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A Survey of Adversarial Attacks and Defenses for
image data on Deep Learning

Huayu Li, Dmitry Namiot

Abstract—This article provides a detailed survey of the
so-called adversarial attacks and defenses. These are special
modifications to the input data of machine learning systems
that are designed to cause machine learning systems to work
incorrectly. The article discusses traditional approaches when
the problem of constructing adversarial examples is considered
as an optimization problem - the search for the minimum
possible modifications of correlative data that “deceive” the
machine learning system. As tasks (goals) for adversarial
attacks, classification systems are almost always considered.
This corresponds, in practice, to the so-called critical systems
(driverless vehicles, avionics, special applications, etc.). Attacks
on such systems are obviously the most dangerous. In general,
sensitivity to attacks means the lack of robustness of the
machine (deep) learning system. It is robustness problems that
are the main obstacle to the introduction of machine learning
in the management of critical systems.

Kniouesvie cnosa—adversarial machine learning, deep learn-
ing, security

I. Introduction

In recent years, “artificial intelligence” has entered a
period of rapid development, and various countries, as well
as IT giants (such as IBM, Google, Apple, Amazon, Huawei,
etc.) have increased their research and investment in the field
of “artificial intelligence”. Among them, “machine learning”
is a popular research topic.

Currently, machine learning has achieved recognized re-
sults in complex tasks such as computer vision [|lf], speech
recognition [2, 3] and natural language processing [4], and
has been widely used in cutting-edge fields such as self-
driving [] and face recognition [{].

With the gradual maturity of “machine learning” tech-
nology, it has been applied in many fields that have strict
requirements on security, such as military [7], finance [g],
and healthcare [9], which directly affects the safety of
people’s personal, property, and privacy. While enjoying the
convenience brought by “machine learning”, people tend to
ignore the “Threat”. These so-called “Threats” pose a threat
to people’s safety and property safety.

Like many computer application techniques, machine
learning, as a complex computer system, has been found
to have security issues [0, [l1]]. C Szegedy et al. [12]
found that during the training phase, an attacker can cause a
machine learning model to give a false prediction with high
confidence by adding some perturbations to clean samples
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and that these perturbations cannot be recognized by the
human visual system.

Deep learning, the paradigm of machine learning, has
shown great promise in recent years [13]. However, the
security risks of deep learning techniques being spoofed by
adversarial samples are exacerbated by the security concerns
of deep learning frameworks.

Adversarial data undoubtedly restricts the further
application of machine learning technology. Therefore, it
is very important to improve the adversarial robustness of
neural networks (the ability to resist adversarial samples).
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II. Adversarial Attacks
A. Adversarial Samples

The adversarial samples are artificially and maliciously
constructed. By adding an imperceptible perturbation 7 to
a clean sample x, the model F causes the sample =’ to be
misclassified, and this output has a high confidence level for
the model, where 2’ = = + 7. This process is expressed in
mathematical language as:

F(x) # F(a)
||z" — z||, <€, where e — 0.

B. Classification of Adversarial Attack Methods

Adversarial attacks can be divided into two categories
depending on the extent to which the attacker has information
about the machine learning model:

o White-Box Attack: The attacker has full knowledge of
his target model, including the structure of the model,
the parameter values, the means of training, and also
information about the set used for training.

o Black-Box Attack: In contrast to a white-box attack,
the attacker does not know the internal structure of
the attacking model, the training parameters, etc. The
attacker can pass in data to the model and develop
an attack strategy by observing and judging the output
and interacting with the model. This approach is more
consistent with the real situation.

And according to the purpose of the attack, the attacks can

be divided into the following two categories.:
o Non-Target Attack: The attacker does not predetermine
the outcome of the target model’s misprediction, i.e. the
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output can be arbitrary, and simply allows the target
model to misclassify the adversarial sample.

o Targeted Attack: An attacker needs to consider misclas-
sifying an adversarial sample into a specified classifica-
tion category when formulating an attack strategy, such
as constructing an adversarial sample. This attack tech-
nique is mostly used when the model needs to classify
multiple features, i.e. a multi-classification problem.

C. Transferability of Adversarial samples

Transferability [[14] is a property that adversarial samples
have. The adversarial sample generated by model A can
attack model B.

D. Methods for Generating Adversarial Samples

1) Method L-BFGS: The first adversarial attack algorithm
aimed at attacking deep neural network models was proposed
by szegedy et al. [12]. Its ultimate goal is to find an
imperceptible minimum input perturbation arg min||r||s in
the constraint space of the input, i.e., r = 2’ —x, aﬁd to make
the model classification wrong, i.e., F(z) # F(z') = v’
Since this optimization problem is not easy to solve. So
authors used the L-BFGS method to convert this difficult-to-
solve optimization problem into a box-constrained form with
the goal of finding an adversarial sample z’-minimization
formula:

c||r|| + lossp(2',y'), there exists 2" € [0, 1],

The above optimization process is performed in an iterative
form and the parameter c is gradually made larger by linear
lookup until the adversarial sample is found.

L-BFGS attacked the best image classification models
of the time, AlexNet [|l]] and QuocNet [|15], successfully,
causing the model to misclassify a large number of images.

Also, the authors argue that the semantic information in
deep neural networks is based on the whole network and
not on the neurons of a particular layer. The following
two conclusions were also drawn: Adversarial samples can
generalize across models: a large portion of the adversarial
samples generated on model A are also valid on model B.
(Which has the same structure as model A with different
Hyperparameters); Dy, Do are different subsets of Dataset
D, each trained with a different model, and the adversarial
samples generated on D; are also valid on D;.

2) Method FGSM and its extensions: Goodfellow et
al. [[16] proposed an effective untargeted [.,-based attack
method. (As shown in Figure [).

+.007 x

“nematode”
8.2% confidence

“panda”
57.7% confidence

“gibbon”
99.3 % confidence

Figure 1: An very famous example of an adversarial sample.
And Perturbation misleading model GoogleNet [[17] caused
by FGSM method identifies panda as a gibbon [|16].

FGSM adds noise to the input samples in the direction
of the gradient of the loss function to obtain an adversarial
perturbation, which is then added to the input samples to
form an adversarial sample, and this process is as follows:

¥ =x+e€- Sign(Vleoss (37, y))a

where € is the size of perturbation; sign(-) - sign function;
Jioss (2, y) - loss function. The R+FGSM method [[18], unlike
FSGM, adds perturbations in the opposite direction of the
gradient, and the process is as follows:

¥ =z —¢€- Sign(vzt]loss(xa y/))7

where 3/ - target class. This method allows for FGSM
targeted attacks. FGSM generates adversarial samples faster
than L-BFGS [[12] because it only needs to calculate the
gradient of the loss function. However, there is a high
probability that adversarial samples with small perturbations
will not be obtained.

Furthermore, by adding random perturbations to the input
samples before the execution of the FGSM, the diversity of
the FGSM adversarial samples can be improved by this step
[L8].

The authors experimented with Softmax and Maxout net-
works on the MNIST dataset and the parameters € = 0.25
and € = 0.1, respectively, and the error rates for the
adversarial samples were as follows [|16]:

Softmax Maxout
e =0.25 99.9% 89.4%
e=0.1 - 87.15%

and the confidence level of the model for both error
samples is extremely high.

In 2018, DONG et al. [[19] proposed an optimized Mo-
mentum Iterative FGSM(MI-FGSM) method based on mo-
mentum iteration. The gradients are calculated by following
equation:

V. J(0, 2}, y)
V2 J (0, 21, 9)| |1

then apply the signed gradient in the equation:

gt41 =gt +

T =x; + o sign(gi1)

to update x_ ,, and finally generate perturbations.

The use of momentum facilitates faster convergence ,and
smoother update directions and also helps to get rid of local
maxima, thus increasing the success of the attack, but this
method is less transferable.

BIM is an extension of FGSM and was proposed by
KURAKIN et al. [20]. BIM perturbs in multiple small steps
along the direction of increasing the gradient by iteration and
recalculates the gradient direction after each small step, and
the iterative process is as follows:

z41 = Clip (@} + a - sign(V, Jo (0, z1,y)))
fort=0to T, zj = .

where Clip(-) constrains each input feature of the coor-
dinates, such as pixels, to be restricted to the perturbed
neighborhood of input x and the feasible input space.

BIM can construct more accurate perturbations than
FGSM, however, this method requires significantly more
computational effort and time.

10
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Finally, it was verified that in a real physical environment,
adversarial samples obtained through image capture can still
cause the classifier to misclassify. The experiments demon-
strate the possibility of adversarial samples in the physical
world for machine learning systems by using photographs
taken by mobile phones as input to the Inception v3 [21]
network.

3) JSMA method: papernot et al. [22] propose a white-box
targeted attack algorithm based on norm [y, which requires
that the number of pixels to be modified be minimized (this
can be achieved by modifying the values of only a few pixels
in the image). This method directly calculates the gradient
of the loss function corresponding to the input samples X:

OF (X)

VF(X)= X

and then calculates its adversarial saliency plot, by which the
input samples with the greatest influence on the particular
output F'(X) of the classifier can be obtained, and the
most influential samples will be used as perturbations. This
method achieves good results on white-box target-specific
misclassification attacks.

4) Deepfool Method: Moosavi-Dezfooli et al. [23] pro-
posed a ly-based untargeted attack method, which is called
Deepfool. f(z) = w?x+b - affine classifier , The minimum
perturbation that causes a clean sample =y to be misclassified
is the distance from x( to the hyperplane of the classifier
F = {x: f(z) =0} (as shown in fig P)), the distance
Alzo, f(z)) is —L&9).

||WH2

Flz) >0

flz) <0

F

Figure 2: Adversarial examples for a linear binary classifier
[23].

o (For binary classifiers) Provided that the classifier f is
linear, the iterative formula for computing the perturba-
tion is :

argmin ||r¢||2, subject to:
Tt

fay) +Vf(zy)Tre =0

and the iteration stops when sign(f(x)) # sign(f(zo)),
meaning that xy has been updated to the other side of
the hyperplane, resulting in a misclassification. Then,
the minimum perturbation r* is obtained, where r* is
the sum of r; in the iterative equation.

o (For multiclass classifiers) As there are multiple clas-
sification hyperplanes, the distance from zy to each
classification hyperplane boundary needs to be found,
and then the vector with the smallest norm among them
is chosen as the final perturbation.

The experiments were conducted on three datasets and
eight classifiers. Experiments show that Deepfool produces
less perturbation than FGSM on some benchmark datasets.

Moreover, DeepFool calculates faster and can generate more
accurate perturbations.

Classifier DeepFool | Fast gradient sign | Clean
LeNet (MNIST) 0.8% 4.4% 1%

FC3500-150-10 (MNIST) 1.5% 4.9% L7%
NIN (CIFAR-10) 112% 21.2% 11.5%
LeNet (CIFAR-10) 2000% 28.6% 22.6%

Figure 3: Test error rates for the following 4 classifiers
after fine-tuning using 3 different “adversarial samples”
(containing a column of clean samples) [23].

Thus, this method can be used as a reliable adversarial
robust tool to accurately estimate subtle perturbations and
build more robust classifiers.

5) Optimization-Based Methods: Carlini and Wagner [24]
propose three adversarial attack methods based on three
metrics: “Lg - The number of pixels in the image that have
been modified”; “L, - Euclidean distances for adversarial
and clean samples”; “L, - The maximum changing value of
pixels in the sample”, which are used to find perturbations
that minimise various similarity metrics. The perturbations
are made approximately undetectable by limiting the L
(Adversarial simple: CWy), Lo (Adversarial simple: CWy),
and L., (Adversarial simple: CW,) norms. This approach
can be formulated as a constraint minimisation problem:

minimize |6, + ¢+ fpre(z +0)
subject to: z + ¢ € [0, 1],p € {0, 2, 00}

where ¢ is the adversarial perturbation, § = z'—x; fyre(2+9)
- loss function which reflects the outcome of the adversarial
attack, when the function is less than or equal to 0, it
indicates that the network is predicted to be the target of
the attack; conversely, it is not.

To ensure that a valid picture is generated, i.e. for the
perturbation 6: z + § € [0,1]. The above problem of
optimising ¢ is transformed into optimising w by introducing
a new variable w, which can be described as follows:

1
5= i(tanh(w) +1)—=z

In this way, Since —1 < tanh(w) < 1, +6 = 3 (tanh(w) + 1)
is always located in [0, 1] during optimization.

In addition to obtaining 100% success rate of the attack
on the normally trained DNN models of MNIST, CIFAR10
(as shown in Figure H), IMAGENET (as shown in Figure f,
and the C&W attack can also disrupt defensive distillation
models. (as shown in Figure f).

Best Case Average Case
MNIST CIFAR MNIST CIFAR
mean prob  mean prob || mean prob  mean
Our Lo 8.5 100% 5.9 100% 16 100% 13 100%
ISMA-Z 20 100% 20 100% 56 100% 58 100%
ISMA-F 17 100% 25 100% || 45 100% 110 100%
Our L2 136 100% 017 100% 176 100% 0.33
Deepfool 2,11 100% 0.85  100% - -
Our Loo 013 100% 00092 100%
Fast Gradient Sign 0.22  100% 0.015  99%
Tterative Gradient Sign ~ 0.14  100%  0.0078 100%

Worst Case

MNIST CIFAR
prob || mean  prob mean  prob
33 100% 24 100%
180 98% 150 100%
100 100% 240 100%

100% H 260 100% 051 100%

0.013 100%
0029 51%
0.014 100%

016 100%
026 42%
0.19  100%

023 100% 0019 100%
0 034 1

0.023 100%

- %
026 100%

Figure 4: Comparison of C&W Attacks for MNIST AND
CIFAR models [24].
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Untargeted ___Average Case __Least Likely
prob || mean  prob
Our Loy 48 100% || 410 100% || 5200 100%
ISMAZ - 0% - 0% - 0%
ISMA-F - 0% | - 0% 0%
OurL, 032 100% || 096 100% || 222 100%
Deepfool 091 100% | - - - -
Our Lo 0,004
FGS 0.004
1GS 0.004

Figure 5: Comparison of C&W Attacks for INCEPTION V3
model ON IMAGENET [24].

100% || 0006  100%
100% || 0064 2%
100% || 001 99%

001 100%
- 0%
003 98%

Best Case Average Case Worst Case

MNIST CIFAR MNIST CIFAR MNIST
mean  prob mean  prob || mean  prob  mean  prob || mean

Our Ly 10 100% 74 100% || 19 100% 15 100% || 36 100% 29 100%
Our Ly L7 100% 0.36  100% || 22  100% 0.60 100% || 2.9  100% 092 100%
Our Loo 0.14  100% 0.002 100% || 0.18 100% 0.023 100% || 0.25 100% 0.038  100%

prob  mean prol

Figure 6: Comparison of C&W Attacks when applied to
defensively distilled networks [24].

6) Universal Adversarial Perturbation: Universal Adver-
sarial Perturbation (UAP) [25] is, as the name implies,
a universal perturbation computation method for different
network models. This is the first systematic study of UAP.
It works by searching for perturbations on a series of training
datasets and adding the resulting perturbations ¢’ to each data
sample by aggregating the original perturbations in such a
way as to drive them closer to the bounds of the classifier
and repeating the process until the sample is misclassified.
Experiments show that this algorithm can effectively attack
deep neural networks such as VGG [26](VGG-16, VGG-
19), and ResNet [27](ResNet-152). This perturbation, which
can span different samples, can be applied simultaneously to
other different models.

VGG-F | CaffeNet | GoogLeNet | VGG-16 | VGG-19 | ResNet-152
VGG-F 93.7% | 71.8% 48.4% 42.1% 42.1% 47.4 %
CaffeNet 74.0% 93.3% 47.7% 39.9% 39.9% 48.0%
GoogLeNet | 46.2% | 43.8% 78.9% 39.2% 39.8% 45.5%
VGG-16 63.4% | 55.8% 56.5% 78.3% 73.1% 63.4%
VGG-19 64.0% 57.2% 53.6% 73.5% 77.8% 58.0%
ResNet-152 | 46.3% | 46.3% 50.5% 47.0% 45.5% 84.0%

Figure 7: Generalizability of the universal perturbations
across above networks, where the percentages indicate the
fooling rates [25].

Since then, in 2017, Mopuri et al. [28] proposed the Fast
Feature Fool method. This method allows the training of the
target model without obtaining information about the dataset
and the internal structure of the model itself and has a much
shorter convergence time than UAP. The “data independent”
nature of the method (no access to the target dataset) allows
the resulting perturbations to exhibit greater cross-network
transferability when trained on the same dataset.

Based on the FFF method [28], in 2018, Mopuri et al.
[29] proposed the Generalizable Data-free UAP(GD-UAP)
method and demonstrate that the new approach is not
only more transferable but also proves generality and
effectiveness in different computer vision tasks.

7) GAN-based attacks: XIAO et al. [B0] proposed an ad-
versarial generative method based on an adversarial network
(GAN) [B1]. This adversarial generative network consists
of three main components, namely a generator G, a dis-
criminator D and a target neural network £. The method
maps the original sample = to an adversarial perturbation
G(x) via a GAN generator G. Once training is complete,

the network is able to generate a new adversarial sample
2+ G(x). This sample is sent to the discriminator D, which
discriminates whether the input sample is adversarial or not,
while spoofing the target neural network Lsan with the

generated adversarial sample.
Real l
D |
L]

Discriminator

Perturbed instance e .
Ninisk

i
Target white-box | . |

/distilled black-box ~— . — . =

Original instance

Generator

Figure 8: Overview of GanAdv [30].

In the experimental section, the effectiveness of this
method [BO] is verified against the model after adversarial
training. It shows that AdvGAN outperforms FGSM [[16] and
optimization-based methods [24] in adversarial training (as
shown in Figure [L(), producing adversarial samples that are
visually indistinguishable from real samples. (as shown in

Figure [)

(a) Strawberry

(9) Buckeye

(d) Toy poodle

Figure 9: Left: input clean images; right: adversarial images

[B00.

MNIST CIFAR-10
FGSM Opt. AdvGAN|FGSM Opt. AdvGAN
31% 3.5% 11.5% [13.58% 10.8% 15.96%

25% 34% 103% |1049% 9.6% 12.47%
24% 25% 12.2% |22.96% 21.710% 24.28%

Defense
Adv.
Ens.

Iter.Adv.

Figure 10: Attack success rates of adversarial examples
generated by FSGM [[16], C&W [24], AdvGAN [B0] on
MNIST and CIFAR-10 under defensive measures (By dif-
ferent Black-box settings) [30].

E. A short summary of adversarial attacks

According to the subsection [I-B and according to the
optimal application scenario, the above attack methods can
be grouped as follows:
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FSGM [[16]
MI-FGSM []19]
Non-Targeted & BIM-FGSM [2(]
Deepfool [23]
White-Box

UAP [25]

R+FSGM [[1§]

Targeted — JSAM [22]
Attack C&W [24]
FFF-UAP [28]
Non-Targeted f— GD-UAP [29]
Black-Box GAN-based [30]

Targeted — Not yet discussed

III. Defense Against Adversarial Samples
A. Defensive methods against adversarial samples

1) Detection method based on adversarial sample
distributions: The authors argue [32] that the adversarial
samples can be explained by the concept of “Manifold”.
Many training data, such as images, actually exist in a
low-dimensional manifold region in a high-dimensional
space. The adversarial perturbation does not change the true
label of the original data, it simply “pushes” the samples
out of the manifold region. The authors’ hypothesis is
based on this, i.e. that the adversarial perturbation samples
are outside the data manifold. Experiments show that
adversarial samples crafted to fool DNNs can be effectively
detected using two new features: kernel density estimation,
and Bayesian neural network.

2) Adding detection sub-network: METZEN et al. [33]
proposed the Adversary Detector Network (ADN), which
is a detection method that expands a pre-trained neural
network with a binary detector network that is trained to
distinguish between normal and adversarial samples. The
output of the detector represents the probability that the data
is an adversarial sample or not. The design of the detector
is related to the particular data set and the architecture used
is typically a convolutional neural network(CNN).

The ADN method is effective in detecting FGSM []14],
Deepfool [23] and BIM [20] attacks. Experiments show
that when the FGSM method is used to generate adversarial
samples, the detection network can detect 97% of the
adversarial samples; when the DeepFool method is used
to generate adversarial samples, the detection network
can detect 82% of the adversarial samples; And for BIM
the detection network can detect 82% of the adversarial

samples. The detection network can detect 89%, 87%
(Deepfool 1), 90% (Deepfool I3), 85% (BIM I3), 91%
(BIM [,) of adversarial samples when the attacker knows
the gradients of the classification network and the detection
network and performs dynamic adversarial training using
the FGSM, Deepfool, BIM methods respectively.

3) Adding binary classifiers: Gong [34] et al. distinguish
between adversarial and clean samples in deep neural
networks by constructing a binary classifier. This method
performs well on MNIST, CIFAR, and SVHN datasets and
is robust to second-round adversarial attacks, while it acts
as a pre-processing step without imposing any assumptions
on the model it protects. However, as this method has
limited generalization capability and is sensitive to different
adversarial sample generation algorithms, i.e. a binary
classifier trained on the A,q, adversarial dataset does not
achieve the same good accuracy in the B,y adversarial
dataset.

4) Feature Squeezing: XU et al. [B5] argue that the
dimensionality of the input features is positively related
to the size of the attack surface. Based on this principle,
they proposed a feature compression-based detection method
to compare the prediction results between compressed and
uncompressed inputs. The authors first used two compression
methods, Squeezing Color Bits and Spatial Smoothing, to
reduce degrees of freedom and eliminate adversarial pertur-
bations.

An adversarial sample is detected by first calculating the
maximum distance ||d; —dz||; between the prediction a of the
input image d; and the prediction a of the compressed image
ds. If the output produced by the original and compressed
inputs differs significantly from the model (the !; norm
difference between the results is greater than some threshold
H, then there is ||d; — dz||1 > H), then the original input
may be an adversarial sample. (as shown in Figure [LT])

Prediction,

Figure 11: Flowchart of feature squeezing method [35].

5) Defensive distillation: The concept of Distillation was
first introduced by Hinton [36] and refers to the transfer
of knowledge from a complex network to a simple network.
This knowledge is extracted in the form of a class probability
vector of training data and fed back to the original model.
Papernot [37] proposed defensive distillation, which is an
extension of the distillation algorithm. As shown in Figure
12, a distillation model is trained for the original model
using the distillation algorithm. When training the distillation
model, the input is the set of samples needed to train the
original model.
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Figure 12: Schematic of Defensive Distillation [37].

The authors tested the spoofing rate of the adversarial
samples before and after applying the defensive distillation
technique on both MNIST and CIFAR-10 datasets and ob-
tained that the successful spoofing rate of the adversarial
samples decreased from 95.86% to 0.45% on the MNIST
dataset and from 87.89% to 5.11% on the CIFAR-10 dataset.

Distillation MNIST fdversarlal

Temperature

CIFAR10 Adversarial
Rate Rate

(%) (%)

T

10 6.78

20 1.34 18.23
30 1.44 13.23
40 0.45 9.34

50 1.45 6.23

100 0.45 5.11

No distillation 95.89

Figure 13: Defensive distillation on MNIST and CIFAR10
models [37].

6) Regularization: Ross et al. [38] used input gradient
regularization to improve the robustness against attacks by
penalizing the degree of output variation concerning the
input on the trained objective function, resulting in small
adversarial perturbations that do not significantly affect the
prediction results of the model.

7) Deep contractive network: Gu et al. [B9] introduced
the Deep Contractive Network Network (DCN) method
based on the idea of CAE [g]. This method uses the
smoothing penalty term of the Compressed Auto-Encoder
(CAE) in the training process, which serves to make the
output of the model smoother by making small changes in
the input not changing the hidden layer activation values
too much. It is demonstrated that the proposed new method
improves the robustness of the neural network to adversarial
samples.

8) Defensive approach based on RealWorld observations:
Zantedeschi et al. [40] propose two defense strategies,
Bounded ReLU and Gaussian data augmentation, by using
the Bounded ReLU activation layer and adding a certain
amount of noise to the original input data, allowing for
enhanced generalization of the model while gaining some
robustness to adversarial samples. The experiments also
show that the combination of the two strategies (the former
as a constraint and the latter as a training data type) enables
the model to resist various adversarial attacks.

9) Magnet: Meng et al. [4l]] proposed a defense
framework that does not rely on adversarial samples using

only the features of the data itself, and introduced an
autoencoder to make the framework more generalizable.
This framework consists of several detector modules and
a reformer module. First, the framework models the clean
sample, like a curve in the two-dimensional case, and the
detector determines whether the sample is adversarial or not
based on the distance between the manifold boundary of the
adversarial sample and the clean sample. In the test phase,
the detector determines whether the sample is adversarial or
not and if the result is ”yes”, then the sample is thrown out.
For samples where the detector cannot detect the adversarial
nature (small perturbation and the detector’s decision is
”no”), the reformer will reconstruct the input sample and
find a sample close to the original sample to generalize the
input sample and input it into the classifier. This framework
is not ideal for white-box attacks, but it is effective against
black-box attacks and performs well in the case of gray-box
attacks using different autoencoders.

10) Defensive based on GAN: This defense method is
based on GAN [31]. A generative adversarial net (GAN) is
a powerful tool that can be used to learn data distributions
and form generators. A large body of work has attempted to
use GAN to learn clean data distributions to generate clean
predictions with adversarial inputs. Defense-GAN (D-GAN)
[42] is representative of such work.

z

2 . o
Seed [ Random number Minimize z conerater |25
e 116(@)— xli2
o

Input image x T
Figure 14: Flowchart of Defense-GAN [42].

Classifier

—

The generators of Defence-GAN are trained unsupervised
on a clean sample training set, and during training, no
adversarial samples are used. At the same time, the classifier
is trained on the same real dataset. If the training is good and
representative of the clean image distribution, then a mini-
mum distance between the input image and the adversarial
samples can be derived by [5, thus distinguishing the clean
samples, which are then sent to the classifier. The success
rate of the Defence-GAN method is highly correlated with
the performance of the GAN network.

Defense-GAN-Rec  Defense-GAN-Rec

MNIST F-MNIST
0.10 [ 0.9864 £0.0011 [ 0.8844 £0.0017
0.15 | 0.9836 +0.0026 | 0.8267 £ 0.0065
0.20 | 0.9772£0.0019 | 0.7492 £0.0170
0.25 | 0.9641 £0.0001 | 0.6384 £ 0.0159
0.30 | 0.9307 £0.0034 | 0.5126 + 0.0096

Figure 15: Accuracy of classification of model using
Defense-GAN [42].

11) Defense based on Adversarial Training: Adversarial
training is often considered to be the most effective method
for improving the robustness of deep neural networks [43].
During adversarial training, small perturbations are added
to the sample, usually generated by the model itself, and the
deep neural network is then adapted to be robust to unknown
(non-modeled) adversarial samples.

Goodfellow et al. [[16] first added adversarial samples
to the model training phase, based on the MINST dataset.
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The experiments showed that the model after training using
adversarial training was more robust against the adversarial
samples generated by FGSM.

Adversarial training is good for improving the robustness
of the model, but it is time-consuming and computationally
expensive during training. In these two works [44, 43] such
problems are reduced and methods to improve adversarial
training are proposed in this work [46].

IV. Summary and Future Works

This work introduces approaches to adversarial attacks
and defenses in deep learning for “image data”, discusses
definitions, and classifies them. This gives a clear picture
of the progress and research thinking in this area, but at the
same time, it is undeniable that the security challenges in the
field of deep learning, and indeed in machine learning, are
still enormous:

1) The lack of a strong universal defense system. Often,
a particular defense strategy is only available against
a limited number of attacks. When faced with new
”threats”, defensive countermeasures are often ineffec-
tive.

2) To date, the problem of deep learning “robustness”
is still in its “infancy”. Some of the existing work
proposes evaluation methods, but does not provide
clear estimates of accuracy and extensibility, and often
does not provide complete and reliable analysis data.

3) Most of the adversarial research has been on image
data (in the field of computer vision). As other fields
such as natural language processing, voice recognition,
and machine learning for cyberspace security develop-
ment, are increasingly confronted the security problem
is also becoming increasingly serious.

Through research and analysis of previous works and in-
spired by the above challenges, I believe that future research
on the “adversarial” aspects of deep learning can be carried
out from the following perspectives:

o (for challenges 1, 3) To establish a cross-domain secu-
rity system for deep learning models. This system can
be applied to different domains, and it contains a sound
robust evaluation system and information on many dif-
ferent types of adversarial samples. For different adver-
sarial attacks, this system can evaluate the robustness of
the target model against the attack promptly and provide
a defense strategy with a high degree of confidence.

o (for challenge 2) The establishment of such systems
is premised on the need to further improve robustness
evaluation methods.

The design and development of such systems, while taking
into account the cost of deployment and the efficiency of the
system itself, is an issue worth exploring and studying.

The existence of adversarial samples is a “double-edged
sword” that reveals the vulnerability of deep neural networks.
However, it is undeniable that its use as a criterion for
evaluating the robustness of neural networks can lead to more
excellent researchers joining the field of adversarial machine
learning and obtaining more results on defensive strategies,
thus making deep learning models more robust. It can be
seen that adversarial attacks and defenses are complementary
to each other. Thereby, further building safe deep learning
models is a topic well worth investigating.
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