

generation. The permanent generation is mainly used to put

the JVM's objects, such as class objects, method objects,

member variable objects, and constructor objects. The

permanent generation does not participate in recycling.

III. SINGLE-THREADED SERIAL RECYCLING STRATEGY AND

MULTI-THREADED PARALLEL RECYCLING STRATEGY

Single-threaded serial means that only one CPU is used to

perform garbage collection tasks, even if there are multiple

CPUs available at the time. Its advantages are simple, easy to

implement, and less fragmented, suitable for single-core

computers.

 The strategy of the parallel collection is to divide the

garbage collection task into multiple parts and let these

subparts execute simultaneously on different CPUs. The

multi-threaded parallel recycling strategy can make full use of

the CPU resources of multi-core machines, reduce garbage

collection time and increase efficiency [6]. Its disadvantage is

that it is complex and may cause some fragments not to be

recovered.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 6, 2022

59

IV. CONCURRENT AND STOP-THE-WORLD

Concurrent means that garbage collection and application are

performed concurrently. Stop-the-world means to stop the

application thread when recycling. The advantages of

stop-the-world are simplicity, precision, cleaner, and less time

for garbage collection because the garbage collector can

monopolize CPU resources. However, its disadvantage is that

after stopping the application thread, the response time of the

application during the garbage collection cycle will be longer,

so it is not suitable for systems with very high real-time

requirements. The advantage of concurrent is that the

response time of the application is smoother and more stable

[7]. The disadvantage is that it is difficult to implement,

frequent cleaning, and possible fragmentation.

V. SEVEN GARBAGE COLLECTORS IN JAVA

The Serial GC. The serial collector is the default in Java SE 5

and 6 [8]. There are two types of serial garbage collectors, the

young generation and the old generation. Serial is the default

young generation garbage collector for client-style machines.

It uses a single CPU or one thread to collect garbage. All other

worker threads are stopped during collection until garbage

collection is complete. Serial is simple and efficient and is

suitable for computers with a single core or a few cores. Serial

Old is the default old generation garbage collector in client

mode. Like "Serial", it applies to the case of a single-core

CPU.

 The Parallel GC. There are three kinds of parallel garbage

collectors in Java: ParNew, Parallel Scavenge, and Parallel

Old. ParNew is a young generation parallel garbage collector

that uses a copy algorithm. Think of it as a multithreaded

version of "Serial". The default number of threads in

"ParNew" is the number of CPU cores. And the number of

threads can be configured through -XX:ParallelGCThreads.

In Server mode, ParNew is the default garbage collector for

the young generation. It is efficient and simple and is suitable

for multi-core CPU conditions. But like "Serial", "ParNew"

stops other worker threads during garbage collection [9].

 Parallel Scavenge, like ParNew, is also a young generation

parallel garbage collector, which also uses a replication

algorithm. But it differs from ParNew in that Parallel

Scavenge aims to achieve a manageable throughput. High

throughput can make the most efficient use of CPU time and

complete the program's computing tasks as quickly as

possible [10]. Therefore, Parallel Scavenge is suitable for

situations with less interaction and more computation, such as

background operations.

 (1)

 Where T_code is the runtime of the user's code, and T_GC

is the time of garbage collection.

 Parallel Old is an old-generation parallel garbage collector

provided in JDK 1.6, which uses the mark-compact algorithm.

Parallel Old to cope with high throughput requirements in the

old generation. When the system requires high throughput, a

combination of the young generation Parallel Scavenge and

the old generation Parallel Scavenge can be used to obtain the

most efficient CPU multi-core utilization.

 The Concurrent Mark Sweep (CMS) Collector. CMS

is an old-generation garbage collector [11]. CMS minimizes

pause time during garbage collection. Marking and sweeping

are concurrent, and garbage collection works with user

threads, so there is no need to stop worker threads. CMS is

suitable for programs with high interaction requirements and

can significantly improve user experience. However, its

disadvantage is that it will generate memory fragmentation

and floating garbage. In addition, CMS is very sensitive to

CPU resources.

The G1 Garbage Collector. The G1 garbage collector is a

concurrent garbage collector introduced in jdk1.7 [12]. The

G1 garbage collector combines young and old generations.

The working principle of G1 is to divide the heap memory

into multiple areas and prioritize them side by side, and the

area with a lot of garbage will be reclaimed first [13]. By

collecting part of the area each time, the stop time generated

by GC is reduced, ensuring the highest garbage collection

efficiency in a limited time. The advantage of the G1garbage

collector is that it can precisely control the pause time and

achieve low-pause garbage collection without sacrificing

throughput. And G1 is based on the Mark-Compact

algorithm, so there will be no memory fragmentation [14].

Table 1: Comparison of the 7 garbage collectors in java

Garbage

collector

Serial/

Parallel/

Concurrent

Young/Old

generation
Algorithm

Serial Serial
Young

generation
Copy algorithm

Serial

Old
Serial

Old

generation
Mark-compact

ParNew Parallel
Young

generation
Copy algorithm

Parallel

Scavenge
Parallel

Young

generation
Copy algorithm

Parallel

Old
Parallel

Old

generation
Mark-compact

CMS Concurrent
Old

generation
Mark-and-sweep

G1 Concurrent

Young

generation

and old

generation

Mark-compact

and copy

algorithm

VI. PERFORMANCE METRICS

To evaluate the performance of the garbage collector, there

are six main performance metrics.

1) Throughput: The proportion of non-garbage

collection time to the total time in a long cycle. This

metric measures the operational efficiency of the

system.

2) Garbage Collection overhead: The percentage of

garbage collection time to total time in a long cycle.

Garbage Collection overhead and Throughput sum to

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 6, 2022

60

100%.

3) Pause time: The time when the program's worker

thread is suspended while the Java Virtual Machine is

collecting garbage.

4) Frequency of collection: the frequency of garbage

collection operations occur.

5) Footprint: Java heap area occupied by the size of

memory.

6) Promptness: the time from the death of an object to the

memory occupied by the object is released.

The most important of these metrics are throughput,

pause time, and footprint [15].

Now, with the development of hardware memory

footprint is no longer a major issue.

High throughput gives the user a better experience

because it makes the end-user of the application feel like

only the application thread is doing the work. Also, low

pause times are better because it is always bad for an

application to be hung and may interrupt the end-user

experience. Some programs are sensitive to pause times,

such as interactive applications.

Unfortunately, "high throughput" and "low pause time"

are contradictory. If we choose to prioritize throughput,

then we must reduce the frequency of garbage collection,

which leads to a longer pause time for garbage collection.

On the contrary, if we choose to prioritize low latency, we

have to execute garbage collection more frequently to

reduce the pause time of each garbage collection, but this

will cause memory reduction in younger generations and a

decrease in program throughput.

Therefore, a garbage collection algorithm either targets

one of the two goals (i.e., focuses only on larger

throughput or minimum pause time) or tries to find a

compromise between the two. Nowadays, the general

choice is to reduce the stall time while prioritizing

maximum throughput.

It is worth noting that the importance of pause time is

becoming more and more important with hardware

development. On the one hand, hardware performance

improvements have helped to reduce the impact of the

collector on the application while it is running, i.e.

increasing throughput. On the other hand, the expansion of

memory has harmed pause time.

Commonly used Java garbage collector performance

evaluation tools are:

1) -XX:+PrintGCDetails and

-XX:+PrintGCTimeStamps;

2) jmap [options] pid;

3) jstat [options] pid.

The first method can print the start time, duration, and

free memory of each generation of garbage. jmap can view

class loading and memory usage. jstat can view GC

execution.

VII. TESTING OF JAVA GARBAGE COLLECTION

Java version and mode:

1) java version "1.8.0_291"

2) Java(TM) SE Runtime Environment (build

1.8.0_291-b10)

3) Java HotSpot(TM) 64-Bit Server VM (build 25.291-b10,

mixed mode)

Test objects: Specify Serial+Serial Old as JVM garbage

collector.

A. Check Memory Consumption

First create the following class:

public classGCTest {

 public static void main(String[] args){}

}

Then use javac to compile and execute:

java -verbose:gc -Xms20M -Xmx20M -Xmn10M

-XX:+PrintGCDetails -XX:SurvivorRatio=8

-XX:+UseSerialGC

The test results are logged as follows:

[0.184s][info][gc,heap,exit] Heap

[0.184s][info][gc,heap,exit] def new

generation total 9216K, used 1311K

[0x00000007fec00000, 0x00000007ff600000,

0x00000007ff600000)

[0.184s][info][gc,heap,exit] eden space

8192K, 16% used [0x00000007fec00000,

0x00000007fed47e38, 0x00000007ff400000)

[0.184s][info][gc,heap,exit] from space

1024K, 0% used [0x00000007ff400000,

0x00000007ff400000, 0x00000007ff500000)

[0.185s][info][gc,heap,exit] to space

1024K, 0% used [0x00000007ff500000,

0x00000007ff500000, 0x00000007ff600000)

[0.185s][info][gc,heap,exit] tenured

generation total 10240K, used 0K

[0x00000007ff600000, 0x0000000800000000,

0x0000000800000000)

[0.185s][info][gc,heap,exit] the space

10240K, 0% used [0x00000007ff600000,

0x00000007ff600000, 0x00000007ff600200,

0x0000000800000000)

[0.185s][info][gc,heap,exit] Metaspace

used 309K, committed 384K, reserved 1056768K

[0.185s][info][gc,heap,exit] class space

used 15K, committed 64K, reserved 1048576K

From the log we can see that the young generation size is

9216K, which is the sum of eden space 8192K and from space

1024 K. Also the base consumption of the eden area is 1311K.

B. Trigger process of Minor GC

In most cases, objects are allocated memory in the young

generation Eden space. A Minor CG will occur when there is

not enough space in the Eden space. The JVM provides the

-XX:+PrintGCDetails option to print garbage collection logs.

To test how the garbage collector works, first create four byte

array objects and their sizes are 2MB, 2MB, 3MB, 2MB:

byte[] allocation1 = new byte[2 * 1024 * 1024];

byte[] allocation2 = new byte[2 * 1024 * 1024];

byte[] allocation3 = new byte[3 * 1024 * 1024];

byte[] allocation4 = new byte[2 * 1024 * 1024];

The execution parameters are set to: java -verbose:gc

-Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails

-XX:SurvivorRatio=8 GCTest.

The test results are printed as follows log:

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 6, 2022

61

[Full GC (Ergonomics) [PSYoungGen:

384K->0K(9216K)] [ParOldGen:

7176K->7440K(10240K)]

7560K->7440K(19456K), [Metaspace:

2543K->2543K(1056768K)], 0.0031773 secs]

[Times: user=0.01 sys=0.00, real=0.00

secs]

allocation1:0x00000000f7d80000

allocation2:0x00000000f7dc009d

allocation3:0x00000000f7e0009f

allocation4:0x00000000f7ec0000

Heap

 PSYoungGen total 9216K, used 2290K

[0x00000007bf600000, 0x00000007c0000000,

0x00000007c0000000)

 eden space 8192K, 27% used

[0x00000007bf600000,0x00000007bf83cae8,0

x00000007bfe00000)

 from space 1024K, 0% used

[0x00000007bfe00000,0x00000007bfe00000,0

x00000007bff00000)

 to space 1024K, 0% used

[0x00000007bff00000,0x00000007bff00000,0

x00000007c0000000)

 ParOldGen total 10240K, used 7440K

[0x00000007bec00000, 0x00000007bf600000,

0x00000007bf600000)

 object space 10240K, 72% used

[0x00000007bec00000,0x00000007bf3442a8,0

x00000007bf600000)

 Metaspace used 2553K, capacity 4486K,

committed 4864K, reserved 1056768K

 class space used 275K, capacity 386K,

committed 512K, reserved 1048576K

We can see from the log that the size of the Eden space is

8192K, and the memory size of the from and to spaces is both

1024K. At the same time, it can be seen that the reason for this

Minor GC is that when the object “allocation3” allocates

memory, the Eden area already occupies 4MB and the base

memory consumption is 1311KB, the remaining space is

insufficient to allocate to “allocation3” which needs 3MB of

space. In addition, from the log, we can also see that the old

generation in the log uses 4096K, which means that during the

Minor GC, two 2MB objects cannot be placed in the Survivor

space (from and to), because both spaces have only 1MB of

memory, so the two objects are transferred to the old

generation in advance. Finally, we can see that after this

Minor GC, the total memory is reduced from 7560K to 7440K,

a reduction of 120 KB. This means that non-live objects

(120KB of memory) are cleaned up.

VIII. CONCLUSION

The development of the java garbage collector is

accompanied by the development of computers and the

development of user needs. The era of single-core machines

gave rise to "Serial", and later with multi-core machines, there

was "ParNew". With the further improvement of usage

requirements, people want both multi-threading and high

throughput, and there was Parallel Scavenge. Then came G1,

which takes into account both the young and old generations,

can control the pause time caused by garbage collection

without sacrificing throughput, and also solves the problem of

memory fragmentation.

ACKNOWLEDGMENT

The author is very grateful to the teacher Dr. Dmitry Namiot

for his suggestions, guidance, and help. The article was

written as part of the course on the Internet of Things and

related standards [16, 17] Master's Program in Computing

Networks.

REFERENCES

[1] Microystems, S. U. N. "Memory Management in the Java HotSpot

Virtual Machine." (2006): 41.

[2] The Java Virtual Machine Specification. Java SE 9 Edition. URL:

https://docs.oracle.com/javase/specs/jvms/se9/jvms9.pdf (Retrieved:

May 2022).

[3] Lindholm, Tim, et al. The Java Virtual Machine Specification, Java SE

7 Edition: Java Virt Mach Spec Java_3. Addison-Wesley, 2013.

[4] Pufek, P., Hrvoje Grgić, and Branko Mihaljević. "Analysis of garbage

collection algorithms and memory management in java." 2019 42nd

International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO). IEEE, 2019.

[5] Bakunova O.M., et al. "Java memory model" Web of Scholar 1.6

(2018): 29-32. (in Russian)

[6] Boehm, Hans-J., Alan J. Demers, and Scott Shenker. "Mostly parallel

garbage collection." ACM SIGPLAN Notices 26.6 (1991): 157-164.

[7] Domani, Tamar, et al. "Implementing an on-the-fly garbage collector

for Java." ACM SIGPLAN Notices 36.1 (2000): 155-166.

[8] Java Garbage Collection Basics [Online]. Available:

URL:https://www.oracle.com/webfolder/technetwork/tutorials/obe/ja

va/gc01/index.html (Retrieved: May 2022)

[9] Domani, Tamar, Elliot K. Kolodner, and Erez Petrank. "A generational

on-the-fly garbage collector for Java." Proceedings of the ACM

SIGPLAN 2000 conference on Programming language design and

implementation. 2000.

[10] Soman, Sunil. "Modern Garbage Collection for Virtual Machines."

Soman: Modern Garbage Collection for Virtual Machines: Univ of

AC, Santa Barbara, Computer Science Dep't (2003).

[11] Printezis, Tony, and David Detlefs. "A generational mostly-concurrent

garbage collector." Proceedings of the 2nd international symposium on

Memory management. 2000.

[12] Detlefs, David, et al. "Garbage-first garbage collection." Proceedings

of the 4th international symposium on Memory management. 2004.

[13] Grgic, H., Branko Mihaljević, and Aleksander Radovan. "Comparison

of garbage collectors in Java programming language." 2018 41st

International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO). IEEE, 2018.

[14] The Garbage First Garbage Collector [Online]. Available:

https://www.oracle.com/java/technologies/javase/hotspot-garbage-col

lection.html (Retrieved: May 2022)

[15] Tauro, M., et al. "CMS and G 1 Collector in Java 7 Hotspot: Overview,

Comparisons and Performance Metrics." International Journal of

Computer Applications 43.11 (2012).

[16] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On m2m software."

International Journal of Open Information Technologies 2.6 (2014):

29-36.

[17] Sneps-Sneppe, Manfred, and Dmitry Namiot. "About M2M standards

and their possible extensions." 2012 2nd Baltic Congress on Future

Internet Communications. IEEE, 2012.

Wang Sihan – Lomonosov Moscow State University (email:

wangsihansmail@gmail.com)

