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Abstract—Despite medical and technological advancements 

that can detect and cure many cancer forms, cancer incidence 
and mortality rates are rising worldwide. A tumor-killing virus 
that infects and analyzes cancer cells while leaving most normal 
cells intact is known as an oncolytic virus. The mathematical 
model of interact between tumor cells and oncolytic viruses 
used to provide closely look to these technics used in cancer 
treatment.  In this article, an Adaptive Robust Immune Pole 
Placement (ARIPP) controller based on an Improved Crow 
Search Algorithm (ICSA) has been suggested to deliver 
oncolytic viruses. The control method was evaluated on a 
computer using MATLAB simulation. Furthermore, the 
dynamic uncertainty also tested, results show tumor cells 
reduced to a specific therapeutic zone. The suggested controller 
ARIPP I structure shows more excellent performance than 
structure II and III structure by 3.2707%, 3.5452%, 
respectively. 
 

Keywords— Oncolytic virotherapy, feedback mechanism, 
robust control, ICSA, state feedback. 

I. INTRODUCTION 
Cancer is one of the most prevalent illnesses globally, with 
over 17 million cases reported in 2018 and predictions that 
this number would rise to 23.6 million by 2030 [1],[2]. The 
term “cancer” refers to a group of illnesses with several 
features, including uncontrolled cell proliferation and spread 
into adjacent tissues [3]. Because of the disease’s 
complexity and heterogeneity, choosing the right drug, 
dosage, and treatment plan have become problematic. 
Therefore, cancer scientists and researchers all around the 
globe are working to make better use of the current 
therapeutic choices to enhance treatment results and patient 
quality of life [4]. Several treatment regimens used in cancer 
therapy, such as managing a low dosage for an extended 
period or a high dose followed by a low dose [4]. 

Virotherapy is a cancer treatment that uses viruses’ 
capacity to infect and multiply in cancer cells to kill them 
[5]. These viruses are known as oncolytic viruses. 
Adenovirus, Reovirus, Measles, Herpes Simplex, and 
Vesicular-Stomatitis Virus (VSV) are among the most 
effective viruses against malignant tumors [6]. 

Mathematical models aid in the prediction of cancer’s 
future behavior. These models may be used to enhance and 
optimize the effect of many variables such as viral genetics, 
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dose, and injection schedules. Unfortunately, performing 
such expectations in vivo, vitro, or clinical studies is 
difficult, hazardous, and costly [1]. 

Much research has been done to find a more systematic 
approach for tuning control parameters efficiently and make 
them more robust and powerful. The current trend is to 
utilize a natural-inspired metaheuristic algorithm to tackle 
complex problems and are found to be surprisingly very 
efficient [7]. 

Metaheuristic algorithms based on biological principles, 
swarm behavior, and chemical or physical processes are 
nature-inspired optimization algorithms. For example, the 
crow search algorithm (CSA), inspired by crow behavior, 
was first presented in [8], with its primary use in solving 
engineering problems with limitations. 

Biological information processing systems are more 
adaptable than the technologies that are presently accessible. 
As a result, it is feasible to create a system that outperforms 
traditional methods [9]. The immune system is complicated 
made up of a variety of immune cells and communication 
pathways. Nevertheless, it is an excellent mechanism for 
protecting the human body from infections and external 
objects [10]. 

Much prior research has shown interactions between 
virotherapy and control theory. For example, Yongmei et al. 
in [11] utilized optimal control, virotherapy, and targeted 
control to decrease the tumor size. Nonetheless, since the 
model they employed lacked an equilibrium point, the tumor 
might strongly return. 

To enhance the outcomes of chemotherapy and 
virotherapy, Joseph et al. in [12] utilize an optimal control 
for chemotherapy in conjunction with virotherapy. 
Consequently, the findings indicated that the treatment 
program was successful, and the quantity of optimum 
medicine for chemotherapeutic and viral combinations is 
half of the corresponding maximum tolerated dosages. 

In [13], Anita et al. utilize the state-dependent algebraic 
Riccati equation (SDARE) (similar to linear LQR, but 
SDARE is a nonlinear method used with nonlinear control) 
to extract the optimum virotherapy infusion rate utilizing 
robust and optimal control. As a result, the number of cancer 
cells is decreased to  60%. 

Anelone et al. in [14] design the impulsive controller to 
deliver a personalized dose for each case, and the feedback 
controller showed a tumor reduction potential better than 
that obtained by experimental protocols, but a long process 
of tuning by trial and error necessary to avoid saturation due 
to the calculation of negative values of the input controller. 

In [15] Villa-Tamayo et al. using impulsive control 
theory, offer a nonlinear estimate and control method for 
determining viral injection dosages. The extended Kalman 
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filter and nonlinear model predictive control 

(iNMPC+hEKF) were used to create the system controller. 
The control method demonstrates the need for a more robust 
strategy to deal with greater plant-model incompatibilities. 

In this paper, the pole placement is used as a controller 
based on an improved Crow Search Algorithm (ICSA) for 
parameter optimization to track the number of viruses 
provided to patients. In addition, the body's immune 
mechanism is used here to enhance the performance of the 
pole placement controller.   

The other parts of this paper are arranged as follows: in 
the second part, the mathematical model is described; in the 
third part, the immune system developed; in the fourth part, 
the ICSA is shown. The suggested adaptive robust immune 
pole placement structures controller is defined in the fifth 
section. In the sixth part, the simulation results and an 
evaluation of the proposed controllers are discussed, and the 
conclusion is given in the last section.  

II. MODEL OF INTERACTION BETWEEN ONCOLYTIC 
VIRUS AND CANCER CELLS 

The oncolytic adenovirus ADPEGHER was utilized to treat 
solid tumors in nude mice in earlier experimental and 
mathematical studies [14], [16 -18]. Because these naked 
mice have no immune system, the tumor decrease is entirely 
attributable to the oncolytic virotherapy. The studies began 
with mice that had 90 to 300 cancer cells. Each experiment 
injects 1010 virus particles according to a predetermined 
method on days 0, 2, and 4. According to work in [17], the 
interaction between oncolytic virus and cancer cells can 
mathematically be represented using ordinary differential 
equations [17]: 
 

 
 

 
(1) 

  
 

where,  denotes the density of susceptible tumor cells 
( 106 cells),  represents the time, r is the tumor growth 
(day-1), K describes the caring capacity (cell 106), β is the 
tumor cells rate of infection (day-1),  refers to the density of 
infected tumor cells ( 106 cells),  is the infected tumor 
cells death rate (day-1),  is the density of virus particles 
( 109 virus),  is the viral decay (day-1) and  viral burst 
size (virus 109). The characteristics of the interaction 
between oncolytic vires and the tumor cells model utilized in 
this study are shown in Table I. 

 

Table I: Parameters and initial conditions values [17]. 
 
T=S+I is the total number of tumor cells,  is a small 

value (  ) set to avoid singularity occurring as (S+I) 
approaches zero. 

The model’s input expresses the injection of virus 
particles . While T represents the model’s output. The 
tumor volume calculated as where ( ) 
is the height and ( ) is the breadth. Both ( ) and ( ) were 
measured with a caliper [16]. Then, assuming a density of 
106 cells per mm3, T is calculated [17].  

III. IMMUNE FEEDBACK MECHANISM 
As a control system, the biological immune system has high 
robustness and self-adaptation capacity even in severe 
disruptions and unpredictable circumstances. It may develop 
subsequent antibodies to prevent invasion by a foreign 
antigen [19]. After mixing antigens and antibodies, a 
sequence of biological reactions may occur, and the antigen 
is eliminated using phagocytes or special enzymes. 
Antibodies and lymphocytes make up the immune response. 
The lymphocyte is made up of B cells from the bone marrow 
and T cells from the thymus. T cells are divided into helper T 
cells TH and suppressor T cells TS [19]. 

When a cell receives an antigen signal, it sends the 
information to TH and TS, stimulating B cells to develop 
antigen-resisting antibodies. Thus, all of the received 
simulations of B cells were obtained using the immune 
feedback control system.  

 

 (2) 

 (3) 

 (4) 

𝜆𝜆  (5) 
 
where  denotes the consistency of B cells, and  

represent the helper and suppressor genes, t denotes the tth 

generation antigen consistency, d denotes the time delay of the 
immune response. Thus,  indicates the change in B cell 
consistency determined by Equation (6) [20]. 
 

 (6) 

 
The immunological feedback loop has a dual purpose: it 

reacts quickly to foreign substances while maintaining immune 
system balance. However, antibodies are also ordered and 

Symbol S0 I0 V0 r K β 
  

α 

S1 238.3535 0 0 0.0378 8466.8 1.12 2 2.0872 2 

S2 200.0340 0 0 0.0733 3179.1 1.4987 1.9995 3.2287 2.0015 

S3 101.5400 0 0 0.0224 4922.4 0.2 2 3.5 2 

S4 140.3436 0 0 0.0316 8317.1 1.2108 0.1 1.8730 3.7748 

S5 128.1481 0 0 0.0603 936.4293 1.3606 0.1 1.8416 3.7541 

unit cells cells virus day−1 cells × 106 day−1 day−1 day−1 virus × 109 
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controlled since many may harm the body.  
 
 
 
As a result, the deviation in a dynamic regulatory control 

system compatible with the immune system’s goal [20] 
reduced to preserve system integrity. The amount of antigen 

 in Equation (5) represents the error  controller’s 
input will be the total incentive that the B cells accept. 
 

 (7) 
 

where  is desired input. Then the immune scheme 
system is defined as follows: 

 

 (8) 

 

where  stands for the immune scheme gain indicated by 

the gene . The response speed is controlled by , 

the stabilization effect is controlled by and  denotes a 
nonlinear function. This function was selected because T cells 
regulate the action-function of antibodies in the immune 
response, which is affected by antigen consistency. The 

following is the definition of the function : 
 

 
(9) 

where  parameter changes the function shape, the value 

of a determines the active region of . The output of the 
immune scheme is described as: 
 

 
(10 a) 

 (10 b) 
 

where .The immune 
scheme can consider as a nonlinear control gain. 

IV. ADAPTIVE ROBUST IMMUNE POLE PLACEMENT CONTROL 
STRUCTURES 

An Adaptive Robust Immune Pole Placement (ARIPP) 
controller is suggested to tracks the number of viruses given to 
patients in this article. ARIPP parameters tuned using The 
Improve Crow Search Algorithm (ICSA). The subject S3 
studied utilizing pole placement and ARIPP with distinct 
structures. The interaction between oncolytic virus and 
cancer cells Equation (1) linearizes about the endemic 
equilibrium point  using MATLAB 
function (fsolve) when   and all states values differ 
from zero according to work in [14]. 

The state-space representation of the system after 
linearization described in the following equation: 

 
 (11) 

 (12) 
 (13) 

 

where  denotes the state vector,  referred to the control 

signal, and  is the output ( ), then the system is written as a 
matrix as follows: 
 

 

  
 

 
(15) 

 
The matrix  will differ based on the equilibrium point 

chosen, but the matrices  and  will remain the same [14]. 
Since the system containing three states, it requires three 
gains: 

 
 (16) 

 
After determining the designed desired pole, the function 

( ) is used to get the state feedback gains. Since the 
pole placement control applied to a linear approach to 
extract the value of state feedback gains, therefore when 
these values used with the non-linear system, the controller 
performance is less efficiently when designed for the 
nonlinear system due to the loss of part of the nonlinear 
system properties by the linearization process. Furthermore, 
pole placement is not robust against noise and error induced 
by nonlinear disruption. Therefore, the immune scheme adds 
as an additional controller to change the pole placement 
gains according to error to solve this problem. Hence, the 
gain becomes adaptive values changing with system error 
change. The additional immune scheme connected serially 
with pole placement controller gains in different formats. 
The structure of varying controllers describes in the 
following subsection. 

A. ARIPP STRUCTURE I 
Fig. 1 shows a block diagram of this arrangement, in which the 
immune scheme gain multiplied by the pole placement 
controller’s feedforward gain. Thus, the error signal 

 serves as the input for the immune scheme. 
 

(14) 
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Figure 1: Block diagram of the APIPP structure I. 

 
The first pole placement gain ( ) multiplied by the 

immune gain Equation (10 b) ,  then for this structure, the 
controlling law is:  
 

 

(17) 

 (18) 
 

where , the   is the saturation 
function limit upper and lower limit of control output and 
prevents the output from being negative because viruses can't 
be removed after they've been injected.  is state feedback 
gains where   and  is immune scheme gain. The 

 signal then enters to be one of the switch inputs, and 
the other input is a signal built by the signal builder, which is 
the condition that works to pass the signal in specific periods 
and prevents it at different periods to simulate the injection 
process, so the final control signal be: 

 
 

 
(19) 

 
where  max amplitude of control signal   day of 

injection and  is the period of treatment. 

B. ARIPP STRUCTURE II 
Fig. 2 shows a block diagram of this arrangement, in which the 
immune scheme gain multiplied by each gain of the pole 
placement controller and sum with original gains.  
 

 
Figure 2: Block diagram of the APIPP structure II. 

 

The controlling law for this structure: 
 

 

(20) 

 (21) 
 

where  ,  system dimension. The  
signal then enters to be one of the switch inputs, and the other 
input is a signal built by the signal builder, which is the 
condition that works to pass the signal in specific periods and 
prevents it at different periods to simulate the injection 
process, so the final output be same as Equation (19): 
 

 
 

(22) 

 
where  max amplitude of control signal   day of 

injection and  is the period of treatment 
 

C. ARIPP STRUCTURE III 
Block diagram of this structure is shown in Fig. 3. The pole 
placement control signal multiply by immune gain.  
 

 
Figure 3: Block diagram of the APIPP structure III. 

The controlling law is: 
 

 (23) 

 
The exact process in previous structures have flowed to 

construct the final control output: 
 

 
 

(24) 

 
where  max amplitude of control signal   day of 

injection and  is the period of treatment 

V. IMPROVE CROW SEARCH ALGORITHM (ICSA) 
The crow search algorithm (CSA) behaviour inspires by 
crows’ clever food-hiding. It extensively utilized to handle 
various optimization problems, and it’s outperformed 
several contemporary optimization algorithms in the 
literature [21]. In the original CSA, “the constraints are 
directly handled. It means that each solution that cannot 
satisfy the conditions altogether will be considered as 
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infeasible and abandoned” [8]. The rejection of impossible 
solutions may be severe flaws to the design space problems 
and dominated by constraints. Hence, creating a possible 
design for such problems may take an enormous number of 
successive trials [8]. To maintain a good balance between 
exploration and exploitation, the following additions 
propose: First, multiply the current position equation by the 
inertia factor  [22]. ’s value would decline over time. The 
linear regression of factor  is determined as follows in 
general [23]: 

 
 

(25) 

where represents the number of repetitions,  
and  are the upper and lower limits of  factor and 

 maximum number of iterations. Equations of 
position update become: 
 

 

(26) 

 
where  Position matrix representing the position of 

each crow  at iteration  Memory matrix where hiding 
places positions are stored,  and  random numbers with a 
uniform distribution between 0 and 1,  flight length 
and  awareness probability. Secondly, adding a treatment 
to the new position is produced before determining. the flow 
chart below shows the implementation of ICSA: 

Figure 4: ICSA flow chart. 

VI SIMULATION RESULTS AND ANALYSIS 
In this part, the suggested ARIPP controller with the 
structures (I, II, and III) based on the ICSA for controlling 
the interaction between tumor and virus models was 
evaluated using MATLAB 2019. The treatment objective is 
to decrease and maintain the total number of tumor cells 
below 50 cells within 60 days. Fig. 5 shows the model 
reaction to the subjects S3 using the pole placement 
controller based ICSA. The findings indicate that after a 
viral injection is completed, the total tumor volume (T) 
maximum is reached. The control parameters obtained using 
(place) instruction for S3 are listed in Table II when 

 . 
 
 
 

Table II: Parameters for pole placement controller based 
ICSA. 

   
-175.9406   -21.7704     6.4777 

 
In Fig. 5, The top figure illustrates the viral injections 

over 60 days. The middle figure illustrates the total number 
of tumor cells. The bottom figure shows the viral loads in 
vivo. Treatment fails to maintain the tumor within the 
therapeutic zone, where the tumor begins to regress after an 
initial rise.  

This controller has various effects on different subjects. 
Performance of proposed controllers’ structures based on ICSA 
for parameters optimization follows the treatment protocol of 
injection a high dose at days 0, 2, 4 because "Studies of a broad 
array of human solid tumor types revealed that cell cycle 
progression lasts two days, on average" [6], describes in the 
following subsection. The parameters used in the 
optimization algorithm for all structures listed in Table III.  
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Figure 5: Treatment of subject S3 with pole placement 

controller. 
 
Table III: ICSA algorithm parameters. 
Parameters Value 
Population size (N) 25 
Max iteration (Maxiter) 50 
Problem dimension (Pd) 3, 5, 9 
Awareness probability (AP) 1.2 
Flight length (FL) 0.3 
Inertia weight (σmax-σmin) (0.9 – 0.4) 

 
 
 

A. ARIPP STRUCTURE I RESPONSE 
The state feedback gains that get using (place) function and 
the immune scheme parameter that get its initial value from 
literature are used as an initial value for ICSA and optimized 
by multiplying it’s in random values between (1 - 5) The 
state feedback gains and (1 - 2, 0.01 - 1) for the immune 
scheme. The optimal parameters list in Table IV, and the 
response shown in Fig. 6 below.  
 
 

Table IV: Optimal parameters for ARIPP controller 
structure I based ICSA 

     
-229.8136 -21.7704     6.4777 3.8160 0.6066 

 

 

 
Figure 6: Simulation result of S3 using ARIPP I structure 

based ICSA. 
 

B. ARIPP STRUCTURE II RESPONSE 
The same procedure in structure I flow in structure II. The 
optimal parameters list in Table V, and the response is 
shown in Fig. 7 below. 
 
Table V: Optimal parameters for ARIPP controller structure 

II based ICSA 

     
-798.4184 -67.8845     6.6202 4.4376 4.8169 

     
3.9644 0.4156 0.0230 0.3062 3.9644 

 

C. ARIPP STRUCTURE III RESPONSE 
The procedure flowed in structure I and structure II also 
applied in structure III. The optimal parameters list in Table 
VI, and the response is shown in Fig. 8.  

 

time(days) 

time(days) 

time(days) 

 

 

 

time(days) 

time(days) 

time(days) 
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Table VI: Optimal parameters for ARIPP controller III 
structure based ICSA 

     
-713.2984 -63.8613  6.4777 5.7835 0.6066 

 

 

 
Figure 7: Simulation result of S3 using ARIPP II structure 

based ICSA. 
 

 

 
 

 

 

Figure 8: Simulation result of S3 using ARIPP structure III 
based ICSA. 

 
In Fig. 6, 7, 8, the top figure illustrates the total number 

of tumor cells for 60 days.  The middle figure shows the 
viral loads in vivo. The bottum figure illustrates the viral 
injections within three days.  

 
In all the ARIPP control structures, there are no 

rebounds of the tumor after the end of the treatment. The 
internal immune scheme works to keep the tumor with a 
therapeutic zone, i.e., less than or equal to 50 total tumours 
cells, and reduce the amount of injections over time as 
showing in Figure 6, 7, 8 (top figures). The feedback 
mechanism in the immune scheme increases the number of 
injections due to an increase in  the larger ratio indicates 
the increase of Th cells, whose increase leads the body to 
form more antibodies to protect itself. As a result, the 
control signal is lower in treatment with the ARIPP 
controller than in pole placement during the last hours of 
treatment and decreases gradually, as shown in Fig. 6, 7, 8 
(middle figures). Nevertheless, the virus load tends to be 
identical in the pole placement and ARIPP, except for the 
last injection where be higher to eliminate rebounded tumor. 

The results suggest applying ARIPP control in oncolytic 
virotherapy has benefited by delivering an adequate amount 
of treatment to accomplish therapeutic goals, as all proposed 
structures of ARIPP controllers performs this task and give 
the excellent result the ARIPP stricter I superior 
performance II and III structures by 3.2707%, 3.5452% 
respectively, where the performance index used is Integral 
Time Absolute Error (ITAE).  

Furthermore, the controller test against dynamic 
uncertainty as in [14], where the logarithm term in the 
interaction between oncolytic virus and cancer cells Equation 
(1) replaced with exponential , the result shows the 

time(days) 

time(days) 

time(days) 

 

 

 

time(days) 

time(days) 

 

 

time(days) 
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robustness of the proposed controller against dynamic 
uncertainty. Response using the structure I shown in Figure 
9 and optimal parameter listed in Table VII.  

 
Table VII: Optimal parameters for ARIPP controller 

structure I based ICSA 
     

-235.7252 -36.4458  6.4777 4.54104 0.3222 
 

VII CONCLUSION  
An artificially adjusted ARIPP controller with different 
structures (I, II, and III) has been proposed to manage the 
amount of viral load injections given to limit tumor cell  

 

 

 
Figure 9: Simulation result of S3 using ARIPP I structure 

based ICSA. 
 

proliferation. In addition, the mathematical model of cancer 
cell-oncolytic virus interaction has been taken into 
consideration. ICSA has been used to get best set of 
parameters for the suggested controllers. According to the 
simulation findings, the ARIPP structure I perform better 
than the other structures. Finally, the immune scheme 
improves the control efficiency, makes the controller more 
robust against dynamic uncertainty, and prevents the tumours 
from growing after therapy time frame complete. This will 

enable cancer suppression later via surgery, allowing 
patients to live as long as possible and reduce the number of 
injections. Toxicity not considered as an issue because when 
using an oncolytic adenovirus coated with a biocompatible 
polymer, such as polyethylene glycol (PEG) case toxicity 
can be neglected.  

As a next step, need to do further mathematical and 
experimental research to understand better the connection 
between toxicity, the number of viral injections, and the 
number of virally infected cells in vivo. Though these results 
may assist create new viral treatments and tumor 
management methods, they will also help speed up new 
medicines and tactics to maximize tumor regression with 
minimum adverse effects. 
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