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Abstract—The main goal of this paper is to introduce the
reader to the multiarmed bandit algorithms of different types
and to observe how the industry leveraged them in advancing
recommendation systems. We present the current state of the
art in RecSys and then explain what multiarmed bandits
can bring to the table. First, we present the formalization of
the multiarmed bandit problem and show the most common
bandit algorithms such as upper confidence bound, Thompson
Sampling, epsilon greedy, EXP3. Expanding on that knowledge,
we review some important contextual bandits and present their
benefits and usage in different applications. In this setting,
context means side information about the users or the items of
the problem. We also survey various techniques in multiarmed
bandits that make bandits fit to the task of recommendations
better; namely we consider bandits with multiple plays, multiple
objective optimizations, clustering and collaborative filtering
approaches. We also assess bandit backed recommendation
systems implemented in the industry  at Spotify, Netflix,
Yahoo and others. At the same time we discuss methods
of bandit evaluation and present an empirical evaluation of
some notorious algorithms. We conduct short experiments on 2
datasets to show how different policies compare to each other
and observe the importance of parameter tuning. This paper
is a survey of the multi armed bandit algorithms and their
applications to recommendation systems.
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Reinforcement learning

I. Introduction and motivation

Recommender systems are the base of many internet
services nowadays, and widely are used by big Internet com
panies like Netflix [1], Spotify [2], [3], Amazon, Yahoo [4],
[5], etc. for their services. The main goal of a recommender
system is to maximize the engagement of each user or some
other metric like profit or client satisfaction. At the highest
possible level, the recommender system should be able to
suggest an item with which it is likely for the user to
interact with. This is usually done based on a previous history
of user/item interaction, and/or user metadata such as age,
gender, geographical location, etc. Recommendation systems
are essential in user engagement, detention and satisfaction.
They could tailor a general experience into a personalized
one, profiting both the user and business.
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A. Traditional approaches in RecSys

1) Collaborative filtering: Collaborative filtering (CF)
methods usually try to combine users (or items) into groups
of similar users (or items). In the useroriented collaborative
filtering if the user comes to interact with the system, the
recommendations will be made based on the preferences
of similar users. In contrast, in itemoriented collaborative
filtering methods the recommendation will be made based
on items that are related to ones that the user has already in
teracted with. As noted in [?], CF has 2 approaches: memory
based (a heuristic approach, divided into itembased and
userbased categories; based on finding similar items/users)
and modelbased approach. The modelbased approach incor
porates Matrix Factorization, Clustering and Deep Learning
(autoencoders, restricted Boltzmann machines).
2) Matrix factorization: The family of matrix factoriza

tion algorithms  MF [6], NeuMF [7], BiasedMF [8], etc.)
try to represent both users and items in the same low
dimensional latent space. Predicted compatibility between
user and item is then computed usually by dot product (or
some other more complicated function like MLP [7]) of their
corresponding low dimensional latent representation. When
a user comes to interact with the system, the item with the
highest score for that user is recommended. They give good
results in practice and are still considered as standard for rec
ommendation systems. Single Value Decomposition (SVD)
is a widely used technique to perform Matrix Factorization
and probably one of the most popular approaches in RecSys.
Its idea is to represent users and items as latent vectors
and compute the ratings using these vectors. Single Value
Decomposition is flexible, but its performance can suffer
from item under or overrate. Also SVD can be computed
only for dense matrices. SVD has some extensions, like SVD
++ and Asymmetric SVD ++ (both use implicit feedback),
and Time SVD++ (incorporates knowledge about time) [9].
3) Downsides of traditional recommendation systems:

Collaborative filtering methods have limited capabilities, and
are not good with highly sparse data. Matrix factorization
methods are static, once trained it is not trivial to add a new
user or item, or even update it with new online data. Accurate
clustering (in kmeans, for example) depends on correctly
choosing the initial clustering parameter k. In those cases the
best way to update the model is to retrain the whole thing
again, which is usually not practical for systems with large
amounts of data coming in. The methods suffer from the
coldstart problem when there is no data for corresponding
user or item. In their plain variant, most methods don’t utilize
user and item metadata, but there are several modifications
which make that possible.
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B. Multiarmed bandits
Bandit algorithms are becoming a encouraging approach

to creating better recommendations systems [10]. To update
recommender systems dynamically we can reformulate the
problem as a reinforcement learning task, specifically as a
multiarmed bandit(MAB) problem. In a multiarmed bandit
setting, the agent pulls an arm (makes a prediction) based
on the history of interactions with the environment, user’s
metadata (if available), and item’s metadata (if available).
The environment gives feedback about agent’s prediction
which can be used by agents to make better predictions in
the future.
1) Multiarmed bandits as recommender systems: One

approach to use MAB as a recommender system would be
to consider the user and their actions as the environment,
and items (or clusters of items [11])  as arms. An agent
can observe information about the user (if available) and
based on that observation and its inner state, the agent should
recommend an item (or items) to the user. If the user interacts
with the item, positive feedback is given, if not, negative
feedback is given. Interaction can be a click, like, share,
sell, etc. The agent should maximize those interactions in
the long run.
One of the problems that is known to be handled by
bandits better than other traditional approaches is the cold
start problem, for example the scenario when the system
does not have any information about the user in order to
make an informed decision. This is considered one of the
most important benefits that MABs can bring to the table.
Recommending content to new users was modeled as a cold
start MAB problem in a series of works [12], [13], [14] and
seems a promising research direction.

a) : The remained of the paper is divided into the
following sections: Section 2 explains the multiarmed ban
dit problem. Section 3 describes the most popular non
contextual multiarmed bandit algorithms. Section 4 intro
duces contextual features to the MAB problem. Section 5 ex
plains different MAB strategies in recommendation systems.
Section 6 section describes the evaluation methods for MAB
algorithms. Section 7 takes a survey of use cases of multi
armed bandit systems across the industry. The last sections
include experiments with some of the described algorithms
and conclusions to our work.

II. Theoretical overview of multiarmed bandits
Multiarmed bandits have seen an increasing interest in

the academia and industry over the last years. Bandits are a
special area of Reinforcement Learning that is specialized in
making decisions under uncertainty [15].

A. Multiarmed bandit problem description and formaliza
tion
Given some number of choices (arms), a MAB policy

should choose the arm which gives the greatest average
reward. Reward probability distributions are considered static
in the classical MAB setting. The problem of probability
distributions that are changing over time is known as an ad
versary bandit problem. In a noncontextual bandit scenario
the decisions are made based only on the previous choices
and their corresponding rewards. A good policy should find
the arm with the highest average reward as fast and as certain
as possible and utilize only that arm.

1) Formalization of the problem: The agent and the
environment interact in sequence over n rounds.There are k
arms to choose from. For each round t = 1, ..., T the agent
chooses an action at ∈ A, based on which the environment
returns a reward rt ∈ R. Only the rewards for the actions that
were taken are known. Usually the number of actions n is
finite, but sometimes this can not be the case and (n = ∞).
To formalize:

Algorithm 1 MAB Problem
for each round t = 1, 2, ....T do
1. The agent takes action at,k ∈ A
2. The environment reveals reward rt,k ∈ [0, 1] for
chosen action

end for

B. Exploration vs exploitation dilemma
The central idea of the MAB algorithm is to correctly

decide when to explore (search for new items) or exploit
(play the chosen arm). Ideally, the MAB algorithm should
always choose the arm with the highest average reward.
The problem is that the algorithm’s approximation of arms
average rewards is never perfect, even with a relatively large
number of plays for each arm. In the beginning, when there
is no previous data, the algorithm could not know anything
about arms’ average rewards. If it chooses one arm at random
and always pulls that arm, that arm may be suboptimal and
thus the algorithm is suboptimal. The approximation of arms
average rewards will tend to be more accurate the larger
number of times that specific arm is played. It could be
useful for the algorithm to sometimes choose a seemingly
suboptimal arm to get a more accurate approximation of its
average reward. It might turn out that in the fact that arm
has a larger average reward value than the seemingly optimal
arm.

C. Concept of reward and regret
If the average reward for each arm is known before the

first play of the algorithm, the algorithm could choose the
optimal arm from the start and get a corresponding reward
from the environment. In the case where average rewards are
unknown before the first play, the policy will sometimes,
especially at the beginning, choose suboptimal arms and
observe suboptimal rewards.
1) Defining reward: The policy’s goal is to maximize the

total cumulative reward:

Sn =

n∑
t=1

rt (1)

which depends on the actions of the policy and the rewards
returned by the environment. The reward is a random value
with unknown distribution to the policy, it is dependent on
the previous action of the policy towards the environment.
The policy’s goal is to approximate this distribution in order
to make better predictions.
Based on the nature of the rewards, we differentiate between
the adversarial and stochastic bandits. The schema of gather
ing rewards under in the stochastic and adversarial fashions is
exemplified by [16], stating that the adversarial reward model
does not make any restrictions about the sequence of rewards,
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while the stochastic model assumes the rewards as being
an independent and identically distributed (i.i.d from now
on) sequence of random variables. The adversarial model
simultaneously selects rewards, with the goal of minimizing
the regret defined as the sum of differences of the drawn
arm versus optimal arm in the adversarial model; while in
the stochastic model each reward is drawn independently
from a probability distribution and the regret is defined as the
sum of differences of the respective means of the probability
distribution [16].
2) Defining regret: Regret can be defined as deficit suf

fered by the policy relative to the optimal policy. In other
words, regret is the difference between the total expected
reward of a policy over n rounds and the real reward gained
over the course of n rounds [17]. The regret is the result
when the policy does not play all the optimal arms. Suppose
we have i = 1, 2...k arms and a sequence of unknown
rewards for each time step t = 1, 2, ...n such as ri,1, ri,2....
at each time t the policy selects an action ai,t with rai,t

associated reward. Then, the regret of policy π can be defined
as:

Rn(π) = max
i=1..k

n∑
t=1

ri,t −
n∑

t=1

rai,t (2)

Minimizing the regret is equivalent to maximizing the total
reward. Depending on algorithm, different regret bounds can
be defined.

D. Example
Imagine a scenario where 3 onearmed bandit gambling

machines are available to the player. Let’s assume that they
differ in their average rewards where the first one has an
average reward of 0.1, the second reward of 0.7, and third 0.6
and that those rewards are unknown for the player. The player
should choose the second machine to have a maximal gain
(minimal loss), but at the start, he doesn’t know anything
about their average rewards. If he chooses one of them, let’s
say third, he might be stuck at it thinking that the reward of
that machine is the greatest  not knowing that in the fact the
second machine has a better reward. The best way to figure
out which machine has the best reward is to play on all 3 of
them and approximate their rewards. More times the player
chooses one specific machine, becomes more certain of its
average approximation. The player should soon realize that
the first machine has a substantially smaller reward than the
second and third machine and he can quit playing them. It
will take more plays of the second and third machines for the
player to figure out that the second machine has a slightly
better reward then third.

III. Popular noncontextual multiarmed bandit algorithms
In the case where contextual features are not available,

we can use noncontextual MABs. If we can assume i.i.d.
(independent and identically distributed) rewards, we have a
stochastic bandit problem, if not then we have an adversarial
bandit problem. Finding the best arm while trading exploiting
vs exploration is he main aspect of MAB problems; ex
ploiting only the best arms chosen at one moment could
give bad results in a long run because the optimal arms
can change over time, that’s why it is important to identify
certain heuristics to continuously find th best actions (arms).

Here we present these classical policies. ϵgreedy, Upper
Confidence Bound (UCB), Thompson sampling (TS), and
Softmax as solutions to the stochastic bandit problem, and
EXP3 is an example of a solution to an adversarial bandit
problem.

A. ϵgreedy

ϵgreedy [18], [17] is the simplest, and most obvious
solution to the exportationexploitation dilemma. The policy
explores a random arm with ϵ probability. Accordingly, with
a probability of 1−ϵ, the policy exploits the solution with the
highest average reward. In the vanilla version of the ϵgreedy
algorithm, ϵ is constant, but this is not necessary. It makes
sense to make ϵ iteration dependent (linearly decreasing,
exponentially decreasing, explore with probability ϵ exploit
with probability 1ϵ for some number of iterations, no
exploration afterward)

arm =

{
randint(1, k), if n ≤ ϵ

argmax
i

r̂i, otherwise (3)

Where n is a random value drawn from a uniform distri
bution in the range from 0 to 1. Randint is a function that
returns a random integer in a specified range, k is the number
of arms; r̂i is the predicted average reward of ith arm.
This policy is simple and there are policies that give smaller
regret. The reason is that there are smarter ways to explore
than choosing an arm at random. Soon after the algorithm
starts running, it is clear that some arms are suboptimal,
and there is no need to explore them further, that exploration
could be utilized for arms that are better candidates for an
optimal arm.

B. UCB

The main idea of the upper confidence bound algo
rithm [19], [17] is to always choose an arm with the highest
upper bound. This method is also called optimism in the face
of uncertainty. The predicted upper bound consists of two
elements: predicted average reward and uncertainty given in
equation:

arm = argmax
i

r̂i +

√
2 lnn
ni

(4)

Where r̂i is the predicted average reward of ith arm, n is the
number of arms pulled so far, and ni is the number of pulls of
ith arm. Arms with higher average rewards will have higher
scores. Unexplored arms will tend to have higher scores
because of uncertainty estimation. This will give lower regret
compared to the ϵgreedy algorithm because less exploration
will be wasted on substantially suboptimal arms.

C. Thompson Sampling

Thompson Sampling is one oldest and most popular
heuristics that dates back to 1933 and has received a lot of
attention recently in works on multiarmed bandits. Thomp
son sampling policy [20], [21], [22], [23] samples value from
a beta distribution with different parameters for each arm.
The arm with the highest sampled value will be pulled. Beta
distribution has 2 parameters a and b and they are set to the

14



International Journal of Open Information Technologies ISSN: 23078162 vol. 9, no. 4, 2021

number of success and failure rewards for the corresponding
arm.

arm = argmax
i

beta(success(i), failure(i)) (5)

A higher the number of pulls that concluded in success
compared to failure means a higher number will be drawn
and the chance for that arm to be pulled increases. Arms
with suboptimal success/failure ratio still have a chance to
be pulled and in that manner, exploration is performed.

D. Softmax (Boltzmann Exploration)
Softmax policy [24] does exploration and exploitation

simultaneously by assigning probability for each sample and
at each iteration pulls one of the assigned probabilities. Those
probabilities are calculated by the formula:

pi(t+ 1) =
e

r̂i
τ∑k

j=1 e
r̂j
τ

(6)

Where i = 1...k is the number of arms, µi represents the
reward return average of each arm at the current round, and
τ is a hyperparameter. When τ is large randomness of pulls
is greater, and thus model explores more. When τ is a small
policy is more prone to exploiting solution with the highest
reward average.

E. EXP3
Exponentialweight algorithm for Exploration and Ex

ploitation [25] is constructed to deal with adversarial en
vironment. It memorizes list of weights w corresponding
to arms. Based on these weights, the policy calculates
probabilities of pulls p for each arm i at timestep t based
on a equation:

pi,t = (1− γ)
wi∑K
j=1 wi

+
γ

K
(7)

γ is additional parameter which controls the randomness of
arm pulling, higher γ means higher randomness and ranges
from 0 to 1. K is the number of arms. We estimate reward
r̂i,t with equation:

r̂i,t =
ri,t
pi,t

(8)

ri,t is the actual reward returned by the environment. This
step ensures that the conditional expectation of the estimated
reward is the actual reward. Based on estimated reward we
update weight of the pulled arm:

wi(t+ 1) = wi(t+ 1)e
γr̂i,t
K (9)

Unpulled arms are not updated. Because of introduced
randomness update strategy, the algorithm could explore
as long as the session lasts. Older rewards hold smaller
significance, thus old optimal arm could be forgotten when
it is no longer optimal.

IV. Contextual multiarmed bandits
A more advanced type of bandits that make use of the

contextual information in order to compute the most optimal
arm are called contextual bandits. They have different names
in the literature: bandits problems with side observations,
associative reinforcement learning, reinforcement learning

with immediate reward, bandit problems with covariates;
but the term contextual bandits introduced by Langford
and Zhang [26] became the industry standard. The main
difference between noncontextual and contextual bandits
is that in the latter the environment reveals a context that
becomes relevant in choosing the pulled arm.
The context is the side information that the system might

have. If we take as an example a platform of movie recom
mendations, this context can be the information about the
user (location, browser, watching habits, previous likes etc)
or about the content (movie category, ratings, actors etc).
In such a setting, the reward can be described as some sort
of function or mapping of the context information and past
rewards.
To formalize, the contextual bandit problem can be viewed

as the repeated interaction of the agent with the environment
that reveals a context xt at every time t; the agent performs
an action at,k over T rounds and accumulates the reward
rt,k for each round, where k represents the pulled arm from
the {1, ..., k} arms to be pulled.

Algorithm 2 Contextual MAB
for each round t = 1, 2, ....T do
1. The environment reveals the context xt ∈ X
2. The agent takes action at,k ∈ A
3. The environment reveals reward rt,k ∈ [0, 1] for
chosen action

end for

Cortes [27] formalises the problem in a similar way, but
he assumes a stochastic binary reward for each arm through
a function of the covariates which differs for every arm but
remains the same throughout all rounds.

A. Guided exploration approaches  UCB
As described in the previous chapter, the Upper Confi

dence Bound model is based on the idea of choosing the
best option considering the arm with the highest UCB. This
is a very popular exploration strategy and many famous
algorithm are based on it. Introduced in 2002 by Auer [19],
LinRel is a notable algorithm that pioneered the idea of the
contextual bandit problem with linear payoffs. It assumes
that the rewards are some kind of the linear combination of
the previous rewards of the arm. Auer calles his model “as
sociative reinforcement learning with linear value functions”.
It is the precursor of the now famous LinUCB. The concept
behind the algorithm is similar, except that LinUCB adds
an identity matrix in the ridge regression, while LinRel does
the regularization by setting the matrix’s small eigenvalues
to zero [28]. We will not go in detail of explaining this
algorithm, but will explain the LinUCB instead, considering
it a simplified and easier to implement form of LinRel.
However it is important to notice that LinUCB does not have
the same regret bound as LinRel [29].
1) LinUCB: LinUCB or linear upper confidence bound

algorithm was introduced by Li et al in 2010 and is one of the
most popular linear stochastic algorithms. In their work [4]
the authors tried to solve the problem of personalized news
article recommendations at Yahoo! from the perspective of
contextual bandits. The scope was to maximize the user click
using the existing contextual information about the userclick
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history. They have applied the algorithm on the data from
Yahoo! Front Page Today Module. The dataset is constructed
of over 33 million events. The algorithm achieved a 12.5%
click lift compared to a contextfree policy.
LinUCB is an extenstion of the UCB algorithm. The

algorithm comes in 2 flavours: LinUCB with Disjoint Linear
Models and LinUCB with Hybrid Linear Models.

a) LinUCB with Disjoint Linear Models.: The algo
rithm assumes that the expected reward on an arm a is linear
combination of a ddimensional feature vector xt and some
unknown coefficient vector θ∗

a [4]:

E[rt,a|xt,a] = xT
t,aθ

∗
a (10)

The coefficient vector θ∗
a is unknown, but we can have

θ̂a as the estimate of coefficients using ridge regression on
training data at each time t; Aa is the history matrix of
dimension d ∗ d, where d is the dimension of the of the
features xt; which put together leads to the chosen arm
being the one with the maximum UCB calculated as sum
of expected value and the standard deviation with a hyper
parameter α:

at
def
= arg max

a∈At

(
xT
t,aθ̂a + α

√
xT
t,aA

−1
a xt,a

)
(11)

The algorithm is explained in detail in the paper, but to
summarize: At each time t a context vector xt is generated;
for each new arm they generate a Aa matrix (history)
of dimension d ∗ d and a response vector(feedback from
user) ba of dimension d. The vector of coefficients θ̂a is
calculated using ridge regression and then optimal arm with
the higher confidence bound is selected as shown in (11).
The matrix and vector of the chosen arm are updated and the
algorithm restarts. This approach is called disjoint because
the parameters are not shared between the arms.

b) LinUCB with Hybrid Linear Models.: This model
assumes that the features can either be shared or nonshared
between the arms of the model. The expected payoff of the
arm thus translated to:

E[rt,a|xt,a] = zT
t,aβ

∗
a + xT

t,aθ
∗
a (12)

where zT
t,a represents the encoded features of the current

user/article combination and β∗
a is an unknown coefficient

vector that is recurrent for all arms. The main difference
between the models is that in the disjoint we update only
the features of the chosen arms, while in the hybrid model
we update the reward corresponding on the joint feature’s
interaction. The confidence intervals are computed a little
different in the case of the hybrid model and the algorithm
can be found in the paper [4].
2) Similar Approaches and extensions of LinUCB: We

would like to mention some of the similar approaches to
LinUCB found in the literature. Even if a vast series of
algorithms use the upper confident bound, here we will try
to briefly describe those that are similar with the LinUCB
approach.

a) Latent Contextual Bandits: LCB or Latent Contex
tual Bandit introduced by Zhou and Brunskill in 2016. The
approach is based on partial personalization. It does not
rely on user’s features to capture variability, but instead it
leverages the latent class structure. The LCB algorithm is
composed of 2 phases: the first phase runs LinUCB on J
users and in phase 2 uses this data to learn N latent models

to construct policies and create an instance of a bandit for
each user in J. Evaluated on a news feed dataset provided by
Yahoo!, the algorithm outperforms Population LinUCB (runs
a single LinUCB model for all arms), giving a 5% higher
CTR under specific experiment settings [30].

b) Contextual Combinatorial Cascading Bandit: The
Contextual Combination Cascading Bandit (C3UCB) is de
signed like an online learning game where the action is
combinatorial (it assumes a superarm formed by base arms)
and the reward model is cascading (the bandit chooses a
sequential list of top best arms). At every time step t, the
learner is presented a set of contextual information and has
to select a subgroup of items under combinatorial constraints
(super arm); it then observes the reward for the superarm
and, because of the cascading feedback model, the weights
of the base arms in the super arm [31]. The algorithm stops
when the user selects an item at a position o down the list
of chosen arms. C3UCB algorithm first computes the upper
confidence bounds of the base arms, then selects an action
based on it and after updating certain statistics gets a new
ddimensional context vector and a new confidence radius.

c) ContextualBandit Based Personalized Recommen
dation with TimeVarying User Interests: Two models with
disjoint and hybrid payoffs are considered in order to portrait
how the users’ preference targeting different objectitems
shift over time. To address the challenge of timevarying
interests, the algorithm employs a changedetection proce
dure to identify potential changes on the preference vectors.
Once a change is detected, an efficient restart is applied to re
estimate the preference vector using uptodate observations.
The disjoint and hybrid models achieve a 2.0% and 2.4%
CRT increase over the LinUCB disjoint and hybrid models
on Yahoo! news dataset [32].
3) Bootstrapped approaches: Bootstrapping is generally

referred to as a way to randomize historical data [33]. It
consists in taking resamples of the data of the same size
as the original by random selection from the historical data
and replacing them. Cortes [27] proposes 2 contextual UCB
algorithms  online and offline that take as inputs a number
of resamples, oracles and a percentile p in order to choose
the arm with the maximum reward. The offline variant is
refit to a bootstrapped resample, while the online paradigm
takes a sample observation weight w and updates the oracle
with the new observation of context and reward weighted on
w.
4) Neural Approaches: Recently, some neural approaches

with MABs have been developed. Neural Contextual Bandits
with UCBbased Exploration proposes an algorithm names
NeuralUCB that uses a NN based feature mapping to con
struct the UCB. The reward function is learned using a fully
connected neural network with depth L ≥ 2. The key idea
of NeuralUCB is to use a neural network f(x;θ) to predict
the reward of context x and upper confidence bounds. They
have experimented on both synthetic and realworld datasets
achieving promising empirical results. [34]

B. Probability matching
In contrast with the methods described that are determin

istic, the algorithms from this section are constructed in a
probabilistic manner to deal with selecting an arm based on
its probability of being the best arm. As described in the
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section on contextfree bandits, Thompson Sampling (TS) is
a fairly old algorithm that has once again spiked the attention
of the researches, adapting it to the contextual setting. Most
of the algorithm in this section are based on TS.
1) Logistic Thompson Sampling: Thompson sampling is

an important decision making strategy, observed to reach
stateoftheart results, acting better than some other strate
gies such as UCB. Thompson Sampling with logistic re
gression is described by Chapelle and Li [20]. The authors
argue that because of its simple heuristics and ease of
implementation this is one of standard baselines to compare
against. Let D be set of past observations, made of triplets
(xi, ai, ri), with xi as context, ai as action and ri as reward.
They are modeled using a parametric likelihood function
P (r|a, x,θ), where θ are some unknown parameters [20].
If we know the prior distribution on these parameters, we
can compute the posterior distribution on them by Bayesian
rule.
The algorithm works by receiving the context vector xt

and draws θt form the probability P(θ|D) then selects the
arm that maximizes Er(r|xt, a, θt), observes reward, updates
history and start over.
Each weight is drawn independently according to its

Gaussian posterior approximation. Logistic regression is used
to learn the unknown weight vector θ. One of the experiments
was to predict the CTR in an advertising display experiment.
In a simulated environment, a feature vector for every
(context, ad) pair was created and the clicks were simulated
using a weight vector θ∗. The click for every ad (arm a)
was generated with the probability (1 + exp(−xT, θa))−1.
Thompson sampling proves to have the lower regret out of all
tested algorithms [20]. Another experiment is conducted on
article recommendation in personalized news article recom
mendation on Yahoo! front page. They use logistic regression
to model the article CTRs. A feature vector x of dimension
21 is used and a weight vector θa with the same dimension
needs to be learned. Thompson sampling appears competitive
this time as well [20].
2) Thompson Sampling for Contextual Bandits with Lin

ear Payoff: This algorithm attempts to generalize of Thomp
son Sampling for the stochastic contextual multiarmed ban
dit problem with linear payoff functions [35]. The contexts in
this case are produced by an adversary after observing the
played arms and their rewards. The authors assume some
sort of a unknown underlying parameter θ ∈ R where the
expected reward for each arm i with the context xi is xT

i θ.
They use Gaussian likelihood function and Gaussian prior
to construct the algorithm. At every step t, the algorithm
generates a sample θt from the distribution and picks the
arm that maximizes xi(t)

Tθt . The algorithm and all the
demonstrations are succinctly explained in the paper [35].
3) Bootstrapped approaches: As in the case of Boot

strapped UCB, the used resamples are drawn from the
same distribution as the original samples. In essence, the
bootstrap uses the empirical distribution of a sampled dataset
as an estimate of the population statistic [36]. Cortes in [27]
constructs 2 Thompson Sampling (TS) based bootstrapped
algorithms with the offline and online version that take as
inputs a number of resamples and oracles and select the
action that maximizes the reward. The offline example takes
a bootstrapped resample of context and rewards and refits
the oracle to this resample; while the online paradigm takes

a sample observation weight w and updates the oracle with
the new observation of context and reward weighted on w.
Osband and Roy propose a bootstraped TS for deep ex

ploration that pulls the arm with the highest bootstrap mean,
which is estimated from a history with pseudo rewards.
Their algorithm is similar to Thompson Sampling, though
the posterior sampling step has been replaced by a single
bootstrap sample [36].
Personalized Recommendation via ParameterFree Con

textual Bandits is a bandit policy with no exploration
parameters, that uses a bootstrapping technique based on
principled resampling called online bootstrap [37]. The rec
ommendations are created by randomly sampling the model’s
coefficient vectors from a derived distribution (bootstrap
replications). They apply their algorithm to the Yahoo! Today
news and KDD Cup 2012 Online Ads, evaluating it by the
replayer method [38].
4) Neural approaches: Deep bayesian bandits show

down [39] shows an empirical comparative study on bayesian
deep networks for Thompson Sampling. The authors pro
pose a series of algorithms based on deep learning that
use decision making via TS. They employ several well
studies as well as recently developed methods to approxi
mate posterior distributions, combined them with Thompson
Sampling and apply them to contextual bandit problems.
There are 10 groups of algorithms: Linear Methods, Neural
Linear, Neural Greedy, Variational Inference, Expectation
Propagation, Dropout, Monte Carlo, Bootstrap, Direct Noise
Injection, Bayesian Nonparametric. The architecture of the
neural networks in all algorithms is the same: a simple
fullyconnected feedforward network with 2 hidden layers
with 100 units each and ReLu activations. The input of the
network has dimension d (same as the contexts), and there
are k outputs, one per action [39]. They found that robust
methods approximate the uncertainty and representations
faster than more sophisticated approaches that require heavier
training. We encourage the reader to refer to the cited paper
for a detailed explanation of each of the approaches.

C. More contextual bandits
1) Randomized UCB: We have to mention here that some

algorithms briefly that are often cited in the literature, but
are (yet) too complicated to be optimally implemented. One
of such algorithm is Randomized UCB [40]. The algorithm
could achieve optimal regret while having a polylog(N) run
ning time. The key insight boils down to a game between an
adversary and the algorithm. The distribution over action is
constructed as a distribution via policies. However, according
to [41] this algorithm is not yet practical to implement.
2) ILOVETOCONBANDITS: Based on Randomized

UCB, the researchers from Microsoft propose an
alternative algorithm based on coordinate descent,
called Importanceweighted LOwVariance Epoch
Timed Oracleized CONtextual BANDITS algorithm
(ILOVETOCONBANDITS) [42]: in each iteration, the
algorithm calls the optimization oracle to obtain a policy;
the output is a sparse distribution over these policies. The
algorithm begins with a initial distribution of policies Q1
over the policies π. For each t= 1,2...T, the context xt
is observed. The distribution pt over actions 1,2,...,k is
computed based on Qt and xt. An action at is drawn from pt
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and the reward rt|at is collected. Then create the importance
weighted reward estimates r̂t. Compute sparse Qt+1 using
the coordinate descent to get sparse policy distribution that
balances explore/exploit.
3) The Epoch Greedy Algorithm for Contextual Bandits:

Proposed in 2008 by Langford and Zhang, the Epoch Greedy
Algorithm is based on balancing the exploration and ex
ploitation to receive a small overall regret in a time horizon
T. One important problem the algorithm has to solve is
to decide when to explore and when to exploit [26]. The
authors find useful to first perform a first stage of exploration
steps, followed by a second stage of exploitation steps. In
the first step, the algorithm samples an arm uniformly at
random. In an exploitation step, it selects the arm based on
the best policy learned from the exploration samples, using
an unbiased estimator [28]. The algorithm finds the optimal
arm by solving

max
h∈H

∑
(x,a,ra)∈Wl

raI(h(x) = a) (13)

and attribute at = ĥl(xt), where ĥl ∈ H is the best hypothe
sis, ra is the reward for action a; I(.) is the identity function
and xt is the context at moment t for the action/arm at.
This algorithm is deemed to have a regret bound incurred
by complexity bound for a hypothesis class, scaling as
O(T 2/3S1/3) or better. No knowledge of a time horizon T
is necessary.

V. Different Flavors of MABs in RecSys
In order to adapt the MAB framework to the task of

recommendations, many researchers understood that these
frameworks have to employ various strategies to align ban
dits to realworld scenarios. A plethora techniques and ideas
were developed to make bandits suitable for integration in
different RecSys. In this chapter we will like to describe
various techniques and research directions that extend the
MAB framework and show how other directions of study
can be leveraged to improve bandits’ possibilities.

A. Multiple Play Bandits
Usually MAB focus on selecting only 1 arm from the

available decision space. Sometimes, for some application
this is not enough. The decision system should be capable to
select multiple arms that correspond to the best candidates.
There have been some algorithm that extend the traditional
bandits to multiple actions (or multiple plays), allowing the
algorithm to choose not one but many arms in a fashion that
has sound theoretical foundation.
1) EXP3.M: This is an adversarial algorithm that studies

the problem with multiple plays on K arms [43]. Just
like in the 1arm selection case, the algorithm selects an
action i with the probability pi(t) and computes an esti
mation of reward ri(t) as r̂i(t) = ri(t)/pi(t) if the action i
is indeed selected and as r̂i(t) = 0 otherwise. Now the
main problem is reduced to selecting the best m arms out
of K.The algorithm is based on the online mirror descent
principle to minimize regret in online convex optimization.
Louedec et al in A Multipleplay Bandit Algorithm Applied
to Recommender Systems [44] propose a computationally
efficient implementation of the same algorithm and test it
on movielenas and Jester datasets and prove empirically its
performance.

2) CBMA: The Contextual Bandit with Multiple Actions,
(CBMA), proposed by Chang and Lin, uses pairwise ridge
regression with upper confidence bound to select multiple
actions. The key idea is to choose an action as a (pairwise)
ranking task and solve it by transforming it into a pairwise
linear regression problem [45]. The approach assumes T
iterations, and for each of it the environment provides a
context matrixXt; m actions are chosen from the K candidate
pool an the reward vector rt is revealed; the algorithm is
updated with information about this iteration. The actions are
scored, and the action with the best score is played. CBMA
uses the PairUCB  the proposed algorithm that deals with
computing the unknown weight vector θ (called pairwise
reward estimator) using pairwise ridge regression between
the the pairwise context matrix and the as the pairwise reward
vector [45]. The algorithm was tested on realworld and
synthetic data and has shown better results than LinUCB,
being also less susceptible to the α parameter.
3) MPTS: A Multiple Play Thompson Sampling (MP

TS) approach was also proposed for the problem of multiple
selections and was presented in [46]. The algorithm re
assembles the classical TS algorithm, with the exception
that instead of choosing the best arm based on the posterior
sample θi(t), it chooses the top Lbest arms from the
candidate pool. In order to ensure a low regret bound, the
algorithm suppresses the simultaneous draw of 2 or more
suboptimal arms. They also propose an enhanced version
of the algorithm, which instead of L arms, exploited L
1 arms, which proved good empirical results. The MPTS
algorithm performs better than the earlier described EXP3.M
and the Combinatorial multiarmed bandit proposed by Chen
et al in 2013. The experiments were conducted on the KDD
Cup 3 2012 dataset for online advertisement based CTRs
optimization and other 2 small synthetic models.

B. Multiobjective optimization in MABs
Sometimes the system might have demands to optimize

for different final objectives. If the majority of examples
provided in this paper relied on optimizing the CTR, this
might not always be the case. If we have a multistakeholder
platform (let’s say we want to optimize for the reader and
for the publisher on the same platform), we have to consider
bandits that can optimize multiple objectives. In this sub
chapter we will show some the multiobjective optimization
approaches.
1) Multiobjective Bandits: Optimizing the Generalized

Gini Index: The authors formalize the problem of optimizing
a bandit with multiple objectives, where agent receives a
Ddimension vectorial feedback that encodes many possibly
competing objectives to be optimized [47]. The main objec
tive of the paper is to find a fine line between optimizing all
the objectives and yet taking into consideration the balance
between this optimizations. Instead of using a Pareto front,
the authors employ the Generalized Gini Index [48]. In this
setting, the cost of each arm is no longer a scalar value, but a
vector. In order to find the best arms, they are compared by
their GGI, where the optimal arm minimizes the Gini score.
The optimization algorithm is based on the Online Gradient
Descent.
2) Bandit based Optimization of Multiple Objectives on

a Music Streaming Platform: Recommender systems pow
ering online multistakeholder platforms have to take into
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consideration optimizing the recommendations towards more
than one direction. This paper discusses how Spotify tries to
optimize their recommendation in order to satisfy the user,
the artist and the platform. This translates into optimizing
more than one single objective (for example they need to
take care not only of the click rate, but also of the time
listened, the artist displayed, streaming time etc) [3]. In order
to deal with this task, the authors formalize the problem
as a contextual multiarmed bandit with multiple objectives,
where for each round t a set of features Ft of length M is
associated with every arm. Now under a linear presumption,
the reward rt at time t after pulling the arm k is

rt = FT
t,kϑ

∗ + ζt (14)

where ϑ∗ ∈ RD×M is a fixed unknown param and ζt ∈ RD is
the independent random noise for each of the objectives. For
selecting the optimal arm, instead of choosing a solution from
the Pareto front, the authors use the Generalized Gini Index
based aggregation function. The proposed algorithm is called
MOLinCB that optimizes the regret for an aggregation
function. The algorithm was tested on synthetic data and
a real Spotify dataset, compared with a baselines including
greedy approaches, MO approaches (MOODGE described
above) and simple selection strategies. The algorithm per
forms better in terms of optimizing all the objectives and
also in regards to time constrains. An important finding of
this papaer is that multiobjective models perform better than
the single objective case, across all metrics [3].
3) : Other studies [49] propose multiobjective multi

armed bandit that use Thompson Sampling to pick weights
that identify new arms on the Pareto front with higher
frequency; explore biobjective problems with one dominant
objective [50] or consider a problem where the agent uses a
linear scalarization function in order to transforms a multi
objective problem into a standard problem by summing the
weighted objectives [51].

C. Clustering of bandits
Bandits were also studies in terms of clustering. Re

searchers found out that it can be useful to cluster bandits,
arms or user features in order to reduce the dimensionality
of the problem, while maintaining a promising regret bound.
Here are some interesting approaches in bandit clustering.
1) Multiarmed Bandit Problems with Dependent Arms:

This approach focuses on clustering arms of the bandit based
on some dependencies among them. The assumption is that
the arms are dependent [11]. The problem is formulated
in terms of N arms that grouped into K known clusters
with the objective to maximize the finitetime reward or
minimize the expected regret. Considering πi the parameter
set for cluster Ci, every time an arm i is pulled it alters
πi(t) simultaneously for all arms in cluster C. At every
time step the policy computes an (index, arm) pair for every
cluster. It calculates the rewards and the variance estimate
for each cluster, calls the second policy to select the cluster
and inside the cluster calls the policy again to select the arm.
This approach was called the Two Level Policy (TLP) [11].
The experiments were conducted on synthetic data and an
adplacement campaign dataset, using different instances of
the TLP and UCB as baseline. TLP gave better empirical
results and the authors conclude that the regret depends on
the characteristic of the clusters.

2) CLUB: Online Clustering of Bandits The idea behind
this concept is that the system has to serve recommendations
to a N users that can be grouped on C clusters, based on
their feedback on recommendations [52]. It relevant to group
recommendations. Each cluster Cj is parametrized by some
unknown vector cj ∈ RD, shared by every user in Cj . The
authors assume one linear bandit per node inside each cluster
and one linear bandit per cluster. Each node i hold a proxy
vector wi, while the cluster j holds a proxy vector zi, and
zi is an aggregation of wi. Nodes are served in sequential
order. They start with the big cluster of n elements and
delete edges were the proxy vectors are too different. After
the user i is served in cluster j, the proxy vectors of the
user and cluster are updated. The algorithm was tested on
synthetic datasets, as well as LastFM and Delicious and
Yahoo! datasets, competing with 2 variations on LinUCB
(that allocates an instance of the algorithm across all users
and one that allocates a instance of the algorithm to each
user) and proved better results than its competitors.
3) DynUCB: Dynamic Clustering of Contextual Multi

Armed Bandits The main idea behind this concept is to
divide the users into different clusters and customize the
bandits for each cluster. Also, the clustering is deemed to
be dynamic, meaning that the users can shift from one
cluster to another, which illustrates the realworld scenario
of preferenceshifting. DynUCB is based on LinUCB, taking
as input the desired number of clusters K. For each user u,
associated with the cluster Ck at time t, the algorithm learns
the coefficient θk from the clusterlevel parameters of the
bandit bk and the matrix Mk. For the action a the generated

reward is
(
θ̂T
kxt,a + α

√
xT
t,aM̂−1

a xt,a log(t + 1)

)
where θk

is a cluster level parameter for a user u in cluster Ck and
xt is the context vector of the action a [53]. The reward is
used to update the user’s own coefficient θut and reassign
user ut to the cluster Ck which has the cluster coefficient
θ̂k′ closest to its own.The experiments were conducted on
Delicious and LastFM data against the baseline algorithm
CLUB (described earlier) and the 2 variations of LinUCB
just as previous and has seen significant better results on the
Delicious dataset [53].

D. Collaborative Filtering Approaches
Collaborative filtering that is typically used in RecSys can

be combined with bandit usage. The next couple of example
illustrate these implementations.
1) COFIBA: Collaborative Filtering Bandits (COFIBA)

is at a crossroads of clustering and collaborative filter
ing and and takes advantages of preference patterns in
the data. COFIBA is an upperconfidencebased heuristic,
combined with adaptive clustering procedures as for items
and users [10]. It explores the collaborative effect induced
by the shiftings in user/item interaction. This collaborative
component means that the users are dynamically clustered
in groups based on the surveyed items, while, at the same
time the items are clustered based on the clustering similarity
induced over users. This is the first step of the algorithm.
Then, it explores the priori of items (denoted by their
feature vectors) I = {x1, x2, .., x|I|} and performs multiple
clustering over the set of U of users and a single clustering
over the set I of items. The algorithm then computes the
neighborhood sets Ni,t(xi,t) with respect to the items in Ci,t
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and are stored into clusters from the users side (pointed by
these items). The clusters are updated on user and item side.
The algorithm was tested on 3 datasets and yielded better
results than over surveyed algorithms [10].
2) FactorUCB: The approach assumes similarity of users

incorporated through a weighted graph by completing a low
rank matrix of useritem interaction and employs a UCB se
lection strategy [54]. A factorizationbased bandit algorithm
is placed on every user. One of the main questions in matrix
factorization is how to choose the next useritem feedback
pair for model update so that it will be less susceptible
to bias. Exploration of optimal items become therefore a
good option to ensure more optimality; in order to do that
the authors employ the UCB strategy and assume that the
observed reward from each user is determined by the user’s
neighbors. The best item is selected based on the contextual
features(known and observable) and latent item factors, as
well as a matrix Θ storing latent user factors. In other words,
the best item is selected according to the predicted expected
reward based on the current estimation of latent user and
item factors. Experiments were conducted on synthetic data,
as well as on Yahoo! and LastFM datasets and compared to
several stateoftheart factorizationbased and banditbased
collaborative filtering methods and proved that the leveraged
contextual features and user interactions help conquer the
coldstart problem [54].
3) PTS: Particle Thompson Sampling for Matrix Factor

ization In this paper the RecSys delivers an item recom
mendation to the user using Thompson Sampling. The user
then rates the item and the system updates the statistics. The
original thing here is that the systems updates not only the
latent matrix of the user, but also the latent representation
of the item in a matrix factorization model based on the
rating of the item [55]. In order to update the matrix in real
time, the system uses the a RaoBlackwellized particle filter
for online matrix factorization. Posterior density is estimated
by particle filtering(with a set of weighted samples) [55].
The system was evaluated on 1 synthetic and 5 real world
datasets. It yielded good performance applied to real world
problems. The approach was patented by Adobe.1

E. Time bound bandits
Some of the approaches consider the time aspect of the

context(think about placing adds or videos that have an
expiration date), items, users and user/item interactions that
change over time even in terms of the rewards received
(change in consumption preference). There are some ap
proaches that deal with the induced timedynamic aspects
of multiarmed bandits.
1) Mortal bandits: The idea behind this approach is that

arms have a lifetime after which they expire and the algo
rithm needs to explore constantly [56]. There are 2 scenarios
proposed: a less realistic scenario called stateaware, where
the reward is also the best reward possible for that arm,
and the stateoblivious, with stochastic rewards, thus a more
realistic scenario. The authors model the mortality of the
bandits in 2 ways, whether the arm lives after being picked or
not. Because of the way the rewards are assumed, the regret
in the mortal bandit can never go to zero (in typical MABs
it is possible). Considering this setting, there are separate

1https://patents.google.com/patent/US10332015

algorithms developed for the stateaware and the state
oblivious cases, which are based on the same assumptions.
The algorithm proves optimal in the setting of deterministic
rewards: given a distribution and an expected live span,
compute the expected reward for an arm ri; select a random
arm; if the reward of the arm is bigger than the computed
reward, stay with the new arm every turn until it expires. The
only difference between this algorithm and the stochastic one
is that instead of pulling an arm one time and determine its
reward ri, the algorithm pulls each arm n times and abandons
if it looks unpromising. The paper uses an epoch based (with
a subset of k/c arms per epoch) UCB and epsilongreedy with
mortal bandits, but it is important to note that any search
heuristic can be plugged into the mortal bandit. The empirical
evaluation is performed on 3 different distributions of arm
payoffs.
2) Time Varying Bandit: Online ContextAware Recom

mendation with Time Varying MultiArmed Bandit This paper
focuses on capturing the time dependent changes of the
reward in contextual MAB problems. The authors propose
a dynamic setting for the context and model the dynamic
behavior of the reward as a set of random walk particles.
An arm’s particle is a container which stores the current
status information that arm [57]. The learned parameters are
integrated into a bandit selection strategy in order to serve
recommendations. The reward of the arm a is modeled as
a linear combination of the contextual features xt and the
coefficient vector θt. In order to count for the drift in the
context, the authors assume that xt is comprised of a constant
and a drift component, where the stationary ct is generated
with a conjugate prior distribution and the drift component
is element wise product of a standard Gaussian random walk
randt,k and a parameter µk. After getting a score for arm a
given context xt, the algorithm learns the parameters based
on all particles’ inferences of µk and computes a score
based on that parameters; then, the inference is updated and
weights are computed for each particle; particles are re
sampled according to the weights and all the statistics are
updated. The algorithm is evaluating using simulation and
the replayer method described in VIA1 on KDD Cup 2012
online ads data and Yahoo! Today News.

F. Ensemble methods
In the last section of this chapter we will discuss some

ensemble methods with bandits for recommendations. En
semble in this case refers to aggregating multiple policies of
bandit algorithms, rather than learning a unified predictive
model. An ensemble method combines the prediction of
different algorithms to obtain a final prediction [58].
1) HyperTS and HyperTSFB: Ensemble Contextual Ban

dits for Personalized Recommendation This approach em
ploys a metabandit paradigm that constructs a hyperbandit
that coordinates the work of some other base bandits and
observe their importance in terms of explore/exploit depend
ing on the user feedback [37]. Because of the nature of the
ensemble strategy that estimates the performance of each
policy, this strategy proves a very good for solving the cold
start problem. The idea of the ensemble is to have a set of
action A and a set of policies Π = {π1, ..., πn} and to find
a policy that is closest to π∗, where π∗ = arg max

πi∈Π
E[rπi

].

The paper presents 2 algorithms HyperTS and HyperTSFB.
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HyperTS estimates the expected reward of each policy
π ∈ Π using the Monte Carlo method. The context x1, ..., xn
is drawn from a distribution in which the policy πi is selected.
For an input context xj, πi plays the arm aj and obtains
the reward rj. Considering all the distributions, the Monte
Carlo estimate becomes Ê[rπi ] ∼ Beta(1 + απi , 1 + βπi),
where απi =

∑
rj and βπi = n − απi . In each trial ri is

a sample from Ê[rπi ] drawn from the Beta distribution. The
final policy that get selected is the one with the highest ri.
Continuing, HyperTSFB improves the estimation efficiency
of HyperTS by fully utilizing every received feedback for
expected reward estimation [37]. Evaluation is performed
on Yahoo! Today News and KDD Cup 2012 Track 2 online
advertising data using the replay method. The policies are
compared against with Random, epsilongreedy, LinUCB,
Softmax, Epochgreedy; Thomspon Sampling is used as
base policy. HyperTS and HyperTSFB are able to achieve
comparable performance with the top ranked base policies.
2) BEER: Ensemble Recommendations via Thompson

Sampling: an Experimental Study within eCommerce This
approach extends Thompson Sampling in order to orchestrate
a set of base RecSys for ecommerce. It takes into consid
eration realistic settings and implements TS when neither
action availability nor reward stationary is guaranteed [59].
This approach is similar to the one proposed by [37] in the
manner that each bandit arm represents a recommendation
strategy to match the user’s query to items in the database,
but is different in terms of how the authors model the arms
and attribute rewards. The arms, that are simple contextual
recommendations, are partitioned into disjoint groups using
a IDF (Inverse Document Frequency)based partitioning.
The proposed bandit ensemble framework BEER(Bandit
Ensemble for Ecommerce Recommendations) is used with
Thompson Sampling on top of this partitioning method. As
the authors suggest, the recommendation components of the
ensemble can be created automatically from the existing
item attributes or useritem interaction history. This type of
architecture achieves scalability because the number of arms
in not dependent on the number of items [59].

a) : Another approach we will briefly like to mention
here is called Prediction Model Selection (PdMS) that tackles
the problem of coldstart users and relies on feedback to
pick the most appropriate recommendation. The arms are
considered as clusters of users computed using matrix fac
torization and employ UCB and epsilongreedy as selection
policies [14]. There are a myriad of additional implementa
tions of MABs used in RecSys. We described only some of
them, but decided to mention a couple more for the reader
to further investigate. Thompson Sampling is highly used
as a policy for creating recommendations and can be found
in document labeling as Active Thompson Sampling [60];
search query recommendations using an MIndependent arm
Thompson sampling [61] and tutoring systems [62].

VI. Evaluating bandits
Evaluating multiarmed bandits is difficult [20]. Bandits

prove to be not easy to work with and can be difficult to
evaluate because of the online learning paradigm that they
were created for. With that said, it would be highly unwise
to deploy a method to production without evaluating it in
any way. There are some established way to evaluate the
bandits in an offline fashion and in pseudoonline fashion

in simulated environments. In the next subchapters we will
discuss these approaches.

A. Offline Evaluation
1) Replay Method: Many papers cites in this study have

been using the replay method to evaluate their bandits [3],
[52], [10], [37], [32], [54], [57] and others. Unbiased Offline
Evaluation of Contextualbanditbased News Article Recom
mendation Algorithms [38] or from now on the replayer
method was proposed as a datadriven and proven unbiased
offline evaluation of bandit algorithm and became one of the
industry’s standards. The technique assumes that the arms are
i.i.d. and that each arm is chosen uniformly at random by
the policy at each step. The crux idea of this approach is that
having access to historical data, in the evaluation process, the
algorithm will only consider those actions that selected the
same item as in the historical dataset and discarding the rest.
As noted in [57]: “The main idea of replayer is to replay each
user visit to the algorithm under evaluation”. Formally, if the
current policy A chooses the same arm as the logging policy
L, than the event is retained and the statistics are updates,
otherwise, the event is discarded.
One downside of this method is that it needed a very large
initial historical set, especially if there are many arms to
choose from, because the number of discarded event will
rise significantly. If you have k arms and T samples, than
the size of the new dataset will be T /k.
2) Bootstrapped evaluation of contextual bandit algo

rithms: This approach assumes a setting called dynamic
recommendation, where only a couple tens of items are avail
able at any given moment. Based on the replayer method,
but realising its shortcomings, this method uses bootstrap
in order to generate the datasets used for evaluating, more
precisely: from a dataset of size T with K possible choices of
action at each step, they generate B datasets of size K/T using
sampling by replacement with a nonparametric bootstrap
procedure [63]. For the newly created data subsets the classic
replayer method is used to estimate the pertrial payoff.
The authors deduce that because of this, the algorithm A
is evaluated on T records on average. The authors compared
their method with replay and concluded that it converges
faster and gets higher accuracy on real world datasets.
3) Direct Method: This method, proposed by Beygelzimer

and Langford, employs using a regression model in order to
learn the reward function. The reward is conditioned by the
actions and the context. The method allows one to reuse of
any existing, fully supervised binary classification algorithm
in a partial information setting [64]. The value of the policy
is given by:

V̂DM (π) =
1

n

n∑
k=1

∑
a∈A

π(a|xk)(r̂(xk, a)) (15)

with r̂(x, a) being the approximation of the reward and π
the policy in question.
4) Doubly Robust Policy Evaluation and Optimization:

According to the authors, the doubly robust method is a type
of statistical approximation from incomplete data, where if
either one of the two estimators (for example Direct Method
estimated rewards from given data or Inverse Propensity
score  uses importance weighting to correct the shifts
and biases in historic data) is correct, then the estimation
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is unbiased. The approach suggests a replaybased non
stationary policy evaluator, with an improved acceptance rate
(as discussed earlier, discarding a large part of the dataset is
one limitation of the replay policy).

V̂DR(π) =
1

n

n∑
k=1

[
r̂(xk, v) +

v(xk|ak)
µ̂(xk|ak)

× (rk − r̂(xk, ak))
]

(16)
where

r̂(xk, v) =
∑
a∈A

v(a|x)(r̂(x, a))

is the estimated value of the policy derived from r̂ [65]. Dou
bly robust policy uses the estimated mean reward function to
decrease variance and a weighted version of rewards [66]. In
some way, DR combines the ideas from other two estimators
 Direct Method and Inverse Probability Weighting.

B. Simulated environments
Another way to test MAB is by creating simulations

of the online settings. For example, in order to test their
algorithm [20] used simulated clicks,included in some vector
w∗, and generated with a certain probability. The simulation
method is considered to give better results replayer when
the available collection of items to recommend is large [57].
Simulations and synthetic data are used in many of the cited
papers. With that said, creating simulator can be both tedious,
timeconsuming, nontrivial and at the same time may not
reflect actual performance [38].
Open AI offers different synthetic environments to build
and test Reinforcement Learning algorithm, meaning that
they can also be compatible for bandits (open AI Gym for
example, offers a simple yet versatile setting for creating
such synthetic fields)2. More recently, Tensorflow developed
TFagent bandit library, that offers environments for different
setups (for linear and non linear reward functions; stationary
and nonstationary dynamics) and many more advanced
functionalities3.

VII. Multiarmed bandit recommendation systems used in
industry

In this sub chapter we would like to show how different
companies used the multiarmed bandit framework in order
to solve different challenges and present personalized content
to the users. It is interesting to see how various problems
were modeled as MAB problems, in different ways and under
different assumptions.

A. Amazon
The paper An Efficient Bandit Algorithm for Realtime

Multivariate Optimization tackles the problem of page layout
optimization at Amazon by using a parametric Bayesian
model that explicitly incorporates interactions between com
ponents of a page, applying a hill climbing optimization
algorithm to approximate a contextual Thompson Sampling.
Deployed to production, the solution increased conversion
rates with 21% on certain Amazon landing pages [67]. Each
possible layout is comprised of D different widgets. If the

2https://gym.openai.com/
3http://github.com/tensorflow/agents/tree/master/tf_agents/bandit

each widget has N variations, than the stochastic MAB
problem is formulated as having ND arms on t = 1, 2, .., T
timesteps with a feature vector bt (user or session infor
mation) and a arm feature vector ak (representing to the
layout). The final feature vector xa,t is generated from
user feature vector and arm feature vector. The reward is
given by a linear scaling of xa,t over a unknown weight
vector θ. The algorithm selects the optimal content, but also
is responsible for contextualization and personalization of
the page’s layout. They have simulated the experiment on
512 different layouts comparing the different flavours of
the algorithm versus noncontextual multiarmed bandit with
ND arms and noncontextual Narmed bandit for each of D
widgets. The method proved to be suitable for capturing the
interactions between the content pieces that are displayed
together, while taking into consideration the context.

B. Netflix

An interesting way in usage of bandits can be seen at
Netflix. According to Netflix’s technology blog, the stream
ing giant uses bandits to select the personalized artwork for
each movie it presents to the user; the authors claim on using
contextual bandits in order to pick the most suitable image
from a dozen of candidates, specifically for that particular
user [68]. In order to create the context for the bandit, the
authors use information as: the titles played by the user,
the genres those titles are attributed to, past interactions of
the user with different titles (if available), demographics etc.
Then the model ranks images for each context, by predicting
the probability of play for each image accompanying a
given title and the one with the highest probability gets
chosen. The evaluation of the bandit is done offline, by
using the replay method VIA1. At the DataEngCong in
San Francisco in 2018, Netflix presented a framework of
MABs that they use in order to get personalised homepage
recommendations for each member [1]. The system can be
broken down into the offline(attribution assignment, model
training) and online components (use explore/exploit policy,
log contextual information, generate and serve recommen
dations). The contextual information about each decision is
being stored, in order to understand further on why that
exact recommendation has been made. The main idea for the
billboard is to try to maximize the incremental probability
of play, where this probability is computed as the difference
of probability of play of when the title was shown on the
billboard vs when it was absent. The researchers noticed
that implementing incrementality is able to shift engagement
within the candidate pool (from popular titles to less popu
lar).

C. Spotify

Spotify has a mechanism in their recommendations that
they call “recsplanations”  making the user to understand
their recommendations and provides a method that combines
the explanations of the recommendations and the bandit
algorithms behind them in an approach called BART 
BAndits for Recsplanations as Treatments in a paper called
Explore, Exploit, and Explain: Personalizing Explainable
Recommendations with Bandits. The paper provides the
first method that combines bandits and explanations in a
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principled manner [2]. BART chooses as context and reward
model that imposes a linearity on the reward r:

r(j, e, x) = σ(θglobal + θTx′)

where x′ = [1T
j , 1

T
e , xT]T is the aggregated context contain

ing information about item(j), explanation(e) and context(x)
with 1j being a 1 hot encoded vector with a single 1 at
index j; θ = [θT

j , θ
T
e , θ

T
x , ]

T, with θ being a coefficient in
logistic regression. To overcome the disadvantage of logistic
regression in recommendations (the choice of the item and
explanation is disregarding the user’s attributes) and to get
more personalized recommendations, the authors introduced
a weighted sums of higher order interactions between ele
ments in the aggregated context vector [2]. Then they used
a use counterfactual risk minimization (CRM) for bandit
training. Finally, they use an epsilongreedy exploration
exploitation approach. BART uses conditional exploration,
meaning it decides if it’s worth exploring or exploiting
the items apart from the explanations, while keeping the
underlying model for the reward the same. Also, experiments
with multiobjective optimizations bandits were conducted at
Spotify; for more details see VB2.

D. Expedia Group
Expedia uses multiarmed bandits in a production setting,

where the arms of the MAB are the recommender system’s
variants. There are 4 different variants of the RecSys:
the first uses an adaption of content based recommender
system(works based on top key item features); the second
includes a variant of probabilistic recommender system; the
third uses session based embeddings, while the last algorithm
(arm of the MAB) makes use of a Matrix Factorization
model. They use clickthroughrate and conversion rate as
performance metrics. The system receives the statistics on
views and clicks for each variant and stores the traffic
quotas each armed received to some cache [69]. They use
Thompson Sampling for this traffic allocation and run it in
minibatch daily runs. They compare the performance of the
new variants (expressed on CTR) with the baseline(the model
that is currently in production.)

E. Zozotown
Zozo is the largest Japanese fashion ecommerce company.

In a recently released work, A Largescale Open Dataset for
Bandit Algorithms, the authors reveal that they have been
using Thompson Sampling along with a Random selection
policy in order to present recommendations to their cus
tomers. The most important input of this paper is that the
authors propose an open bandit pipeline (OBP) to facilitate
scalable and reproducible research on bandit algorithms [66].
They implement some of the most famous bandit policies
with a bunch of policy estimators, along with a open dataset
of subsets of different sizes.4. Besides the classical replay
estimator, the authors implement and compare some other
estimators from the literature (Direct Method by [64], In
verse Probability Weighting [70], Doubly Robust [65]) and
conclude that finding a stable and optimal evaluator is as
important as selecting the best performing policy. The work
is important because if offers a pipeline implementation

4https://github.com/sttech/zrobp

of bandits and estimators that can be extended with own
implementations and applied to different datasets.

F. Yahoo!
There are many experiments at Yahoo! using the MAB

framework [38], [4]. Another one is presented in A Batched
MultiArmed Bandit Approach to News Headline Testing, that
uses Thompson Sampling to choose from different versions
of titles, in order to pick the one that will maximize the
click prospect. There are K different headline variants, each
associated with one arm. The idea is to find the optimal arm
that maximizes the CTR, but also to considerate the perish
of the articles, which may lead to changes in click gains.
The authors introduce batched Thompson Sampling(bTS) [5]
that is tuned for optimal feedback when the user’s feedback
is processed in batches. The batched idea was considered
because of the massive traffic on the Yahoo! front page  it
would have been an immense burden to update the algorithm
after each user interaction. The idea behind the bTS is that
within each batch, the Beta distribution of each arm remains
the same. The traffic across arms is allocated based on their
random Beta distribution samples drawn for each incoming
view event. The statistics are updated at the end of each run.
There are 2 ways of updating: the summation update(raw
counts of clicks) and normalization update(number of nor
malized clicks and nonclicks). Three moments need to be
tuned in bTS: the algorithm stopping point, the before
mentioned update methods and the update frequency. The
benefits of the bTS are at follows: it exposes much fewer sub
optimal headlines, thus increasing user experience; it helps
distinguish the optimal arm faster(having more samples to
compare among the good arms) and it gained a 3.69% overall
click gain.

G. Deezer
For the RecSys 2020 conference, Deezer presented their

usage of bandits in recommending playlists in a carousel
(the user is recommended a list of L swipeable items, from
which only 3 are visible without scrolling) fashion [71].
The approach considers a semipersonalized recommendation
setting, with number of Q clusters on N users, where
Q << N . At each round, a random subset of users is
presented a policy that updates its model based on the
users’ feedback. The policies have to recommend a list
L = 12 playlists. The policies used in the experiment
are ϵgreedy with segmentation; an explore then commit
strategy; KLUCB (based on KullbackLeibler divergence);
Thompson Sampling and Linear Thomspon Sampling against
a random strategy baseline. The experiment was conducted
on a sample of over 900K users with 862 playlist5 and then
implemented in the live Deezer app by an online A/B test.
One of the impressive results was that semipersonalized
recommendations perform as good as as fullypersonalized
contextual models in terms of playlist ranking, assuming a
good initial clustering [71].

VIII. Putting bandits to work
In this section we will showcase the usage usage of some

MABs in RecSys by conducting a couple of short experiment

5The dataset is available at https://zenodo.org/record/4048678#.X22w4pMza3J
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on some bandits and datasets. We run some experiments in
order to see how some of the described policies perform of
different datasets. We are also curious about understanding
the importance of using context and observe the tradeoff
between performance and run time. It si also important to
see how much context actually impacts the quality of the
algorithm.

A. Comparing different policies
1) Goal of the experiment and included algorithms: We

have based our experiment on a number of policies described
in the previous chapters of the paper and evaluated them of
2 datasets (a subset of the Open Bandit Pipeline described
in section VIIE and Movielens 1 million) using the replay
method. Classically, we have modeled recommending the
best item to the user as a bandit problem and used MABs that
tries to maximize the Clickthrough rate(CRT) of each item.
We are interested in finding policy will maximize the total
reward (modeled here as CRT) over the items of different
datasets. We have evaluated the following policies:
1) Upper Confidence Bound with Ridge Regression (Lin

UCB)
2) Epsilon Greedy with Ridge and Logistic Regression
3) Thompson Sampling with Online Logistic Regression
4) Epsilon Greedy, UCB, Thompson Sampling with no

context for comparing
5) Random policy as baseline
2) Algorithm evaluation metrics: We will use 2 met

rics in order to identify the best performing algorithms:
cumulative reward of each policy and worst regret (the
difference between the sum of rewards yielded by the random
policy and the sum of rewards collected by the observed
policy). Of course, the best performing policies will have the
maximum cumulative reward; at the same time they will also
exhibit a bigger difference between the cumulative reward
of the random policy and their own. We will evaluate the
performance using the replay method described in VIA1.
Note that this method should only be used for a small number
of arms (not exceeding 50 as noted in [72], [73]). Thus, we
will use up to 50 arms, depending on the dataset, as described
in the datasets subsection.
3) Baselines: We will compare the algorithms with the

random policy and also will be interested in comparing
the performance of contextual vs noncontextual models.
Now, a couple of remarks should be made here. First, in
order to compare apples with apples we ran some warmup
experiments to figure out the best parameters for each policy.
Algorithms depend on parameter tuning. We have to observe
how these parameters impact the performance of the model;
For example, we found out that for epsilon greedy we get the
best performance when epsilon is equal to 0.1, ridge UCB
also with alpha of 0.25 and in online logistic regression
for TS the best regression parameter alpha (responsible for
the prior distribution of the weights) turned out to be also
1.0 These values can vary in dependence of the dataset, the
number of arms and the distribution of weights. Second, we
usually compare contextual disjointed models, as described
in [4], meaning that we assume that the arms do not have
any common features.
4) Datasets: MovieLens 1m Dataset consists of 3 subsec

tions: user data (user ID with corresponding user information

Figure 1. Comparative cumulative rewards of different bandit policies using
replay. 1  Movielens1m; 2 Zozo/men

such as age, gender, occupation, zipcode), movie data (item
ID with the corresponding genre), and usermovie ratings
(reaction of the user on a movie from 1 to 5). The reward
is defined to be 1 if the user’s rating for a movie is 5, and
0 otherwise (4 or below).For users, the age group buckets
were created. Onehot encodings were created for “age
groups”, “gender” and “occupation”.For Movies features, it
was simply left as onehot encodings of “genres”. Data were
filtered to include only top N movies. N will will be set to
50 (so 50 arms).

a) Zozo/men: This is a subset of the datasets offered by
Zozo6, that contains over 1 mln impressions. The dataset is
described in [66] and also on the project’s github page7. We
included in the processing only the user and item features
and did not take into consideration the position of the item
on the page when evaluating. It has 33 different items, thus
33 arms to choose from.
5) Results: We run the experiments on these 2 datasets

and evaluated each policy using the replay method, which
was suitable for us, as we have chosen a small number
of arms. The scope of the experiment was to illustrate
the performance of the models on various datasets. It is
noticeable that different policies perform differently for
various datasets. One important thing to to notice is that on
Movielens1m all the policies perform better than the random
one, but, at the same time, we can notice that this is not

6https://research.zozo.com/data.html
7https://github.com/sttech/zrobp
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always the case for the Zozo data; as we can see the Epsilon
Ridge performs better on the Movielens dataset, but the UCB
ridge proves to be the best for a the Zozo dataset. One
conclusion here is that the structure of the data is important
when evaluating the algorithm performance; at the same time
it is important to also correctly tune the algorithm to find
their best performance. Also find the tables with the result
below.

Table I
Comparative results of policies

policy reward worst reg time(s) dataset arms samples
random policy 73 0 13.8 zozo/men 33 440435
ucb no context 64.5 8.5 117.68 zozo/men 33 440435
ucb ridge dis 93 20 408.89 zozo/men 33 440435
ts no context 86.5 13.5 80.03 zozo/men 33 440435
ts olr dis 52.5 20.5 584.73 zozo/men 33 440435

epsilon no context 60 13 100.83 zozo/men 33 440435
epsilon ridge dis 79 6 332.23 zozo/men 33 440435
epsilon logistic dis 72 1 1265.1 zozo/men 33 440435
random policy 927.5 0 3.43 movielens/ 50 109804
ucb no context 1061.5 134 42.19 movielens/ 50 109804
ucb ridge dis 1085 157.5 142.27 movielens/ 50 109804
ts no context 1554.5 627 28.91 movielens/ 50 109804
ts olr dis 1191.5 264 111.96 movielens/ 50 109804

epsilon no context 1221.5 294 32.44 movielens/ 50 109804
epsilon ridge dis 1862 934.5 116.19 movielens/ 50 109804
epsilon logistic dis 1303 375.5 588.11 movielens/ 50 109804

IX. Conclusions

In this paper gave an overview on the problem of multi
armed bandits and how bandits are used in recommendation
systems. We explained and formalized the MAB problem,
giving definitions on the regret and reward concepts that are
important in bandit literature. We described the most famous
MAB contextual and noncontextual algorithms. We have
shown how applications of MABs can be molded into Rec
Sys in different industries and also discussed about different
types of advancements in the field. Some of the methods
and approaches discussed in this paper were successfully
applied and implemented across the industry, while others
make a solid theoretical ground for future implementations.
However, there are some challenges in the productization
of MABs. As [74] notes, determining the correct context
vector is critical for contextual bandits; at the same time
adding arms on the fly, timedependencies can also prove
problematic. Evaluating bandits is again one of the concerns
in the literature. This paper wants to be a survey and a
togo source, without being exhaustive, for those who are
interested in getting started with MABs and their applications
in recommendations.
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